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A restricted growth function (RGF) of length n is a sequence 
w = w1w2 . . . wn of positive integers such that w1 = 1 and 
wi ≤ 1 + max{w1, . . . , wi−1} for i ≥ 2. RGFs are of interest 
because they are in natural bijection with set partitions of 
{1, 2, . . . , n}. An RGF w avoids another RGF v if there is 
no subword of w which standardizes to v. We study the 
generating functions 

∑
w∈Rn(v) q

st(w) where Rn(v) is the set 
of RGFs of length n which avoid v and st(w) is any of 
the four fundamental statistics on RGFs defined by Wachs 
and White. These generating functions exhibit interesting 
connections with multiset permutations, integer partitions, 
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and two-colored Motzkin paths, as well as noncrossing and 
nonnesting set partitions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Recently, there has been a flurry of activity looking at the distribution of statistics 
over pattern classes in various objects. For example, see [4,5,7,9,11,12,14]. There are 
two notions of pattern containment for set partitions, one obtained by standardizing a 
subpartition and one obtained by standardizing a subword of the corresponding restricted 
growth function. In [6], the present authors studied the distribution of four fundamental 
statistics of Wachs and White [25] over avoidance classes using the first definition. The 
purpose of this paper is to carry out an analogous investigation for the second.

Let us begin by defining our terms. Consider a finite set S. A set partition σ of S

is a family of nonempty subsets B1, . . . , Bk whose disjoint union is S, written σ =
B1/ . . . /Bk � S. The Bi are called blocks and we will usually suppress the set braces and 
commas in each block for readability. We will be particularly interested in set partitions 
of [n] := {1, 2, . . . , n} and will use the notation

Πn = {σ : σ � [n]}.

To illustrate σ = 145/2/3 � [5]. If T ⊆ S and σ = B1/ . . . /Bk � S then there is a 
corresponding subpartition σ′ � T whose blocks are the nonempty intersections Bi ∩ T . 
To continue our example, if T = {2, 4, 5} then we get the subpartition σ′ = 2/45 � T .

The concept of pattern is built on the standardization map. Let O be an object with 
labels which are positive integers. The standardization of O, stan(O), is obtained by 
replacing all occurrences of the smallest label in O by 1, all occurrences of the next 
smallest by 2, and so on. Say that σ � [n] contains π as a pattern if it contains a 
subpartition σ′ such that stan(σ′) = π. In this case σ′ is called an occurrence or copy
of π in σ. Otherwise, we say that σ avoids π and let

Πn(π) = {σ ∈ Πn : σ avoids π}.

In our running example, σ = 145/2/3 contains π = 1/23 since stan(2/45) = 1/23. But 
σ avoids 12/3 because if one takes any two elements from the first block of σ then it is 
impossible to find an element from another block bigger than both of them. Klazar [16–18]
was the first to study this approach to set partition patterns. For more recent work, see 
the paper of Bloom and Saracino [3].
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To define the second notion of pattern containment for set partitions, we need to 
introduce restricted growth functions. A sequence w = w1w2 . . . wn of positive integers 
is a restricted growth function (RGF) if it satisfies the conditions

1. w1 = 1, and
2. for i ≥ 2 we have

wi ≤ 1 + max{w1, . . . , wi−1}. (1)

For example, w = 11213224 is an RGF, but w = 11214322 is not since 4 > 1 +
max{1, 1, 2, 1}. The number of elements of w is called its length and denoted |w|. Define

Rn = {w : w is an RGF of length n}.

For RGFs and even more general sequences we will use wi as the notation for the ith 
element of w.

To connect RGFs with set partitions, we will henceforth write all σ = B1/B2/ . . . /Bk �
[n] in standard form which means that

minB1 < minB2 < · · · < minBk.

Note that this implies minB1 = 1. Given σ = B1/ . . . /Bk � [n] in standard form, we 
construct an associated word w(σ) = w1 . . . wn where

wi = j if and only if i ∈ Bj .

More generally, for any set P of set partitions, we let w(P ) denote the set of w(σ) for 
σ ∈ P . Returning to our running example, we have w(145/2/3) = 12311. It is easy to 
see that σ being in standard form implies w(σ) is an RGF and that the map σ �→ w(σ)
is a bijection Πn → Rn.

We can now define patterns in terms of RGFs. Given RGFs v, w we call v a pattern
in w if there is a subword w′ of w with stan(w′) = v. The use of the terms “occurrence,” 
“copy,” and “avoids” in this setting are the same as for set partitions. Given v we define 
the corresponding avoidance class

Rn(v) = {w ∈ Rn : w avoids v}.

Similarly define, for any set V of RGFs,

Rn(V ) = {w ∈ Rn : w avoids every v ∈ V }.

As before, consider w = w(145/2/3) = 12311. Then w contains v = 121 because either of 
the subwords 121 or 131 of w standardize to v. However, w avoids v = 122 since the only 
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repeated elements of w are ones. Note that this is in contrast to the fact that 145/2/3
contains 1/23 where w(1/23) = 122. In general, we have the following result whose proof 
is straightforward and left to the reader.

Proposition 1.1. Suppose that partitions π and σ have RGFs v = w(π) and w = w(σ). 
If w contains v then σ contains π, but not necessarily conversely. Equivalently, we have 
Rn(v) ⊇ w(Πn(π)). �

Sagan [20] described the sets Rn(v) for all v ∈ R3. To state this result, we need a few 
more definitions. The initial run of an RGF w is the longest prefix of the form 12 . . .m. 
Write al to indicate a string of l copies of the integer a. Call the word w layered if it has 
the form w = 1n12n2 . . .mnm , equivalently, if it is weakly increasing. The next theorem 
will be useful in the sequel.

Theorem 1.2 ([20]). We have the following characterizations.

1. Rn(111) = {w ∈ Rn : every element of w appears at most twice}.
2. Rn(112) = {w ∈ Rn : w has initial run 12 . . .m and m ≥ wm+1 ≥ wm+2 ≥ · · · ≥

wn}.
3. Rn(121) = {w ∈ Rn : w is layered}.
4. Rn(122) = {w ∈ Rn : every element j ≥ 2 of w appears only once}.
5. Rn(123) = {w ∈ Rn : w contains only 1s and 2s}. �

Using this result, it is not hard to compute the cardinalities of the classes.

Corollary 1.3 ([20]). We have

#Rn(112) = #Rn(121) = #Rn(122) = #Rn(123) = 2n−1

and

#Rn(111) =
∑
i≥0

(
n

2i

)
(2i)!!

where (2i)!! = 1 · 3 · 5 · . . . · (2i − 1). �
Our object, in part, is to prove generalizations of the formulae in this corollary using 

the statistics of Wachs and White and their generating functions. They defined four 
statistics on RGFs denoted lb, ls, rb, and rs where the letters l, r, b, and s stand for left, 
right, bigger, and smaller, respectively. We will explicitly define the lb statistic and the 
others are defined analogously. Given a word w = w1w2 . . . wn, let

lb(wj) = #{wi : i < j and wi > wj}.
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Otherwise put, lb(wj) counts the number of integers which are to the left of wj in w and 
bigger than wj . Note that multiple copies of the same integer left of and bigger than wj

are only counted once. Note, also, that lb(wj) depends on w and not just the value of 
wj . But context will ensure that there is no confusion. For an example, if w = 12332412
then for w5 = 2 we have lb(w5) = 1 since three is the only larger integer which occurs 
before the two. For w itself, define

lb(w) = lb(w1) + lb(w2) + · · · + lb(wn).

Continuing our example,

lb(12332412) = 0 + 0 + 0 + 0 + 1 + 0 + 3 + 2 = 6.

For an RGF v, consider the generating function

LBn(v) = LBn(v; q) =
∑

w∈Rn(v)

qlb(w)

and similarly for the other three statistics. Sometimes we will be able to prove things 
about multivariate generating functions such as

Fn(v) = Fn(v; q, r, s, t) =
∑

w∈Rn(v)

qlb(v)rls(v)srb(v)trs(v).

As noted in Proposition 1.1, if v = w(π) then we always have Rn(v) ⊇ w(Πn(π)). 
But for certain π we have equality. In particular, as shown in [20], this is true for π =
123, 13/2, 1/2/3 and the corresponding v = 111, 121, 123. So these patterns will not, 
for the most part, be analyzed in what follows since their generating functions were 
computed in [6].

The rest of this paper is organized as follows. In the next section, we consider the gen-
erating functions for the two remaining patterns of length three, namely v = 112 and 122. 
Interestingly, multiset permutations, integer partitions, and q-binomial coefficients come 
into play as well as connections with the polynomials for the remaining patterns of length 
three. In Section 3, we consider the classes Rn(V ) for all V ⊆ R3 containing two or more 
patterns. The next three sections deal with RGFs of length longer than three. Section 4
gives recursive methods for calculating generating functions for longer patterns in terms 
of shorter ones. The following two sections are concerned with the patterns 1212 and 
1221 which are connected with noncrossing and nonnesting set partitions, respectively. 
These results are closely related to two-colored Motzkin paths. We note that Simion [22]
previously considered single and joint distributions of the Wachs and White statistics 
over RGFs for noncrossing partitions, and we rederive one of her results using a different 
proof. We end with a section of comments and open questions.
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2. Single patterns of length 3

2.1. Patterns related to multiset permutations

In this subsection, we show bijectively that three of the generating functions under 
consideration are the same. Moreover, the common value can be expressed in terms 
of the q-binomial coefficients which count multiset permutations. First we need some 
definitions.

We let [n]q = 1 + q+ q2 + · · ·+ qn−1. We can now define a q-analogue of the factorial, 
letting [n]q! = [1]q[2]q · · · [n]q. Finally, we define the q-binomial coefficients or Gaussian 
polynomials as

[
n

k

]
q

= [n]q!
[k]q![n− k]q!

.

By convention, 
[
n
k

]
q

= 0 if k < 0 or k > n.
Now that we have the proper notation, we can state our first equidistribution theorem.

Theorem 2.1. We have

LBn(112) = RSn(112) = LBn(122) =
∑
m≥1

[
n− 1
m− 1

]
q

.

We will establish the statements for avoiding 112 first and then deal with 122. First, we 
need to recall a well-known combinatorial interpretation for the Gaussian polynomials. 
The inversion number of any sequence w = w1 . . . wn of integers is

inv(w) = #{(i, j) | i < j, wi > wj}.

Let Pn,k denote the set of all permutations π = π1 . . . πn of a multiset consisting of n −k

ones and k twos. Then

∑
π∈Pn,k

qinv(π) =
[
n

k

]
q

. (2)

In the next proof we use the notation w + k for the result of adding the integer k to 
every element of the sequence w.

Proposition 2.2. We have

LBn(112) =
∑
m≥1

[
n− 1
m− 1

]
q

= RSn(112).
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Proof. Let

Rn,m(112) = {w ∈ Rn(112) | maxw = m}

and throughout the proof m will denote the maximum of w. To prove the first equality 
it suffices, by equation (2), to find a bijection α : Rn,m(112) → Pn−1,m−1 such that 
lb(w) = inv(α(w)). Every RGF either ends with a one or with an element greater than 
one. From Theorem 1.2 it follows that the w ∈ Rn(112) ending with a one are precisely 
those of the form w = v1 where v ∈ Rn−1(112). Similarly, those ending with a greater 
number are those which can be written w = 1(v + 1). Note that lb(v1) = m − 1 + lb(v)
and lb(1(v + 1)) = lb(v). Now define α recursively by α(1) = ∅ and for n ≥ 2

α(w) =
{

α(v)1 if w = v1,
α(v)2 if w = 1(v + 1).

