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Abstract

Let Πn denote the set of all set partitions of {1, 2, . . . , n}. We consider
two subsets of Πn, one connected to rook theory and one associated with
symmetric functions in noncommuting variables. Let En ⊆ Πn be the subset
of all partitions corresponding to an extendable rook (placement) on the
upper-triangular board, Tn−1. Given π ∈ Πm and σ ∈ Πn, define their slash
product to be π|σ = π∪(σ+m) ∈ Πm+n where σ+m is the partition obtained
by adding m to every element of every block of σ. Call τ atomic if it can
not be written as a nontrivial slash product and let An ⊆ Πn denote the
subset of atomic partitions. Atomic partitions were first defined by Bergeron,
Hohlweg, Rosas, and Zabrocki during their study of NCSym, the symmetric
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functions in noncommuting variables. We show that, despite their very
different definitions, En = An for all n ≥ 0. Furthermore, we put an algebra
structure on the formal vector space generated by all rook placements on
upper triangular boards which makes it isomorphic to NCSym. We end
with some remarks and an open problem.

1 Extendable rooks and atomic partitions

For a nonnegative integer n, let [n] = {1, 2, . . . , n}. Let Πn denote the set of all
set partitions π of [n], i.e., π = {B1, B2, . . . , Bk} with ]iBi = [n] (disjoint union).
In this case we will write π ` [n]. The Bi are called blocks . We will often drop
set parentheses and commas and just put slashes between blocks for readability’s
sake. Also, we will always write π is standard form which means that

minB1 < minB2 < . . . < minBk (1)

and the elements in each block are listed in increasing order. For example π =
136|2459|78 ` [9]. The trivial partition is the unique element of Π0, while all other
partitions are nontrivial .

The purpose of this note is to show that two subsets of Πn, one connected with
rook theory and the other associated to the Hopf algebra NCSym of symmetric
functions in noncommuting variables, are actually equal although they have very
different definitions. After proving this result in the current section, we will de-
vote the next to putting an algebra structure on certain rook placements which
is isomorphic to NCSym. The final section contains some comments and open
questions.

Let us first introduce the necessary rook theory. A rook (placement) is an n×n
matrix, R, of 0’s and 1’s with at most one 1 in every row and column. So a
permutation matrix, P , is just a rook of full rank. A board is B ⊆ [n]× [n]. We say
that R is a rook on B if Ri,j = 1 implies (i, j) ∈ B. In this case we write, by abuse
of notation, R ⊆ B. A rook R ⊆ B is extendable in B if there is a permutation
matrix P such that Pi,j = Ri,j for (i, j) ∈ B. For example, consider the upper-
triangular board Tn = {(i, j) : i ≤ j}. The R ⊆ T2 are displayed in Figure 1.
Only the third and fifth rooks in Figure 1 are extendable, corresponding to the
transposition and identity permutation matrices, respectively. Extendability is an
important concept in rook theory because of its relation to the much-studied hit
numbers of a board [5, page 163 and ff.].

There is a well-known bijection between π ∈ Πn and the rooks R ⊆ Tn−1 [8,
page 75]. Given R, define a partition πR by putting i and j in the same block of
πR whenever Ri,j−1 = 1. For each R ⊆ T2, the corresponding πR ∈ Π3 is shown in
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R :

(
0 0
0 0

) (
1 0
0 0

) (
0 1
0 0

) (
0 0
0 1

) (
1 0
0 1

)
πR : 1|2|3 12|3 13|2 1|23 123

Figure 1: The rooks on T2 and their associated partitions

Figure 1. Conversely, given π we define a rook Rπ by letting (Rπ)i,j = 1 exactly
when i and j + 1 are adjacent elements in a block of π in standard form. It is
easy to see that the maps R 7→ πR and π 7→ Rπ are inverses. If a matrix has a
certain property then we will also say that the corresponding partition does, and
vice-versa. Our first subset of Πn will be the extendable partitions denoted by

En = {π ∈ Πn : Rπ is extendable in Tn−1}.

So, from Figure 1, E2 = {13|2, 123}.
To define our second subset of Πn, it is convenient to introduce an operation

on partitions. For a set of integers B = {b1, . . . , bj} we let B + m = {b1 +
m, . . . , bj + m}. Similarly, for a partition π = {B1, . . . , Bk} we use the notation
π + m = {B1 + m, . . . , Bk + m}. If π ∈ Πm and σ ∈ Πn then define their slash
product to be the partition in Πm+n given by

π|σ = π ∪ (σ +m).

Call a partition atomic if it can not be written as a slash product of two nontrivial
partitions and let

An = {π ∈ Πn : π is atomic}.