It is easy to prove inductively that α is a bijection. And it is also not hard to see that α
sends lb to inv. For example, if w = v1 then by induction

lb(w) = lb(v1) = m− 1 + lb(v) = m− 1 + inv(α(v)) = inv(α(v)1) = inv(α(w))

with the other case being similar.
To prove the second equality, we must find a bijection β : Rn,m(112) → Pn−1,m−1

such that rs(w) = inv(β(w)). The construction is similar, except that in the case w = v1
we make the more refined decomposition w = 1k(v + 1)1� where k, � ≥ 1 and v ∈
Rn−k−�(112). The definition of β is then β(1n) = 1n−1 and for w �= 1n

β(w) =
{

1k+�−22β(v)1 if w = 1k(v + 1)1�,
β(v)2 if w = 1(v + 1).

The reader should have no difficulties filling in the rest of the proof. �
Proposition 2.3. We have

LBn(112) = LBn(122).

Proof. We will construct a bijection η : Rn(112) → Rn(122) such that lb(w) = lb(η(w)). 
Let w ∈ Rn(112) have maximum m. To construct η(w) we start with the sequence 
12 . . .m. For every wi, where wi is not in the initial run of w, we will insert a 1 just to 
the right of element m −wi +1 in η(w). Note that 1 ≤ wi ≤ m ensures that this element 
always exists, and in conjunction with Theorem 1.2 this shows that η is well-defined. For 
example if w = 12345664331 then η(w) = 11231411561. Clearly η is invertible.

To check that lb is preserved, note that in w the initial run does not contribute to lb
and in η(w), none of the terms greater than 1 contribute to lb. Consider wi such that 
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i > m. Then lb(wi) = m − wi. If we examine the 1 placed into η(w) because of wi, we 
notice that it has m − wi terms greater than 1 to its left. Therefore the lb of this 1 is 
m − wi. Thus, lb(w) = lb(η(w)). �

Combining the above propositions yields Theorem 2.1.

2.2. Patterns related to integer partitions with distinct parts

Next, we will explore a connection to integer partitions with distinct parts. An integer 
partition is a weakly decreasing sequence of positive integers λ = (λ1, . . . , λk). The λi

are called parts and we say the parts are distinct if the sequence is strictly decreasing. 
It is well-known that the generating function for partitions with distinct parts of size at 
most n − 1 is

n−1∏
i=1

(1 + qi).

As noted in the introduction, for the pattern 121 we have Rn(121) = w(Πn(13/2)). So we 
can use the following result of Goyt and Sagan who studied the ls statistic on Πn(13/2).

Proposition 2.4 ([12]). We have

LSn(121) = RBn(121) =
n−1∏
i=1

(1 + qi).

The following result establishes that, once again, four of our generating functions are 
the same.

Theorem 2.5. We have the equalities

LSn(112) = LSn(121) = RBn(121) = RBn(122) =
n−1∏
i=1

(1 + qi).

As before, we break the proof of this result into pieces.

Proposition 2.6. We have

LSn(112) = LSn(121).

Proof. We will construct a bijection ξ : Rn(112) → Rn(121) such that ls(w) = ls(ξ(w)). 
Given w ∈ Rn(112) we will construct ξ(w) by rearranging the elements of w in weakly 
increasing order. By Theorem 1.2, this is well defined. For the inverse, if we are given a 
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layered RGF, v, then we use the first element of each layer to form an initial run and 
rearrange the remaining elements in weakly decreasing order.

For any RGF w = w1 . . . wn we have ls(wi) = wi− 1. Since w and ξ(w) are rearrange-
ments of each other, ls is preserved. �
Proposition 2.7. We have

LSn(112) = RBn(122).

Proof. Let η : Rn(112) → Rn(122) be as in Proposition 2.3. To see that ls(w) = rb(η(w)), 
first note that ls(wi) = wi − 1. By construction, the initial run of w has ls that is equal 
to the total rb of the first occurrences of elements in η(w). In addition, for each wi not 
in the initial run of w, we place a 1 to the right of m − wi + 1 in η(w), and therefore 
there are wi − 1 elements to its right that are larger than it. Thus ls(w) = rb(η(w)). �

Combining the above propositions, we obtain Theorem 2.5.

2.3. Patterns not related to integer partitions

In this section, we present two more connections between the generating functions of 
patterns of length 3. The first is as follows.

Theorem 2.8. We have

RSn(122) = LBn(123) = RSn(123) = 1 +
n−2∑
k=0

(
n− 1
k + 1

)
qk.

Proof. It was shown in [6] that

LBn(123) = RSn(123) = 1 +
n−2∑
k=0

(
n− 1
k + 1

)
qk.

So it suffices to construct a bijection f : Rn(122) → Rn(123) which preserves the rs
statistic. First, recall that by Theorem 1.2, words in Rn(123) contain only 1s and 2s and 
that for w ∈ Rn(122), every element j ≥ 2 of w appears only once. Given w = w1 . . . wn ∈
Rn(122), we will construct f(w) = u1 . . . un by replacing each element j ≥ 2 in w with 
a 2. This is a bijection, as any word in Rn(122) is uniquely determined by the placement 
of its ones. In addition, rs(wi) = rs(ui) by construction so that rs(w) = rs(f(w)). �

The second establishes yet another connection between statistics on Rn(112) and 
Rn(122).
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Theorem 2.9. We have

RBn(112) = LSn(122) =
n∑

m=0

(
n− 1
n−m

)
q
(m
2
)
.

Proof. For the first equality, let η : Rn(112) → Rn(122) be as in Propositions 2.3 and 2.7. 
We will show that for w ∈ Rn(112), we have rb(w) = ls(η(w)). Because w is unimodal, 
only the initial run contributes to rb. If m is the largest element in the initial run of w, 
then rb(w) = 1 + 2 + · · ·+ (m − 1) =

(
m
2
)
. Similarly, only the elements greater than 1 in 

η(w) contribute to ls. By construction, the largest element in η(w) is m as well. Thus, 
ls(η(w)) = 1 + 2 + · · · + (m − 1) =

(
m
2
)
.

To show that RBn(112) =
∑

m

(
n−1
n−m

)
q
(m
2
)
it suffices, as can be seen from the previous 

paragraph, to count the number of w ∈ Rn(112) with initial run 12 . . .m. Notice that 
once the elements in the weakly decreasing sequence following the initial run have been 
selected, there is only one way to order them. For that sequence we must choose n −m

elements from the set [m], allowing repetition, yielding a total of 
(
n−1
n−m

)
as desired. �

It is remarkable that the map η connects so many of the statistics on Rn(112) and 
Rn(122); see the proofs of Propositions 2.3, 2.7, and Theorem 2.9. The four-variable 
generating functions Fn(v; q, r, s, t) can be used to succinctly summarize these demon-
strations as follows.

Theorem 2.10. We have

Fn(112; q, r, s, 1) = Fn(122; q, s, r, 1). �
3. Multiple patterns of length 3

This section considers RGFs which avoid multiple patterns of length three. In all cases 
we are able to determine the four-variate generating function. We find connections to 
Gaussian polynomials, integer partitions, and Fibonacci numbers.

For sets V ⊆ R3 it is not hard to see if 121 ∈ V or {111, 122} ⊆ V then the two 
notions of pattern avoidance, as RGFs and as set partitions, are equivalent. In these 
cases the characterization and cardinality of Rn(V ) have been determined by Goyt [10], 
and the generating functions Fn(V ) have been determined by [6]. For completeness we 
will include the characterization, cardinality, and generating function for all V ⊆ R3

except those which contain both 111 and 123 since in these cases Rn(V ) = ∅ for n ≥ 5.
The following characterizations are obtained directly by taking the intersection of the 

sets described in Theorem 1.2 so the proof is omitted.

Proposition 3.1. We have the following characterizations for n ≥ 1.
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1. Rn(111, 112) = {w ∈ Rn : w has initial run 12 . . .m and m ≥ wm+1 > wm+2 >

· · · > wn}.
2. Rn(111, 121) = {w ∈ Rn : w is layered and every element of w appears at most

twice}.
3. Rn(111, 122) = {w ∈ Rn : w = 12 . . . n or w = 12 . . . i1(i + 1) . . . (n− 1) for some

0 < i < n}.
4. Rn(112, 121) = {w ∈ Rn : w = 12 . . .mm . . .m for some 1 ≤ m ≤ n}.
5. Rn(112, 122) = {w ∈ Rn : w = 12 . . .m11 . . . 1 for some 1 ≤ m ≤ n}.
6. Rn(112, 123) = {w ∈ Rn : w = 12i1n−i−1 for some 0 ≤ i < n}.
7. Rn(121, 122) = {w ∈ Rn : w = 1i23 . . . (n− i + 1) for some 0 < i ≤ n}.
8. Rn(121, 123) = {w ∈ Rn : w = 1i2n−i for some 0 < i ≤ n}.
9. Rn(122, 123) = {w ∈ Rn : w = 1n or w = 1i21n−i−1 for some 0 < i < n}.

Let fn denote the nth Fibonacci number defined by f0 = f1 = 1 and fn = fn−1+fn−2
for n ≥ 2.

Corollary 3.2. The cardinality of the avoidance sets above are as follows.

1. #Rn(111, 112) = #Rn(111, 121) = fn.
2. For all other pairs of length 3 patterns {v1, v2} except for the pair {111, 123} we have 

#Rn(v1, v2) = n.

Proof. The sizes for {111, 121}, {111, 122}, {112, 121}, {121, 122}, and {121, 123} were 
computed by Goyt [10]. The rest follow easily from Proposition 3.1 except #Rn(111, 112).

We will now show that #Rn(111, 112) satisfies the Fibonacci recurrence. It is not hard 
to see that #R0(111, 112) = #R1(111, 112) = 1. Next consider w ∈ Rn(111, 112) with 
n ≥ 2. We know from Proposition 3.1 that w = 12 . . .mam+1 . . . an where m ≥ am+1 >

· · · > an which implies that w has either one 1 or two 1’s. If w has one 1 then that 1 is 
at the beginning and w = 1(v + 1) for some v ∈ Rn−1(111, 112). If w has two 1’s then 
the second 1 will be an and w = 1(v + 1)1 for some v ∈ Rn−2(111, 112). This gives us 
the desired recurrence #Rn(111, 112) = #Rn−1(111, 112) + #Rn−2(111, 112). �

All the sets described in Proposition 3.1 are sufficiently simple that we can determine 
their four-variable generating functions. Many of the functions can be simplified by 
extending the Gaussian polynomials which were defined at the beginning of Section 2 to 
two variables. The bivariate analogue of n is

[n]p,q = pn−1 + pn−2q + · · · + qn−1

so [n]p,q! = [n]p,q[n − 1]p,q . . . [1]p,q and the binomial analogue is
[
n

k

]
= [n]p,q!

[k] ![n− k] ! .
p,q p,q p,q
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Fig. 1. The Young diagram for λ = (5, 5, 4, 3, 3) in the 6 × 5 rectangle β.

We can recover the one-variable version by letting p = 1.
For our next result, we will need a classic interpretation for the q-binomial coefficients 

in terms of integer partitions. Before we give the interpretation we need some definitions. 
The Young diagram of a partition λ = (λ1, . . . λk) is an array of left-justified rows of 
boxes with row i containing λi boxes. The Young diagram of λ = (5, 5, 4, 3, 3) is given in 
Fig. 1. Given β which is an r × � rectangle of boxes and a partition λ = (λ1, . . . λk) ⊆ β

as Young diagrams, we define its complement λc to be the partition which is composed 
of all boxes in β outside of λ rotated 180◦. Continuing our example from Fig. 1, the 
partition λ = (5, 5, 4, 3, 3) in the 6 × 5 rectangle has λc = (5, 2, 2, 1) as its compliment. 
Let |λ| =

∑
i λi and note that |λc| = r� − |λ|. For β, an r × � rectangle, we have the 

well-known formula [
r + �

�

]
p,q

=
∑
λ⊆β

p|λ|q|λ
c|.

Almost all the functions Fn(V ) for V = {v1, v2} ⊂ R3 are computed in [6], [12], or 
follow easily from methods previously used in this paper, so the proofs will be omitted. 
The only exception is V = {111, 112} for which we will provide a demonstration. The 
method we use parallels the proof used for Fn(111, 121) in [12].

Theorem 3.3. We have the following generating functions.

1. Fn(111, 112) =
∑
m≥0

(qrt2)
(m
2
)
(rs)

(n−m
2

)[n−m

m

]
qt,r

.

2. Fn(111, 121) =
∑
m≥0

(rs)
(m
2
)
+
(n−m

2
)[n−m

m

]
r,s

. See [12, page 244].

3. Fn(111, 122) = (rs)
(n
2
)
+ (rs)

(n−1
2

)
[n − 1]qt,s. See [6, Theorem 7.1].

4. Fn(112, 121) =
n∑

m=1
r(m−1)(n−m)(rs)

(m
2
)
. See [6, Theorem 7.1].

5. Fn(112, 122) = (rs)
(n
2
)
+

n−1∑
m=1

q(m−1)(n−m)(rs)
(m
2
)
tm−1.

6. Fn(112, 123) = 1 + rn−1s + qrst[n − 2]q,rt.
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7. Fn(121, 122) =
n∑

m=1
(rs)

(m
2
)
s(m−1)(n−m). See [6, Theorem 7.1].

8. Fn(121, 123) = 1 + rs[n − 1]r,s. See [6, Theorem 7.1].
9. Fn(122, 123) = 1 + rsn−1 + qrst[n − 2]q,s.

Proof. Define the set of pairs

Pn =
⋃
m≥1

{(λ, β) : λ is a partition with distinct parts, β = (n−m) × (m− 1), and

λ ⊆ β}.

Let w ∈ Rn(111, 112) so that, by Proposition 3.1, w = 12 . . .mwm+1 . . . wn where 
m = maxw and the sequence is strictly decreasing from wm+1 on. Now define ρ :
Rn(111, 112) → Pn by ρ(w) = (λ, β) where

λ = (m− wn,m− wn−1, . . . ,m− wm+1)

and β is as in the definition of Pn. Note that we are permitting the last part of λ to be 
zero. It is not hard to see that ρ is well defined and invertible.

If w �→ (λ, β) then we claim

(lb(w), ls(w), rb(w), rs(w)) =
(
|λ|,

(
m

2

)
+ |λc|,

(
m

2

)
,

(
n−m

2

)
+ |λ|

)
.

Indeed, lb(w) = |λ| since only the wi for i > m contribute to lb and in that case 
lb(wi) = m −wi which is a part of λ. For ls(w), the binomial coefficient comes from the 
initial run, while for i > m we have

ls(wi) = wi − 1 = (m− 1) − (m− wi) = λc
i−m.

Only the initial run contributes to rb(w), giving 
(
m
2
)
. Call the subword wm+1wm+1 . . . wn

of w its tail. Since the tail is strictly decreasing, it will contribute 
(
n−m

2
)

to rs(w). If wi

is in the initial run, then rs(wi) is the number of elements in the tail smaller than wi. 
But this is the same as the number of boxes in column m − i + 1 of λ and so the initial 
run adds another |λ| to rb(w).

There is a standard bijection δ from partitions with r distinct parts λ = (λ1, . . . , λr)
to ordinary partitions μ = (μ1, . . . , μr) with r parts where in both case we permit zero 
as a part. It is given by

δ(λ1, λ2, . . . , λr−1, λr) = (λ1 − (r − 1), λ2 − (r − 2), . . . , λr−1 − 1, λr) = μ.

Note that |λ| = |μ| +
(
r
2
)
. Also, if λ ⊆ r × � then μ ⊆ r × (� − r + 1). Furthermore 

μc = δ(λc).
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Now if λ ⊆ (n −m) × (m − 1) then δ(λ) ⊆ (n −m) × (2m −n). It follows that we have 
a bijection ρ′ : Rn(111, 112) → P ′

n where

P ′
n =

⋃
m≥1

{(μ, γ) : μ a partition, γ = (n−m) × (2m− n), and μ ⊆ γ}.

Furthermore, if ρ′(w) = (μ, γ) then

(lb(w), ls(w), rb(w), rs(w))

=
((

n−m

2

)
+ |μ|,

(
m

2

)
+
(
n−m

2

)
+ |μc|,

(
m

2

)
, 2

(
n−m

2

)
+ |μ|

)
.

Translating this bijection into a generating function identity and then replacing m by 
n −m yields the desired equation. �

From the functions provided in Theorem 3.3 we can see several symmetries and in-
variants.

Corollary 3.4. Let V ⊆ R3 and n ≥ 0.

1. For V = {v1, v2} such that 121 ∈ V or V = {111, 122}, the function Fn(V ) is 
invariant under switching q and t.

2. The following sets V have Fn(V ) invariant under switching r and s.

{111, 121}, {112, 122}, {121, 123}.

3. We have the equalities

Fn(111, 121; q, r, s, t) = Fn(111, 112; s, r, s, 1),
Fn(112, 121; q, r, s, t) = Fn(121, 122; q, s, r, t),

and

Fn(112, 123; q, r, s, 1) = Fn(122, 123; q, s, r, 1). �
The avoidance classes for V ⊆ R3 of size three and four are easy to determine and so 

we will merely list them in Table 1. The reader interested in the corresponding generating 
functions will be able to easily write them down.

4. Recursive formulae and longer words

In this section we will investigate generating functions for avoidance classes of various 
RGFs of length greater than three. This includes a recursive formula for computing the 
generating functions for longer words in terms of shorter ones.
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Table 1
Avoidance classes for V ⊂ R3 of size three and four and 
n ≥ 3.

V Rn(V )

{111, 112, 121} 12 . . . n, 12 . . . (n − 2)(n − 1)2

{111, 112, 122} 12 . . . n, 12 . . . (n − 1)1

{111, 121, 122} 12 . . . n, 1123 . . . (n − 1)

{112, 121, 122} 12 . . . n, 1n

{112, 121, 123} 1n, 12n−1

{112, 122, 123} 1n, 121n−2

{121, 122, 123} 1n, 1n−12

{111, 112, 121, 122} 12 . . . n

{112, 121, 122, 123} 1n

Recall that w + k denotes the word obtained by adding the nonnegative integer k
to every element of w. Note that if w is an RGF and k is nonzero, then w + k will 
not be an RGF. However, the word w̄ = 12 . . . k(w + k) obtained by concatenating the 
increasing sequence 12 . . . k with w + k, will be an RGF. In fact, there is a relationship 
between the generating functions for w and w̄. In the following theorem, we show that 
this relationship holds for the ls and rs statistics. We note that in [19, Propositions 2.1 
and 2.2], Mansour and Shattuck use the same method to find the cardinalities of the 
avoidance classes of the pairs of patterns {1222, 12323} and {1222, 12332}.

Theorem 4.1. Let v be an RGF and v̄ = 1(v + 1). Then

LSn(v̄) =
n−1∑
j=0

(
n− 1
j

)
qj LSj(v)

and

RSn(v̄) =
n−1∑
j=0

j∑
k=0

(
n + k − j − 2

k

)
qk RSj(v).

Proof. We start by building the avoidance class of v̄ out of the avoidance class of v. We 
do so by taking a word w in the avoidance class of v, forming 1(w+ 1), and then adding 
a sufficient number of ones to 1(w + 1) to obtain a word w̄ of length n which avoids v̄. 
We then count how adding these ones affects the respective statistics.

We first establish that avoidance is preserved in this process. Let w ∈ Rj(v). Since 
w avoids v, we know 1(w + 1) avoids 1(v + 1) = v̄. Now we need to show that forming 
w̄ by adding n − j − 1 ones to 1(w + 1) in any manner will result in w̄ avoiding v̄. If 
w̄ /∈ Rn(v̄), then there is a subword w′ of w such that stan(w′) = v̄. Since v̄ = 1(v + 1), 
the smallest element of w′ must appear only at the beginning of the subword, and must 
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be a 1 since 1(w + 1) avoided v̄. But removing the unique 1 and standardizing the 
remaining elements shows that there is a subword of w that standardizes to v. This is a 
contradiction. Therefore, we must have w̄ ∈ Rn(v̄). Similarly, every word in Rn(v̄) with 
n − j ones can be turned into a word in Rj(v) by removing all ones and standardizing. 
If this word isn’t in Rj(v), then it contains a subword that standardized to v. As before, 
this means the original word contains 1(v + 1) = v̄, which is a contradiction. Therefore, 
we can construct every word in Rn(v̄) from the words in Rj(v) for j ∈ [0, n − 1].

We now translate this process into the generating function identities. First we will 
focus on the LS formula. We can choose any w ∈ Rj(v), and place the elements of w+ 1
in our word w̄ in 

(
n−1
j

)
different ways since we must leave the first position free to be a 

one. Then we fill in the rest of the positions with ones. Since we added 1 to each element 
of w ∈ Rj(v) and added a one to the beginning of the word, we have ls(w̄) = ls(w) + j. 
So

LSn(v̄) =
∑

w̄∈Rn(v̄)

qls(w̄) =
n−1∑
j=0

∑
w∈Rj(v)

(
n− 1
j

)
qjqls(w) =

n−1∑
j=0

(
n− 1
j

)
qj LSj(v).

For the RS formula, instead of all j elements of w + 1 increasing the statistic, only 
the k elements of w + 1 that are to the left of the rightmost one in w̄ will contribute. If 
we choose where to place these elements, then everything else is forced. We start with 
n − 1 positions available, and disregard j− k+ 1 for the rightmost one and the elements 
of w+1 that appear after it. Thus we have (n − 1) − (j−k+1) = n +k− j− 2 positions 
to choose from. Summing over all values of j and k gives the RS formula. �

In the paper of Dokos et al. [7], the authors introduced the notion of statistical Wilf 
equivalence. We will consider how this idea can be applied to the four statistics we have 
been studying. We define two RGFs v and w to be ls-Wilf-equivalent if LSn(v) = LSn(w)
for all n, and denote this by

v
ls≡ w.

Similarly define an equivalence relation for the other three statistics. Let st denote any 

of our four statistics. Given any equivalence v
st≡ w, we can generate an infinite number 

of related equivalences.

Corollary 4.2. Suppose v
st≡ w. Then for any k ≥ 1 we have

12 . . . k(v + k) st≡ 12 . . . k(w + k).