Atomic partitions were defined by Bergeron, Hohlweg, Rosas, and Zabrocki [2]
because of their connection with symmetric functions in noncommuting variables.
We will have more to say about this in Section 2.

Since En is defined in terms of rook placements, it will be convenient to have a
rook interpretation of An. Given any two matrices R and S, defined their extended
direct sum to be

R⊕̂S = R⊕ (0)⊕ S
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where⊕ is ordinary matrix direct sum and (0) is the 1×1 zero matrix. To illustrate,

(
a b c
d e f

)
⊕̂
(
w x
y z

)
=


a b c 0 0 0
d e f 0 0 0
0 0 0 0 0 0
0 0 0 0 w x
0 0 0 0 y z

 .

It is clear from the definitions that τ = π|σ if and only if Rτ = Rπ⊕̂Rσ. We now
have everything we need to prove our first result.

Theorem 1.1. For all n ≥ 0 we have En = An.

Proof. Suppose we have τ ∈ En. Assume, towards a contradiction, that τ is not
atomic so that τ = π|σ. On the matrix level we have Rτ = Rπ⊕̂Rσ where Rπ is
m×m for some m. We are given that τ is extendable, so let P be a permutation
matrix extending Rτ . Since P and Rτ agree above and including the diagonal, the
first m+ 1 rows of P must be zero from column m+ 1 on. But P is a permutation
matrix and so each of these m + 1 rows must have a one in a different column,
contradicting the fact that only m columns are available.

Now assume τ ∈ An. We will construct an extension P of Rτ . Let i1, . . . , ir be
the indices of the zero rows of Rτ and similarly for j1, . . . , jr and the columns. If
ik > jk for all k ∈ [r], then we can construct P by supplementing Rτ with ones in
positions (i1, j1), . . . , (ir, jr).

So suppose, towards a contradiction, that there is some k with ik ≤ jk. Now
Rτ must contain jk − k ones in the columns to the left of column jk. If ik < jk,
then there are fewer than jk − k rows which could contain these ones since Rτ is
upper triangular. This is a contradiction. If ik = jk, then the jk − k ones in the
columns left of jk must lie in the first ik − k = jk − k rows. Furthermore, these
ones together with the zero rows force the columns to the right of jk to be zero up
to and including row ik = jk. It follows that Rτ = Rπ⊕̂Rσ for some π, σ with Rπ

being (ik − 1)× (ik − 1). This contradicts the fact that τ is atomic.

Having two descriptions of this set may make it easy to prove assertions about
it from one definition which would be difficult to demonstrate if the other were
used. Here is an example.

Corollary 1.2. Let R ⊆ Tn. If R1,n = 1 then R is extendable in Tn.

Proof. If R1,n = 1 then we can not have R = Rσ⊕̂Rτ for nontrivial σ, τ . So R is
atomic and, by the previous theorem, R is extendable.
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2 An algebra on rook placements and NCSym

The algebra of symmetric functions in noncommuting variables, NCSym, was
first studied by Wolf [10] who proved a version of the Fundamental Theorem of
Symmetric Functions in this context. The algebra was rediscovered by Gebhard
and Sagan [4] who used it as a tool to make progress on Stanley’s (3 + 1)-free
Conjecture for chromatic symmetric functions [7]. Rosas and Sagan [6] were the
first to make a systematic study of the vector space properties of NCSym. Berg-
eron, Reutenauer, Rosas, and Zabrocki [3] introduced a Hopf algebra structure on
NCSym and described its invariants and covariants.

Let X = {x1, x2, . . .} be a countably infinite set of variables which do not
commute. Consider the corresponding ring of formal power series over the rationals
Q〈〈X〉〉. Let Sm be the symmetric group on [m]. Then any g ∈ Sn acts on a
monomial x = xi1xi2 · · ·xin by

g(x) = xg−1(i1)xg−1(i2) · · · xg−1(in)

where g(i) = i for i > m. Extend this action linearly to Q〈〈X〉〉. The symmetric
functions in noncommuting variables , NCsym ⊂ Q〈〈X〉〉, are all power series
which are of bounded degree and invariant under the action of Sm for all m ≥ 0.