Proof. For st = ls, rs this follows immediately from Theorem 4.1 and induction on k. 
For the other two statistics, note that the same ideas as in the proof of Theorem 4.1
can be used to show that one can write down the generating function for st over 
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Rn(12 . . . k(v + k)) in terms of the generating functions for st over Rj(v) for j ≤ n

although the expressions are more complicated. Thus induction can also be used in these 
cases as well. �

Applying this corollary to the equivalences in Theorem 2.3, Proposition 2.6, and The-
orem 2.8 yields the following result.

Corollary 4.3. We have

12 . . . kk(k + 1) lb≡ 12 . . . k(k + 1)(k + 1),

12 . . . kk(k + 1) ls≡ 12 . . . k(k + 1)k,

12 . . . k(k + 1)(k + 1) rs≡ 12 . . . k(k + 1)(k + 2),

for all k ≥ 1. �
We will now demonstrate how these ideas can be used to find the generating functions 

for a family of RGFs by finding LSn(12 . . . k) for a general k. We begin by finding the de-
gree of LSn(12 . . . k) through a purely combinatorial approach before using Theorem 4.1
to give a formula for the generating function itself.

Proposition 4.4. For n ≥ k, the generating function LSn(12 . . . k) is monic and

deg LSn(12 . . . k) =
(
k − 2

2

)
+ (k − 2)(n− k + 2).

Proof. It is easy to see that w ∈ Rn(12 . . . k) if and only if wi < k for all i. Also 
ls(wi) = wi − 1 for all i. Thus there is a unique word maximizing ls, namely w =
12 . . . (k− 2)(k− 1) . . . (k− 1). Thus LSn(12 . . . k) is monic with ls(w) = 0 +1 +2 + · · ·+
(k − 3) + (n − k + 2)(k − 2) =

(
k−2
2
)

+ (k − 2)(n − k + 2). �
To obtain a formula for Ln(12 . . . k) we will use the q-analogues introduced earlier, 

often suppressing the subscript q for readability. Consider the rational function of q

Km,n = [m + 1]n−1 − 1
[m] .

We will need the following facts about Km,n. Writing [m + 1]n−1 = (1 + q[m])n−1 and 
expanding by the binomial theorem gives

Km,n =
n−1∑
j=1

(
n− 1
j

)
qj [m]j−1. (3)

We also have
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1
[m]

(Km+1,n −K1,n) =
n−1∑
j=1

(
n− 1
j

)
qjKm,j (4)

which can be obtained by substituting the definition of Km,j into the sum and then 
applying the previous equation.

Finally we define, for k ≥ 3,

ck = 1 −
k−3∑
j=1

1
[j]!ck−j .

Note that when k = 3 the sum is empty and so c3 = 1. Note also that for fixed k, the 
number of terms in LSn(12 . . . k) is a linear function of n by Proposition 4.4. However, 
in the formula for this generating function which we give next the number of summands 
only depends on k, making it an efficient way to compute this polynomial.

Theorem 4.5. For k ≥ 3, we have

LSn(12 . . . k) = 1 +
k−2∑
i=1

1
[i− 1]!ck−i+1Ki,n.

Proof. We proceed with a proof by induction. In [6], the authors show that LSn(1/2/3) =
[2]n−1 for the set partition 1/2/3. Recall that a set partition avoids 1/2/3 if and only 
if its corresponding RGF avoids 123. Therefore LSn(1/2/3) = LSn(123) = [2]n−1 for 
n ≥ 1. Rewriting this as LSn(123) = 1 + K1,n gives our base case for k = 3.

Suppose the equality held for k ≥ 3. Then, using Theorem 4.1 as well as equations (3)
and (4),

LSn(12 . . . k + 1) = 1 +
n−1∑
j=1

(
n− 1
j

)
qj LSj(12 . . . k)

= 1 +
n−1∑
j=1

(
n− 1
j

)
qj

(
1 +

k−2∑
i=1

1
[i− 1]!ck−i+1Ki,j

)

= 1 +
n−1∑
j=1

(
n− 1
j

)
qj +

k−2∑
i=1

1
[i− 1]!ck−i+1

⎛
⎝n−1∑

j=1

(
n− 1
j

)
qjKi,j

⎞
⎠

= 1 + K1,n +
k−2∑
i=1

1
[i]!ck−i+1(Ki+1,n −K1,n)

= 1 + K1,n

(
1 −

k−2∑ 1
[i]!ck−i+1

)
+

k−2∑ 1
[i]!ck−i+1Ki+1,n
i=1 i=1
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= 1 + ck+1K1,n +
k−2∑
i=1

1
[i]!ck−i+1Ki+1,n

= 1 +
k−1∑
i=1

1
[i− 1]!ck−i+2Ki,n

which completes the induction. �
Let 1m denote the RGF consisting of m copies of one. The ideas in the proof of The-

orem 4.1 can be used to give recursive formulae for this pattern. It would be interesting 
to find other patterns where this reasoning could be applied.

Theorem 4.6. For m ≥ 0, we have

LSn(1m) =
m−1∑
j=1

(
n− 1
j − 1

)
qn−j LSn−j(1m)

and

RSn(1m) = RSn−1(1m) +
m−1∑
j=2

n−j∑
k=0

(
j + k − 2

k

)
qk RSn−j(1m).

Proof. Let w avoid 1m. Then w can be uniquely obtained by taking a w′ avoiding 1m
and inserting j ones in w′ + 1, where 1 ≤ j ≤ m − 1 and a one must be inserted at the 
beginning of the word. The formula for LSn(1m) now follows since the binomial coefficient 
counts the number of choices for the non-initial ones, LSn−j(1m) is the contribution from 
w′ +1, and qn−j is the obtained from the interaction between the initial one and w′ +1. 
The reader should now have no problem modifying the proof of the RSn(v̄) formula in 
Theorem 4.1 to apply to this case. �
5. The pattern 1212

5.1. Noncrossing partitions

The set partitions which avoid the pattern 13/24 are called non-crossing and are 
of interest, in part, because of their connection with Coxeter groups and the Catalan 
numbers

Cn = 1
n + 1

(
2n
n

)
.

See the memoir of Armstrong [1] for more information. In this case the set containment 
in Proposition 1.1 can be turned into an equality. Note that w(13/24) = 1212. For the 
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next three results, we will only sketch the proofs since the reader can easily supply the 
details.

Proposition 5.1. We have

Rn(1212) = w(Πn(13/24)).

Proof. As just noted, it suffices to show that if π contains 13/24, then w(π) contains 1212. 
Now w(π) contains a subword xyxy for some x �= y and it is easy to check that, by the 
RGF condition, the first such occurrence has x < y as desired. �

We now focus on gaining information about these partitions by studying Rn(1212). We 
begin by applying the rs statistic to Rn(1212), and in doing so obtain a q-analogue of the 
standard Catalan recursion. We first need the following lemma regarding 1212-avoiding 
restricted growth functions.

Lemma 5.2. For an RGF w, the following are equivalent:

(1) The RGF w avoids 1212.
(2) There are no xyxy subwords in w.
(3) If wi = wi′ for some i < i′ then, for all j′ > i′, either wj′ ≤ wi′ or wj′ >

max{w1, . . . , wi′}.

Proof. The equivalence of the first two statements follows from the proof of Proposi-
tion 5.1. The proof that (2) implies (3) is by contradiction. If there is a j′ with j′ > i′

and wi′ < wj′ ≤ max{w1, . . . wi′} then there must be j < i′ with wj = wj′ . The two 
cases j < i and j > i both lead to a contradictory copy of xyxy. The reverse implication 
can also be proved by contradiction using the method of proof in Proposition 5.1. �

We now move to a recursive way of producing words in Rn(1212).

Corollary 5.3. If u is in Rn−1(1212) then both 1u and 1(u + 1) are in Rn(1212).

Proof. By the previous lemma, we know that u does not contain any xyxy subwords. It 
is now easy to check that in this case neither does 1u or 1(u + 1) so that, again by the 
previous lemma, both avoid 1212. �

With these results in hand, we move to one of the main results of this section. For 
two words w and u, we will use the set notation w ∩ u = ∅ to denote that w and u have 
no elements in common. The next theorem gives a q-analogue of the usual recursion for 
the Catalan numbers. It will also be used to establish a connection between Rn(1212)
and lattice paths.
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Theorem 5.4. We have

RS0(1212) = 1,

RS1(1212) = 1,

and for n ≥ 2,

RSn(1212) = 2 RSn−1(1212) +
n−2∑
k=1

qk RSk(1212) RSn−k−1(1212).

Proof. The base cases are trivial. To prove the recursion, we partition Rn(1212) into 
three disjoint subsets X, Y , and Z as follows:

X = {w ∈ Rn(1212) : w1 = 1 and there are no other 1s in w},

Y = {w ∈ Rn(1212) : w1w2 = 11},

Z = {w ∈ Rn(1212) : w1w2 = 12 and there is at least one other 1 in w}.

We claim that we can also describe X as the set of words defined by

X = {w = 1(u + 1) : u ∈ Rn−1(1212)}. (5)

To see this, let u be a word in Rn−1(1212). From Corollary 5.3, we know w = 1(u + 1)
is an element of Rn(1212), and by definition of u + 1, the only 1 in w will be w1. This 
gives one containment. Now let w be an element of X as originally defined. Since the 
leading one in w is unique, let u +1 denote the last n − 1 letters in w. By Lemma 5.2, w
contains no xyxy subword; in particular, u +1 contains no xyxy subword. Standardizing 
u + 1 to the RGF u will not create any xyxy subwords, and thus u will be contained in 
Rn−1(1212). This gives the reverse containment, from which we conclude that the two 
sets are equal. A similar proof, without standardization of the subword, allows us to 
describe Y as the set

Y = {w = 1u : u ∈ Rn−1(1212)}. (6)

Now note that for any RGF u, we have rs(u) = rs(1(u +1)) and rs(u) = rs(1u). Using 
this fact, and the above characterization of the sets, we can see that X and Y must 
contribute RSn−1(1212) each to the total RSn(1212) polynomial.

Finally, we claim that we can characterize Z as

Z = {w = 1(u + 1)1v : u ∈ Rk(1212) for 1 ≤ k ≤ n− 2,

stan(1v) ∈ Rn−k−1(1212), v ∩ (u + 1) = ∅}. (7)
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First, let w be contained in Z as defined at the beginning of the proof. By definition 
of Z, w has a nonempty subword of the form u + 1 consisting of all entries between the 
first and second 1 in w. Let the length of u be k. As with the set X, u +1 will standardize 
to u, an RGF in Rk(1212). Now let v be the last n − k− 2 letters in w, so that our word 
is of the form

w = 1(u + 1)1v.

Since a 1 is repeated before v, we must have vi = 1 or vi > max(u + 1) for all i by 
Lemma 5.2, where vi is the ith letter of v. This gives v∩ (u +1) = ∅. Furthermore, there 
is no xyxy subword contained in 1v, and standardizing the subword will not create an 
xyxy pattern. Thus stan(1v) is contained in Rn−k−1(1212). This shows one inclusion 
between the two versions of Z. Now let u be an element of Rk(1212), and let 1v′ be 
an element of Rn−k−1(1212). Corollary 5.3 gives that 1(u + 1) avoids 1212 as well. Now 
from the RGF 1v′, we create the word 1v by setting

(1v)i =
{

(1v′)i if (1v′)i = 1
(1v′)i + max(u) if (1v′)i �= 1.

We claim that w = 1(u + 1)1v is a member of Rn(1212). To see this, note that u + 1
contains no xyxy subwords, and further u +1 shares no integers in common with the rest 
of w. Therefore u +1 cannot contribute to an xyxy subword in w. Thus if such a subword 
exists in w, it must also exist in 11v. This is impossible as it implies an xyxy subword 
in 1v′, contradicting our choice of 1v′. We have now shown the reverse set containment, 
which implies the desired equality of the two sets.

With this characterization of Z, we can now decompose rs(w) for w in Z as

rs(w) = rs(u + 1) + k + rs(1v),

where the middle term comes from the contribution to rs caused by comparing the 
elements of u + 1 with the second 1 in w. Summing over all possibilities of k, u, and v, 
and noting that the rs of a word is not affected by standardization, we can see that Z
will contribute

n−2∑
k=1

qk RSk(1212) RSn−k−1(1212).

Adding the results obtained from X, Y , and Z now gives the desired total. �
For the next result, we first recall the definition of a Motzkin path. A Motzkin path P

of length n is a lattice path in the plane which starts at (0, 0), ends at (n, 0), stays 
weakly above the x-axis, and which uses vector steps in the form of up steps [1, 1], 
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Fig. 2. A two-colored Motzkin path.

horizontal steps [1, 0], and down steps [1, −1]. Let Mn denote the set of all Motzkin 
paths of length n. We write P = s1 . . . sn for such a path, where

si =

⎧⎪⎪⎨
⎪⎪⎩
U if the ith step is an up step,
H if the ith step is a horizontal step,
D if the ith step is a down step.

Given a step si in P , we can realize si geometrically as a line segment in the plane 
connecting two lattice points in the obvious way. Fig. 2 displays the Motzkin path 
P = UHUHDUHDDUHD. Define the level of si, l(si), to be the lowest y-coordinate 
in si. Continuing with our example path, the sequence of levels of the steps is 
0, 1, 1, 2, 1, 1, 2, 1, 0, 0, 1, 0. Note that the level statistic provides a natural pairing of up 
steps with down steps in a Motzkin path. Namely, we associate an up step si with the 
first down step sj , j > i, which is at the same level as si, i.e. l(si) = l(sj). We will 
call such steps paired. In Fig. 2 the pairs are s1 and s9, s3 and s5, s6 and s8, and s10
and s12.

We now define a two-colored Motzkin path P of length n to be a Motzkin path of 
length n whose horizontal steps are individually colored using one of the colors a or b. We 
will call an a-colored horizontal step an a-step and a b-colored horizontal step a b-step. For 
a two-colored Motzkin path P = s1 . . . sn we will still use si equal to U or D for up steps 
and down steps, but will use a or b instead of H to show the color of the horizontal steps. 
In this notation, our example path is P = UbUaDUbDDUbD. Let M2

n denote the set of 
all two-colored Motzkin paths of length n. For two paths P = s1 . . . sn and Q = t1 . . . tm
we write PQ = s1 . . . snt1 . . . tm to indicate their concatenation. Interestingly, Wachs 
and White were originally inspired to look at the RGF statistics because of a question 
posed by Dennis Stanton (personal communication) and motivated by the appearance 
two-colored Motzkin paths in a combinatorial interpretation of the moments of q-Charlier 
polynomials given by Viennot [24].

Let the area of a path P , area(P ), denote the area enclosed between P and the x-axis. 
Our example has area(P ) = 14. Defining

Mn(q) =
∑

P∈M2
n

qarea(P ), (8)

Drake [8] proved the following recursion.
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Theorem 5.5 ([8]). We have M0(q) = 1 and, for all n ≥ 1,

Mn(q) = 2Mn−1(q) +
n−2∑
k=1

qkMk(q)Mn−k−1(q). �

Using Theorems 5.4 and 5.5 as well as induction on n immediately gives the following 
equality.

Corollary 5.6. We have, for all n ≥ 1,

RSn(1212) = Mn−1(q). �
Interestingly, it turns out that we also have LBn(1212) = LBn(1221) = Mn−1(q)

which will be proved in Section 6. In our next result, we prove the previous corollary 
directly via a bijection between M2

n−1 and Rn(1212). Although various bijections can 
be obtained by composing those already in the literature on Catalan combinatorics, we 
have not been able to construct the one we need in this manner.

Theorem 5.7. There is an explicit bijection ψ : Rn(1212) → M2
n−1 such that rs(w) =

area(ψ(w)) for all w ∈ Rn(1212).

Proof. We define the map inductively, maintaining the partition Rn(1212) = X ∪ Y ∪Z

developed in the proof of Theorem 5.4. For n = 1 we simply map w = 1 to the empty 
Motzkin path. For n > 1 we define

ψ(w) =

⎧⎪⎪⎨
⎪⎪⎩

bψ(u) if w ∈ X and w = 1(u + 1),
aψ(u) if w ∈ Y and w = 1u,
Uψ(u)Dψ(stan(1v)) if w ∈ Z and w = 1(u + 1)1v.

It is straightforward to show that ψ is bijective by induction. One can also inductively 
show that rs(w) = area(ψ(w)). Indeed, if w ∈ Rn(1212) and w ∈ X with w = 1(u + 1), 
then

rs(w) = rs(u + 1) = rs(u) = area(ψ(u)) = area(bψ(u)) = area(ψ(w)).

The cases w ∈ Y and w ∈ Z follow similarly. �
One can also give an explicit, non-recursive, formula for the map ψ in the preceding 

proof. Specifically, if w = w1 . . . wn ∈ Rn(1212), then we have ψn(w) = s1 . . . sn−1, where



L.R. Campbell et al. / Advances in Applied Mathematics 100 (2018) 1–42 25
si =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a if wi = wi+1,

b if wi < wi+1 and there does not exist j > i + 1 with wi = wj ,

U if wi < wi+1 and there exists j > i + 1 with wi = wj ,

D if wi > wi+1.

The equivalence of the two descriptions of ψ can be shown by induction. Similarly, 
one can derive an explicit formula for ψ−1. If P = s1 . . . sn−1 ∈ M2

n−1, then we have 
ψ−1
n (P ) = w1 . . . wn, with w1 = 1 and

wi+1 =

⎧⎪⎨
⎪⎩

1 + max{w1, . . . , wi} if si equals U or b,

wi if si = a,

wj if si = D is paired with the up step sj .

5.2. Combinations with other patterns

Next we examine RGFs that avoid 1212 and another pattern of length 3. As the 
patterns 121, 122, and 112 are all subpatterns of 1212, the only interesting cases to look 
at are Rn(111, 1212) and Rn(123, 1212). We start by calculating RSn(111, 1212). It is 
easy to combine Theorem 1.2 and Lemma 5.2 to characterize Rn(111, 1212).

Lemma 5.8. We have, for all n ≥ 0,

Rn(111, 1212) = {w ∈ Rn(1212) : every element of w appears at most twice}. �
The following proposition is similar to Theorem 5.4 in many respects. First, this 

proposition provides a q-analogue of the standard Motzkin recursion and is proved using 
techniques similar to those used previously. Furthermore, it will also be used to connect 
Rn(111, 1212) to lattice paths.

Proposition 5.9. We have

RS0(111, 1212) = 1,

RS1(111, 1212) = 1,

and for n ≥ 2,

RSn(111, 1212) = RSn−1(111, 1212) +
n−2∑
k=0

qk RSk(111, 1212) RSn−k−2(111, 1212).

Proof. We follow the proof of Theorem 5.4 by partitioning Rn(111, 1212) into the sets

X = {w ∈ Rn(111, 1212) : w1 = 1 and there are no other 1s in w},
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Y = {w ∈ Rn(111, 1212) : w1w2 = 11},
Z = {w ∈ Rn(111, 1212) : w1w2 = 12 and there is a single other 1 in w}.

Using the same reasoning as in Theorem 5.4 and adding the restrictions of avoiding 111
gives the equivalent characterizations

X = {w = 1(u + 1) : u ∈ Rn−1(111, 1212)},
Y = {w = 11(u + 1) : u ∈ Rn−2(111, 1212)},
Z = {w = 1(u + 1)1v : u ∈ Rk(111, 1212) for 1 ≤ k ≤ n− 2,

stan(v) ∈ Rn−k−2(111, 1212), v ∩ 1(u + 1) = ∅}.

From this, the desired recurrence easily follows. �
The next result provides an explicit bijection between Rn(111, 1212) and Mn. We first 

extend the level statistic defined in the previous subsection to paths. Given a Motzkin 
path P = s1 . . . sn, we define the level of the path, l(P ), to be

l(P ) =
n∑

i=1
l(si).

In Fig. 2, l(P ) = 10. It should be noted that if we impose a rectangular grid of unit 
squares on the first quadrant of the plane, then l(P ) simply counts the total area of 
the unit squares contained below P and above the x-axis. We will use our bijection to 
calculate the generating function for the level statistic taken over all Motzkin paths of 
length n.

Theorem 5.10. For n ≥ 0, we have

RSn(111, 1212) =
∑

P∈Mn

ql(P ).

Proof. As with Theorem 5.7 we inductively build a bijection φ : Rn(111, 1212) → Mn so 
that rs(w) = l(φ(w)) for each w ∈ Rn(111, 1212) and for each n ≥ 1. For n = 1 we map 
w = 1 to the single step Motzkin path H. For n > 1 we write Rn(111, 1212) = X ∪Y ∪Z

as in the proof of Proposition 5.9 and define

φ(w) =

⎧⎪⎪⎨
⎪⎪⎩

Hφ(u) if w ∈ X with w = 1(u + 1),
UDφ(u) if w ∈ Y with w = 11(u + 1),
Uφ(u)Dφ(stan(v)) if w ∈ Z with w = 1(u + 1)1v.

As with the map in Theorem 5.7, φ is seen to be bijective via a simple induction. 
That rs(w) = l(φ(w)) also follows inductively. If w ∈ Rn(111, 1212) and w ∈ X with 
w = 1(u + 1), then
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rs(w) = rs(u + 1) = rs(u) = l(φ(u)) = l(Hφ(u)) = l(φ(w)).

The equality similarly holds for w ∈ Y or w ∈ Z, and thus the result follows. �
As with ψ, one can also derive an explicit formula for φ. If w ∈ Rn(111, 1212) with 

w = w1 . . . wn, then φ(w) = s1 . . . sn with

si =

⎧⎪⎪⎨
⎪⎪⎩
U if wi = wj for some j > i,

H if wi �= wj for all j �= i,

D if wi = wj for some j < i.

For the inverse map, let P = s1 . . . sn ∈ Mn. Then φ−1(P ) = w1 . . . wn, where w1 = 1
and, for i ≥ 2,

wi =
{

1 + max{w1, . . . , wi−1} if si = U or H,

wj if si is a down step paired with sj .

We conclude this section with a simple proposition characterizing Rn(123, 1212). As 
the result follows easily from Theorem 1.2, Proposition 5.2, and standard counting tech-
niques, we leave the proof to the reader.