The vector space bases of NCSym are indexed by set partitions. We will be
particularly interested in a basis which is the analogue of the power sum basis
for ordinary symmetric functions. Given a monomial x = xi1xi2 · · ·xin , there is
an associated set partition πx where j and k are in the same block of πx if and
only if ij = ik in x, i.e., the indices in the jth and kth positions are the same.
For example, if x = x3x5x2x3x3x2 then πx = 145|2|36. The power sum symmetric
functions in noncommuting variables are defined by

pπ =
∑

x : πx≥π

x,

where πx ≥ π is the partial order in the lattice of partitions, so πx is obtained
by merging blocks of π. Equivalently, pπ is the sum of all monomials where the
indices in the jth and kth places are equal if j and k are in the same block of π,
but there may be other equalities as well. To illustrate,

p13|2 = x1x2x1 + x2x1x2 + · · ·+ x3
1 + x3

2 + · · · .

Note that, directly from the definitions,

pπ|σ = pπpσ. (2)

Using this property, Bergeron, Hohlweg, Rosas, and Zabrocki [2] proved the fol-
lowing result which will be useful for our purposes.
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Proposition 2.1 ([2]). As an algebra, NCSym is freely generated by the pπ with
π atomic.

Let
R = {R ⊆ Tn : n ≥ −1},

where there is a single rook on T−1 called the unit rook and denoted R = 1 (not
to be confused with the empty rook on T0). We extend the bijection between set
partitions and rooks on upper triangular boards by letting the unit rook corre-
spond to the empty partition. Consider the vector space QR of all formal linear
combinations of rooks in R. By both extending ⊕̂ linearly and letting the unit
rook act as an identity, the operation of extended direct sum can be considered as
a product on this space. It is easy to verify that this turns QR into an algebra.

Proposition 2.2. As an algebra, QR is freely generated by the Rπ with π atomic.

Proof. A simple induction on n shows that any τ ∈ Πn can be uniquely factored
as τ = π1|π2| · · · |πt with the πi atomic. From the remark just before Theorem 1.1,
it follows that each Rτ can be uniquely written as a product of atomic Rπ’s. Since
the set of all Rτ forms a vector space basis, the atomic Rπ form a free generating
set.

Comparing Propositions 2.1 and 2.2 as well as the remark before Theorem 1.1
and equation 2, we immediately get the desired isomorphism.

Theorem 2.3. The map pπ 7→ Rπ is an algebra isomorphism of NCSym with
QR.

3 Remarks and an open question

3.1 Unsplittable partitions

Bergeron, Reutenauer, Rosas, and Zabrocki [3] considered another free generating
set for NCSym which we will now describe. A restricted growth function of length
n is a sequence of positive integers r = a1a2 . . . an such that

1. a1 = 1, and

2. ai ≤ 1 + max{a1, . . . , ai−1} for 2 ≤ i ≤ n.

Let RGn denoted the set of restricted growth functions of length n. There is a
well-known bijection between Πn and RGn [8, page 34] as follows. Given π ∈ Πn

we define rπ by ai = j if and only if i ∈ Bj in π. For example, if π = 124|36|5 then
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rπ = 112132. It is easy to see that having π in standard form makes the map well
defined. And the reader should have no trouble constructing the inverse.

Define the split product of π ∈ Πm and σ ∈ Πn to be τ = π ◦ σ ∈ Πm+n

where τ is the uniqe partition such that rτ = rπrσ (concatenation). To illustrate,
if π is as in the previous paragraph and σ = 13|2 then rπrσ = 112132121 and
so π ◦ σ = 12479|368|5. This is not Bergeron et al.’s original definition, but it
is equivalent. Now define τ to be unsplitable if it can not be written as a split
product of two nontrivial partitions. (Bergeron et al. used the term ”nonsplitable”
which is not a typical English word.) Let USn ⊆ Πn be the subset of unsplitable
partitions. So US2 = {1|2|3, 1|23}.

Perhaps the simplest basis for NCSym is the one gotten by symmetrizing a
monomial. Define the monomial symmetric functions in noncommuting variables
to be

mπ =
∑

x : πx=π

x.

So now indices in a term of mπ are equal precisely when their positions are in the
same block of π. For example,

m13|2 = x1x2x1 + x2x1x2 + · · · .

The following is a more explicit version of Wolf’s original result [10].

Proposition 3.1 ([3]). As an algebra, NCSym is freely generated by the mπ with
π unsplitable.

Comparing Propositions 2.1 and 3.1 we see that |An| = |USn| for all n ≥ 0
where | · | denotes cardinality. (Although they are not the same set as can be seen
by our computations when n = 2.) It would be interesting to find a bijective proof
of this result.

3.2 Hopf structure

Thiem [9] found a connection between NCSym and unipotent upper-triangular
zero-one matrices using supercharacter theory. This work has very recently been
extended using matrices over any field and a colored version of NCSym during a
workshop at the American Institute of Mathematics [1]. This approach gives an
isomorphism even at the Hopf algebra level.
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