Proposition 5.11. If w is contained in Rn(123, 1212), then

w = 1l2i1n−i−l

for some l ≥ 1, i ≥ 0 satisfying l + i ≤ n. As such, for n ≥ 0 we have

LBn(123, 1212) = RSn(123, 1212) = 1 +
n−2∑
k=0

(n− k − 1)qk

and

LSn(123, 1212) = RBn(123, 1212) = 1 +
n−1∑
k=1

(n− k)qk. �

6. The pattern 1221

6.1. Nonnesting partitions

The term “nonnesting” has been defined in different ways in the literature. In some 
sources a nonnesting partition is a partition π where we can never find four elements 
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Fig. 3. The arc diagram and left arc diagram for the partition 134/267/5.

a < x < y < b such that a, b ∈ A and x, y ∈ B for two distinct blocks A, B. This is the 
sense used in Klazar’s paper [16] and is equivalent to a partition avoiding 14/23.

In other papers, including Klazar’s article [18], a partition π is nonnesting if, whenever 
there are four elements a < x < y < b such that a, b ∈ A and x, y ∈ B for two distinct 
blocks A, B, then there exists a c ∈ A such that x < c < y. This definition is often given 
using arc diagrams. We draw the arc diagram of a partition of [n] by writing 1 through n

on a straight line and drawing arcs (a, b) if a < b are in a block and consecutive when 
writing the block in increasing order, see Fig. 3. A nesting is a pair of arcs (a, b) and 
(x, y) such that a < x < y < b, and we will say in this case that the pair of arcs nest. It 
is not hard to see that having no nesting arcs is equivalent to the second definition of a 
nonnesting partition. And it is known that the number of partitions satisfying either of 
these two equivalent conditions is the Catalan number, Cn.

There is another notion of nonnesting which we will call left nonnesting and can be 
defined by a different collection of arcs. For each block B we will draw all arcs of the form 
(minB, b) with b ∈ B\{minB}, and call the diagram with these arcs the left arc diagram. 
An example is displayed in Fig. 3. Left arc diagrams were also defined and studied by 
Kim [15] who called them front representations of set partitions. If a partition’s left arc 
diagram has no pair of arcs which nest then we will call this partition left nonnesting
to distinguish our term from the previous two definitions of nonnesting. Let this set be 
LNNn.

Proposition 6.1. We have

Rn(1221) = w(LNNn).

Proof. We will just show that if a partition’s left arc diagram contains a nesting then its 
associated RGF has the pattern 1221 since the proof of the reverse inclusion is similar. 
Let π = B1/ . . . /Bk be a partition of [n]. Say that its left arc diagram has a nesting 
which means that we have arcs (a, b) and (x, y) such that a < x < y < b. Since these 
are arcs from the left arc diagram we know that a = minBi and x = minBj for some 
distinct blocks Bi and Bj , and since we order the blocks of π so that their minimum 
elements increase we know that i < j. As result w(π) has the subword ijji which is the 
pattern 1221. �

In [13], Jelínek and Mansour defined nonnesting by requiring that a partition’s associ-
ated RGF avoid 1221, and they showed that |Rn(1221)| = Cn, the nth Catalan number. 
From the previous proposition, it follows that LNNn defines the same set of partitions 
and so | LNNn | = Cn.
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The rest of this section will describe Rn(1221), some of its generating functions, 
and some connections to other patterns. We will prove that LBn(1221) = RSn(1212)
by showing that there exists a bijection from two-colored Motzkin paths to Rn(1221)
which maps area to lb, and then the result will follow from Theorem 5.7. We further 
use this bijection and previous methods to determine the generating function for RGFs 
that avoid some pair of patterns which include 1221. We end the section by showing 
LBn(1221) = LBn(1212) and summarizing all the equalities we have proved.

6.2. The pattern 1221 by itself

For an RGF w = w1 . . . wn we will call a letter wi repeated if there exists a j < i

such that wj = wi. If a letter is not a repeated letter, we will call it a first occurrence. 
Since w is an RGF, the first occurrences are exactly the left to right maxima, that is, 
the elements wi such that wi > max{w1, . . . , wi−1}.

Lemma 6.2. A word w ∈ Rn(1221) if and only if the subword of all repeated letters in w
is weakly increasing.

Proof. Say that w contains the pattern 1221 and so has a subword xyyx for some x < y. 
The second yx are repeated letters in w. This implies that there is a decrease in the 
subword of all repeated letters.

Conversely, say that the subword of all repeated letters of w has an decrease yx with 
x < y. Since these are repeated letters in an RGF the first y of w appears earlier, and 
the first x in w appears earlier than the first y. Hence we have a subword xyyx with 
x < y and the pattern 1221. �

Using the previous lemma we can define a surjection inc : Rn → Rn(1221). The 
map will take a w ∈ Rn and will output inc(w) = v which is w with its subword of 
repeated letters put in weakly increasing order. For example if w = 1112221331 then 
inc(w) = 1112112323.

To see this map is well defined we must first show that v is an RGF. But the subword 
of repeated letters is rearranged to be weakly increasing which forces the maximum of 
any prefix to weakly decrease. Since the left to right maxima of w do not move in this 
process, they do not change in passing to v so that the latter is still an RGF. Also, v
avoids 1221 by Lemma 6.2, showing inc is well defined.

In the next lemma we show that inc preserves lb. Note that because w is an RGF, all 
the numbers in the interval [wi + 1, max{w1, . . . , wi−1}] appear to the left of wi and are 
larger than wi, so

lb(wi) = max{w1, . . . , wi−1} − wi. (9)

Lemma 6.3. Let v be a rearrangement of w such that both have the same left to right 
maxima in the same places. Then lb(v) = lb(w). In particular, lb(w) = lb(inc(w)).
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Proof. Since w and v only have their repeated letters rearranged and their left to right 
maxima fixed, we know max{w1, . . . , wi} = max{v1, . . . , vi} for all i and {v1, . . . , vn} =
{w1, . . . , wn} as multisets. Using equation (9),

lb(w) =
n∑

i=1
(max{w1, . . . , wi−1} − wi) =

n∑
i=1

(max{v1, . . . , vi−1} − vi) = lb(v).

The special case of v = inc(w) now follows from the definition of the function. �
We wish to show that the generating function RSn(1212) discussed in Section 5 is 

equal to LBn(1221). The proof will be similar to that of Theorem 5.7 in that we will 
construct a bijection β from two-colored Motzkin paths length n − 1 to Rn(1221) which 
maps area to lb. The map β will not be difficult to describe. However, proving that β is a 
bijection will require a detailed argument. We define a map α : Rk(1221) → Rk+2(1221)
and provide the following lemma to assist us. This map will be useful when discussing 
two-colored Motzkin paths which are obtained from a smaller path by prepending an up 
step and appending a down step. Given any v ∈ Rk(1221) we define v̄ = v̄1v̄2 . . . v̄k such 
that

v̄i =
{

vi + 1 if vi is a first occurrence,
vi else.

(10)

It is not hard to see that u = 1v̄1 is an RGF, but it may not avoid 1221, so we define

α(v) = inc(u)

which is in Rk+2(1221) by Lemma 6.2. For example, if v = 1212344 will have u = 1v̄1 =
123124541 and α(v) = 123114524.

Lemma 6.4. For k ≥ 0 the map α : Rk(1221) → Rk+2(1221) is an injection. Furthermore, 
the image of α is precisely the w ∈ Rk+2(1221) satisfying the following three properties.

(i) The word w has more than one 1 and ends in a repeated letter.
(ii) If wi is a repeated letter then wi < max{w1, . . . , wi−1}.
(iii) If, for i ≤ j, we have wi−1 and wj+1 are repeated letters with wiwi+1 . . . wj all first 

occurrences then wj+1 < wi − 1.

Proof. We will start by showing that α is injective. Given a v ∈ Rk(1221), consider 
u = 1v̄1. We can easily recover v̄ from u by removing the first and last 1, and can further 
recover v by decreasing all left to right maxima in v̄ by one. We finish showing that α is 
injective by recovering u from w = inc(u). Note that since v avoids 1221, its subword r of 
all repeated letters is weakly increasing. The subword of all repeated letters in u = 1v̄1
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is then r1. Making this subword increasing results in the subword of all repeated letters 
in w being 1r. We can thus recover u by replacing 1r in w by r1.

Next, we show that any w in the image of α satisfies all three properties. Since u = 1v̄1
has more than one 1 and ends in a repeated letter, the RGF w = inc(u) does as well. 
Property (i) is thus satisfied. Next we show property (ii) by first showing that u satisfies 
property (ii). If vi is a repeated letter then we always have vi ≤ max{v1, . . . , vi−1}. Since 
we increased all first occurrences to get v̄ and left the repeated letters the same we have 
v̄i < max{v̄1, . . . , ̄vi−1}. And clearly the two new ones in u do not change this inequality. 
As previously noted, the value in the place of a given repeated letter can only get weakly 
smaller in passing from u to w = inc(u). And since left to right maxima don’t change, 
w also satisfies property (ii). Lastly, we will show property (iii). Consider the situation 
where wiwi+1 . . . wj are all first occurrences but wi−1 and wj+1 are repeated letters. But 
then wj+1 was in position i − 1 in u which is also a position in v̄. And the element in 
position i of u is wi which is a left to right maximum. Since left to right maxima in v
were increased by one in passing from v to v̄ we have wj+1 < wi − 1 as desired.

Finally, we show that if w ∈ Rk+2(1221) satisfies (i)–(iii) then it must be in the image 
of α. By the first half of (i) and Lemma 6.2, the subword of repeated letters in w is 
1r for some weakly increasing word r. Replace 1r in w with r1 to get u. Property (iii) 
assures us that all repeated letters in w remain repeated letters in u. Because w satisfies 
the second half of property (i), we know that u has the form u = 1v̄1 for some word 
(̄v). Note that the repeated letters in 1v̄1 satisfy (ii) because w originally satisfied (ii) 
and (iii). Also, the subword of repeated letters in 1v̄ is r which is weakly increasing. 
Because the repeated letters in 1v̄ satisfy (ii) when we decrease all the first occurrences 
of v̄, excluding ones, by 1 to get a word v it will be an RGF and r will be the subword 
of repeated letters in v. Because r is weakly increasing v ∈ Rk(1221). It is not hard to 
see that α(v) = w. �

Our goal is to define a map β : M2
n−1 → Rn(1221) which maps area to lb. Before 

we define β we discuss a partition of the region under R = s1 . . . sn−1 ∈ M2
n−1 which 

will aid us in this task. Fig. 4 gives an example of this process where different shadings 
indicate parts of the partition. Recall that l(si) is the level, or smallest y-value, of si. If 
si = D, we define A(si) to be equal to the area in the same row between si and its paired 
up step but excluding the area under other down steps or a-steps. In Fig. 4, A(s5) = 1, 
A(s8) = A(s12) = 2, and A(s9) = 5. The area under R can be partitioned as follows. The 
rectangle under an a-step si will be a part with area l(si). For example, in the figure we 
have the area l(s4) = 2. Our other parts will be associated to down steps. Given a down 
step si, its part will consist of the region counted by A(si) together with the rectangle of 
squares under the down step whose area is given by l(si), for a total area of A(si) + l(si). 
Returning to our example, steps s5, s8, s9, and s12 contribute total areas 2, 3, 5, and 2, 
respectively. Since these partition the full region under R we have

area(R) =
∑

l(si) +
∑

(A(si) + l(si)). (11)

si=a si=D
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Fig. 4. The area decomposition of a two-colored Motzkin path.

Next we will define a map β : M2
n−1 → Rn(1221) such that area(R) = lb(β(R)). 

Before we define β(R) we define an RGF, v(R) = v1 . . . vn, by letting v1 = 1 and

vi+1 =

⎧⎪⎨
⎪⎩

max{v1, . . . , vi} + 1 if si = U or b,

max{v1, . . . , vi} − l(si) if si = a,

max{v1, . . . , vi} −A(si) − l(si) if si = D,

for i ≥ 0. For the two-colored Motzkin path R in Fig. 4 we have v(R) = 1234225631786.
A comparison of the first case in the definition of v with the other two shows that 

the left to right maxima of v are consecutive integers starting at 1. So to show that v is 
an RGF we only have to prove that vi+1 > 0 for all si ∈ {a, D}. Note that for all i ≥ 1
we have that max{v1, . . . , vi} is equal to one more than the number of b-steps plus the 
number of up steps in the first i −1 steps. The level l(si) of any horizontal step is at most 
the number of previous up steps, so for si = a we have vi+1 = max{v1, . . . , vi} −l(si) > 0. 
Note that the area counted by A(si) between si = D and its corresponding up step 
is at most the number of up steps plus b-steps between and including the paired up 
and down steps. Also, the level of the down step is at most the number of up steps 
strictly before its paired up step. All together A(si) + l(si) is at most the number of 
up steps and b-steps in the first i − 1 steps. As a result, for si = D we have vi+1 =
max{v1, . . . , vi} − A(si) − l(si) > 0. Hence, v is an RGF. However, v(R) may not avoid 
1221, so we define

β(R) = inc(v(R))

which avoids 1221 by Lemma 6.2. For the two-colored Motzkin path R in Fig. 4 we have 
β(R) = 1234125623786.

Next we show that area(R) = lb(v) which will imply that area(R) = lb(β(R)) by 
Lemma 6.3. It is easy to see that lb(v1) = 0 and if si is b or U then lb(vi+1) = 0. Next 
consider si = a so vi+1 = max{v1, . . . , vi} − l(si). By equation (9), we have lb(vi+1) =
l(si). Lastly, if si = D then vi+1 = max{v1, . . . , vi} − A(si) − l(si). By equation (9)
again, lb(vi+1) = A(si) + l(si). As a result

lb(v) =
∑
si=a

l(si) +
∑
si=D

(A(si) + l(si)) = area(R)

by equation (11).
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We now show that the β map behaves nicely with respect to two of the usual decom-
positions of Motzkin paths.

Lemma 6.5. Let P and Q be two-colored Motzkin paths with β(P ) = x and β(Q) = 1y. 
The map β has the following properties.

(1) β(PQ) = x(y + max(x) − 1).
(2) β(UPD) = α(x).

Proof. To prove statement (1), we first claim that

v(PQ) = v(P )(q + max(v(P )) − 1)

where q is v(Q) with its initial 1 deleted. It is clear from the definition of v that the first 
|P | + 1 positions of v(PQ) are v(P ). Also by definition of v, the first occurrences other 
than the initial 1 are in bijection with the union of the up steps and b-steps. It follows 
that the subword of first occurrences in the last |Q| positions of v(PQ) is the same as 
the corresponding subword in q with all elements increased by max(v(P )) − 1. Thus the 
maximum value in any prefix of v(PQ) ending in these positions is increased over the 
corresponding maximum in q by this amount. Furthermore, the areas and levels of down 
steps and a-steps in Q in that portion of PQ are the same since P ends on the x-axis. 
So, using the definition of v for these types of steps, the last |Q| positions of v(PQ) are 
exactly q′ = q + max(v(P )) − 1. To prove the equation for β, it suffices to show that the 
inc operator only permutes elements within v(P ) and within q′. But this is true because 
all elements of q′ are greater than or equal to those of v(P ).

To prove the second statement, first consider v := v(P ) = v1 . . . vk and u :=
v(UPD) = u1 . . . uk+2. We claim that u = 1v̄1. Clearly u begins with a 1. To see it 
must also end with 1, note that since the last step of UPD = s1 . . . sk+1 is a down 
step and this path does not touch the axis between its initial and final points, we have 
l(sk+1) = 0 and A(sk+1) is the total number of up steps and b-steps in UPD. It now 
follows from the definition of the map v and our interpretation of the maximum of a 
prefix that uk+2 = 1. Let u′ be u with its initial and final 1’s removed. To see that 
u′ = v̄, first note that every step of UPD except the first is preceded by one more up 
step than the corresponding step in P . It follows every first occurrence of v is increased 
by one in passing to u′. But the area under each a-step and under each down step also 
increases by one during that passage. So the differences defining the v-map in such cases 
will stay the same for these repeated entries. It should now be clear that u′ = v̄. It 
follows immediately that β(UPD) = inc(1v̄1) = α(x). �

Before we show that β is a bijection, we will need a method for determining from the 
image of a path where that path first returns to the x-axis. The following lemma will 
provide the key.
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Lemma 6.6. Given paths P ∈ M2
k−3 where k ≥ 3 and Q, the word β(UPDQ) = w has 

wk as the right-most repeated letter such that w1 . . . wk satisfies all three properties in 
Lemma 6.4.

Proof. Given a path R = UPDQ ∈ M2
n−1 as stated, by Lemma 6.5 we know that if we 

write β(Q) = 1q then

w = β(R) = α(β(P ))(q + m− 1) (12)

where m = max(α(β(P ))). Lemma 6.4 implies that the prefix w1 . . . wk = α(β(P ))
satisfies all three properties. So it suffices to show that if there exists another repeated 
letter wi after wk then w1 . . . wi fails property (ii) or property (iii). In particular, it 
suffices to show such a failure for the prefix where wi is the next repeated letter after wk

since any other prefix under consideration contains w1 . . . wi.
If i = k+1 then, since every element of q is increased by m − 1 and wk+1 is repeated, 

we must have wk+1 = m = max{w1, . . . , wk}, contradicting property (ii). If instead 
i > k + 1 then wk+1 is a first occurrence and wk+1 = max{w1, . . . , wk} + 1 = m + 1. By 
definition of wi, we have that wk+1, . . . , wi−1 are all first occurrences with wk and wi

repeated letters. Note that all elements in q were at least 1 and then increased by m −1, 
so we must have wi ≥ m = wk+1 − 1 which contradicts property (iii). �

It will be helpful for us to be able to refer to the special repeated letter mentioned in 
the lemma above. So, given an RGF w = w1 . . . wn, if there exists a right-most repeated 
letter wk such that w1 . . . wk satisfies all three properties in Lemma 6.4 then we will 
say that wk breaks the word w. Note that if such a repeated letter exists, its index k is 
unique.

Theorem 6.7. The map β : M2
n−1 → Rn(1221) is a bijection and area(R) = lb(β(R)).

Proof. We have already shown that β is a well-defined map and that area(R) = lb(β(R)). 
Since |M2

n−1| = Cn = |Rn(1221)|, to show β is a bijection it suffices to show β is injective. 
We prove this by induction on n. It is easy to see that β is an injection for n ≤ 2. We 
now assume that n > 2 and β : M2

k−1 → Rk(1221) is injective for all k < n.
We will discuss three cases for paths R ∈ M2

n−1 and in each case we will show that 
R maps to an RGF distinct from the other RGFs in that case and also from the RGFs 
in previous cases.

First consider all paths R which start with an a-step so that R = aQ for some path Q. 
By Lemma 6.5, we have β(R) = 11y where β(Q) = 1y. Injectivity of the map now follows 
from the fact that, by induction, it is injective on paths Q of length n − 2.

Our second case consists of paths R of the form R = bQ. Now β(R) = 12(y + 1)
with y as above. Clearly these are distinct from the words in the previous paragraph and 
injectivity within this case follows by induction as before.
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For the last case, consider all paths R which start with an up step so we can write 
R = UPDQ for paths P ∈ M2

k−3 and Q where k ≥ 3. By Lemma 6.5 we have equa-
tion (12), and by Lemma 6.6 the repeated letter wk breaks the word w. Note that because 
α(β(P )) = w1 . . . wk satisfies property (i) in Lemma 6.4, w has more than one 1 and so 
can not agree with a word from the second case above. But since R starts with an up 
step, w starts with the prefix 12 and so can not be a word from the first case. Finally, by 
uniqueness of the index of wk, the injectivity of the map α, and induction the word w

is uniquely determined among all words in this case. This finishes the proof that β is 
injective. �

Combining the previous result with Corollary 5.6 and the definition of Mn(q) in 
equation (8) we have the following corollary.

Corollary 6.8. We have, for all n ≥ 1,

LBn(1221) = RSn(1212) = Mn−1(q). �
Since it may be of interest, we will now give an explicit way to calculate β−1, leaving 

the proof that it is indeed a well-defined inverse for β to the reader. Given a word 
w ∈ Rn(1221) we have an associated sequence lb(w1) lb(w2) . . . lb(wn) recording lb for 
each letter. We use this to inductively describe the sequence of heights h at the end 
points of the steps in the associated two-colored Motzkin path. Let h(1) = lb(w1),

h(i) = h
(i−1)
1 . . . h

(i−1)
i−lb(wi)−1(h

(i−1)
i−lb(wi) + 1) . . . (h(i−1)

i−1 + 1)0

and we let h = h(n). From h we can determine the up-steps and the down-steps of the 
path by letting the left endpoint of si have height hi for i < n. And to determine the 
colors, if we have a horizontal step because hi−1 = hi and wi is a repeated letter then 
si−1 is an a-step and otherwise it is a b-step.

6.3. Combinations with other patterns

Next we consider the RGFs which avoid 1221 and another length three pattern. Since 
121 and 122 are subwords of 1221 these cases are not interesting, so we will focus on 111, 
112, and 123.

Theorem 6.9. We have for Ln := LBn(111, 1221) that L0 = L1 = 1 and, for n ≥ 2, and

Ln = Ln−1 + Ln−2 +
n−2∑
k=1

qkLk−1Ln−k−1

Proof. Let Nn be the collection of two-colored Motzkin paths R ∈ M2
n such that β(R)

avoids 111. Define N−1(q) = 1 and, for n ≥ 0,
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Nn(q) =
∑

R∈N 2
n

qarea(R).

By Theorem 6.7 we only need to show that Nn(q) = LBn+1(111, 1221) satisfies an 
equivalent recurrence and initial conditions. By definition N−1(q) = 1, and N0(q) = 1
because of the empty path. So we wish to show that for n ≥ 1

Nn(q) = Nn−1(q) + Nn−2(q) +
n−2∑
k=0

qk+1Nk−1(q)Nn−k−2(q). (13)

We partition M2
n as in the proof of Theorem 6.7:

X = {R = aQ : Q ∈ M2
n−1},

Y = {R = bQ : Q ∈ M2
n−1},

Z = {R = UPDQ : P ∈ M2
k, Q ∈ M2

n−k−2 and k ∈ [0, n− 2]}.

We claim that when we restrict this partition to paths in Nn we have

XN = {R = abQ : Q ∈ Nn−2},
YN = {R = bQ : Q ∈ Nn−1},
Z1 = {R = UDQ : Q ∈ Nn−2},
Z2 = {R = UbPDQ : P ∈ Nk−1, Q ∈ Nn−k−2, and k ∈ [n− 2]},

where the set Z breaks into two subsets. From the second partition we will be able to 
deduce the desired recursion.

Consider a path R = aQ ∈ X. We claim that β(R) avoids 111 if and only if Q = bQ′

for Q′ ∈ Nn−2 which will show that X restricts to XN . If we write β(Q) = 1y we 
have β(R) = 11y. The word β(R) avoids 111 if and only if the word y has no 1’s and 
at most two copies of every other number. Note that the second case considered in 
Theorem 6.7 contained all paths which started with a b-step and that these paths were 
mapped bijectively to words with exactly one 1. It is also clear that y = β(Q′) +1 has at 
most two copies of every number greater than one if and only if the same is true of β(R). 
The claim now follows. Because area(R) = area(Q′) summing over all paths in this case 
gives us the term Nn−2(q).

If instead R = bQ ∈ Y then, using that notation of Lemma 6.5, β(R) = 12(y + 1) =
1(β(Q) + 1). So β(R) avoids 111 if and only if β(Q) does. It follows that Y restricts 
to YN . Because area(R) = area(Q) summing over all paths in this case gives us the term 
Nn−1(q).

Next, we consider paths R = UPDQ from the third set, Z. First consider the case 
where P has length 0 so R = UDQ. We want to prove that β(R) avoids 111 if and only 
if β(Q) avoids 111 since this will show that the collection of paths in Z with |P | = 0



L.R. Campbell et al. / Advances in Applied Mathematics 100 (2018) 1–42 37
restricts to Z1. If we write β(Q) = 1y we have β(R) = 121(y+ 1). Thus β(Q) avoids 111
if and only if β(R) does and the restriction is as claimed. Because area(R) = 1 +area(Q)
summing over all paths in this case gives us the term qNn−2(q) which is the k = 0 term 
in equation (13).

Lastly, consider a path R = UPDQ with |P | = k ∈ [n − 2] which are the remaining 
paths in Z. We will show that β(R) avoids 111 if and only if P = bP ′ and both the 
words β(P ′) and β(Q) avoid 111. This will show that the remaining paths in Z restrict 
to Z2 in the second partition. First we make an observation about α(β(P )). Let m =
max(β(P )) and {1s1 , . . . , msm} be the multiset of all letters in β(P ). The map α increases 
all first occurrences by one and adds two 1’s but otherwise doesn’t affect the collection 
of letters. So the multiset of letters in α(β(P )) is {1s1+1, . . . , msm , m + 1}. If we write 
β(Q) = 1y then we have β(R) = α(β(P ))(y + m) since m = max(α(β(P ))) − 1. If 
{1t1 , . . . , m̄tm̄} is the multiset of letters in β(Q) then the multiset of letters in β(R)
is {1s1+1, . . . , msm , (m + 1)t1 , . . . , (m + m̄)tm̄}. So β(R) avoids 111 if and only if there 
are at most two of any element in this set which is equivalent to s1 = 1, si ≤ 2 for 
i > 1, and ti ≤ 2 for all i ≥ 1. Further this implies that β(R) avoids 111 if and only if 
Q ∈ Nn−k−2 and β(P ) has exactly one 1 and avoids 111. Just as in our first case, β(P )
has exactly one 1 and avoids 111 if and only if P = bP ′ for some P ′ ∈ Nk−1. Because 
area(R) = area(P ′) + area(Q) + k + 1 summing over all paths in this case gives us the 
term qk+1Nk−1(q)Nn−k−2(q) for k > 0. This completes the proof of the theorem. �

The next two avoidance classes can be characterized by a combination of Theorem 1.2
and Lemma 6.2. The proofs are straightforward and so not included.

Proposition 6.10. We have

Rn(112, 1221) = {12 . . .mkn−m : k ∈ [m]}.

So for n ≥ 0 we have

Fn(112, 1221) = (rs)
(n
2
)
+

n−1∑
m=1

m∑
k=1

q(n−m)(m−k)r
(m
2
)
+(n−m)(k−1)s

(m
2
)
tm−k. �

Corollary 6.11. We have, for n ≥ 0,

1. LBn(112, 1221) = 1 +
n−1∑
m=1

m∑
k=1

q(n−m)(m−k),

2. LSn(112, 1221) = q
(n
2
)
+

n−1∑
m=1

m∑
k=1

q
(m
2
)
+(n−m)(k−1),

3. RBn(112, 1221) = q
(n
2
)
+

n−1∑
mq

(m
2
)
, and
m=1
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4. RSn(112, 1221) = 1 +
n−1∑
i=1

iqn−i−1. �

Proposition 6.12. We have

Rn(123, 1221) = {1n, 11i21j2k : i + j + k = n− 2, and i, j, k ≥ 0}.

So for n ≥ 0 we have, using the truth function χ(S) = 1 if S is true or 0 if S is false,

Fn(123, 1221) = 1 +
∑

i+j+k=n−2
i,j,k≥0

qjrk+1si+1+j·χ(k>0)tχ(j>0). �

Corollary 6.13. We have, for n ≥ 0,

1. LBn(123, 1221) = 1 +
n−2∑
j=0

(n − j − 1)qj,

2. LSn(123, 1221) = 1 +
n−2∑
k=0

(n − k − 1)qk+1,

3. RBn(123, 1221) = 1 + qn−1 +
n−2∑
k=1

(k + 1)qk, and

4. RSn(123, 1221) = n +
(
n− 1

2

)
q. �

6.4. More about the pattern 1212

It turns out that the generating function LBn(1212) is also equal to Mn−1(q). Instead 
of showing this directly, we prove that LBn(1212) = LBn(1221) and then Corollary 6.8
completes the proof. In the process we also show LSn(1212) = LSn(1221).

Proposition 6.14. The restriction inc : Rn(1212) → Rn(1221) is a bijection which pre-
serves lb and ls.

Proof. By Lemma 6.2 we have lb(w) = lb(inc(w)). This map also preserves ls because 
w and inc(w) are rearrangements of each other and ls(wi) = wi − 1 for any RGF w.

Now we only need to show that inc : Rn(1212) → Rn(1221) is bijective. Since 
|Rn(1212)| = Cn = |Rn(1221)| it suffices to show the map is injective. Assume that 
v = v1v2 . . . vn and w = w1 . . . wn are two distinct words which avoid 1212, but 
inc(v) = inc(w). This means that v and w share the same positions of first occurrences, 
and the same multiset of repeated letters. But since v �= w there is then a smallest index 
i ≥ 1 such that v1 . . . vi−1 = w1 . . . wi−1 but vi �= wi. Without loss of generality let 
vi = x, wi = y, and x < y. We have noted that v and w have their first occurrences at 
the same indices, so vi and wi must be repeated letters. Since w is an RGF, the first 
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occurrence of x and y must occur before wi, so v also has the subword xy before vi. 
However, because v and w have the same collection of repeated letters and agree up to 
position i − 1, the y which is wi in w must occur some time after vi in v. This means 
that v has the subword xyxy contradicting Lemma 5.2. �
Corollary 6.15. For k ≥ 0 we have

Fn(1212; q, r, 1, 1) = Fn(1221; q, r, 1, 1),

Fn(1k, 1212; q, r, 1, 1) = Fn(1k, 1221; q, r, 1, 1),

and

Fn(12 . . . k, 1212; q, r, 1, 1) = Fn(12 . . . k, 1221; q, r, 1, 1).

Proof. The bijection f in Proposition 6.14 preserves the number of times any integer 
appears and preserves the maximum integer which appears. The equalities follow from 
this fact. �

Using Proposition 5.11, and Corollaries 5.6, 6.8, 6.13, and 6.15 we have the following 
equalities which summarize the results in this section.

Corollary 6.16. We have, for n ≥ 0,

LBn(1212) = RSn(1212) = LBn(1221) = Mn−1(q),

LSn(1212) = LSn(1221),

LBn(111, 1212) = LBn(111, 1221),

LSn(111, 1212) = LSn(111, 1221),

LBn(123, 1212) = RSn(123, 1212) = LBn(123, 1221),

and

LSn(123, 1212) = RBn(123, 1212) = LSn(123, 1221). �
We note that Simion [22] also proved LBn(1212) = RSn(1212) by different means. In 

addition, she showed the following.

Theorem 6.17 ([22]). We have, for n ≥ 0,

LSn(1212) = RBn(1212). �
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7. Comments and open problems

We list some further possible lines of research in the hopes that the reader may be 
interested in pursuing them.

(1) Longer patterns. In Sections 4, 5, and 6 we have begun the study of patterns 
of length four or more, but there are almost certainly more interesting results for such 
patterns. For example, for noncrossing partitions it would be interesting to see if the 
polynomial LSn(1212) = RBn(1212) can be viewed as the generating function for a 
statistic over two-colored Motzkin paths. And here is a specific conjecture for nonnesting 
patterns.

Conjecture 7.1. The coefficients of RBn(1221) stabilize in the following sense. Given k
there is a bound Nk such that for n ≥ Nk the coefficient of qk in RBn(1221) is constant.

(2) Vincular patterns. In the theory of permutation patterns a vincular or generalized
pattern is one where copies of the pattern in a larger permutation are required to have 
certain elements adjacent. One can indicate such elements by underlining them. For 
example, a copy of the pattern 21 is an inversion while a copy of the pattern 21 is 
a descent. In [2], Babson and Steingrímsson initiated the study of such patterns and 
showed that a wide array of well-known permutation statistics could be realized as linear 
combinatorics of functions counting vincular patterns. One can also consider patterns 
where certain integers which are numerically adjacent in the pattern must be numerically 
adjacent in the copy and indicate these by an overline. So 21 would count inversions 
consisting of an element k followed by k−1. And, of course, one could combine positional 
and numerical adjacency. It seems probable that studying vincular RGF patterns would 
yield interesting enumerative results.

(3) Equidistribution. In their original paper, Wachs and White [25] proved that lb
and rs are equidistributed (have the same generating function) over the set of all RGFs 
of length n with maximum m. They also showed that ls and rb are equidistributed over 
the same set of RGFs. We have seen similar behavior in Theorems 2.1, 2.5, 2.8, and 6.17
as well as Corollaries 3.4 and 6.16. It would be very interesting to derive some of these 
results from more general theorems which would guarantee equidistribution for a large 
number of avoidance classes.

(4) Mahonian pairs. When considering st-Wilf equivalence, one has a single statistic 
which has the same generating function over two different avoidance classes. When con-
sidering equidistribution, one has two different statistics which have the same generating 
function over a given avoidance class. Obviously, one could generalize both notions by 
considering one statistic on an avoidance class and a second statistic on another class. 
For the permutation statistics given by the major index, maj, and inversion number, 
inv, this concept was first studied by Sagan and Savage [21]. Such pairs of statistics and 
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classes were called Mahonian pairs since maj and inv both have the Mahonian distribu-
tion over the full symmetric group. In the present work, we have found such equalities 
in the results cited in (3) as well as in Theorem 2.9 and Corollary 6.16. Again, a more 
general explanation of when such identities occur would be desirable.

(5) Other statistics. There are other statistics related to the four we have been study-
ing. Given an integer sequence w = w1 . . . wn, Simion and Stanton [23] considered a 
statistic counting smaller elements both to the left and the right of each wj by letting

lrs(wj) = #{x < wj : there are i < j < k with wi = wk = x}

and lrs(w) =
∑

j lrs(wj). Note that if w is an RGF then lrs(w) = rs(w). They also looked 
at an analogous statistic for counting bigger elements, as well as refinements of both 
statistics obtained by restricting them to certain elements of w related to first occurrences 
and repeated elements. Their motivation came from studying a generalization of the 
Laguerre polynomials. In the process, they obtained results about these statistics on 
noncrossing and nonnesting RGFs. It would be interesting to investigate these statistics 
in relation to other patterns.
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