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Abstract

If G is a graph then a subgraph H is isometric if, for every pair of vertices u, v of
H, we have dH(u, v) = dG(u, v) where d is the distance function. We say a graph G
is distance preserving (dp) if it has an isometric subgraph of every possible order up
to the order of G. We give a necessary and sufficient condition for the lexicographic
product of two graphs to be a dp graph. A graph G is sequentially distance preserving
(sdp) if the vertex set of G can be ordered so that, for all i ≥ 1, deleting the first i
vertices in the sequence results in an isometric graph. We show that the Cartesian
product of two graphs is sdp if and only if each of them is sdp. In closing, we state a
conjecture concerning the Cartesian products of dp graphs.

1 Introduction

The computational complexity of exploring distance properties of large graphs such as real-
world social networks which consist of millions of nodes can be extremely expensive. Recom-
puting distances in subgraphs of the original graph will add to the cost. One way to avoid
this is to use subgraphs where the distance between any pair of vertices is the same as in
the original graph. Such a subgraph is called isometric. Isometric subgraphs come into play
in network clustering [16].

One family of graphs which has been studied in the literature involving isometric sub-
graphs is the set of distance-hereditary graphs. A distance-hereditary graph is a connected
graph in which every connected induced subgraph of G is isometric. Distance-hereditary
graphs have appeared in various papers [3, 7, 11] since they were first described in an article
of Howorka [12]. Distance-hereditary graphs are known to be perfect graphs [10, 8]. In this
article, we relax this property by using a notion called distance preserving.

A connected graph is distance preserving, for which we use the abbreviation dp, if it
has an isometric subgraph of every possible order. The definition of a distance-preserving
graph is similar to the one for distance-hereditary graphs, but is less restrictive. Because of
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this, distance-preserving graphs can have a more complex structure than distance-hereditary
ones. Distance-preserving graphs have also been studied in the literature. See, for example,
[9, 15, 20].

We will also consider a related notion defined as follows. A connected graph G is sequen-
tially distance preserving (sdp) if there is some ordering v1, v2, . . . , v|V (G)| of the vertices of
G such that the subgraph G − {vi}si=1 is an isometric subgraph of G for 1 ≤ s ≤ |V (G)|.
Obviously every distance-hereditary graph is sdp and every sdp graph is dp.

The purpose of this paper is to investigate what happens to the dp and sdp properties
when taking products of graphs. Graph products are operations which take two graphs G
and H and produce a graph with vertex set V (G) × V (H) and certain conditions on the
edge set [13]. We consider two kinds of such products, lexicographic product and Cartesian
product. Various graph invariants of lexicographic products of graphs have been studied in
the literature. See, e.g., [1, 6, 18]. The Cartesian product is a well-known graph product,
in part because of Vizing’s Conjecture [17], and has been considered by many authors such
as [2, 5, 14, 19].

The outline of this paper is as follows. Section 2 gives full definitions for the main concepts
we will need. Section 3 gives a necessary and sufficient condition for the lexicographic product
of two graphs to be dp. This condition implies that if G is dp then the lexicographic product
of G and any graph H is dp. Moreover, all isometric subgraphs of the lexicographic product
of two arbitrary graphs are characterized in this section. In Section 4, we will show that
the Cartesian product of two graphs is sdp if and only if its factors are. We end with a
conjecture about when the Cartesian product of graphs is dp.

2 Preliminaries

In this paper every graph G = (V,E) will be finite, undirected and simple. For ease of
notation, we let |G| be the number of vertices of G. A sequence of vertices a0, a1, . . . , al is
a walk of length l if ai−1ai ∈ E for 1 ≤ i ≤ l. The walk is a path if the ai are distinct. The
distance between vertices a, b in G, dG(a, b), is the minimum length of a path connecting a
and b. In the case of a disconnected graph G, we let dG(a, b) = ∞ when there is no path
between a and b in G. If the graph G is clear from context, we will use d(a, b), instead of
dG(a, b). A path P from a to b with length d(a, b) is called an a–b geodesic.

A subgraph H of a graph G is called an isometric subgraph, denoted H ≤ G, if dH(a, b) =
dG(a, b) for every pair of vertices a, b ∈ V (H). A connected graph G with |G| = n is called
distance preserving (dp) if it has an i-vertex isometric subgraph for every 1 ≤ i ≤ n. A
connected graph G is called sequentially distance preserving (sdp) if there is an ordering
a1, . . . , an of the vertices of G such that G− {ai}si=1 ≤ G for 1 ≤ s ≤ n. In this case we say
that a1, . . . , an is an sdp sequence for G.

The lexicographic product G[H] of graphs G and H is the graph with vertex set V (G)×
V (H) and edge set

E(G[H]) = {(a, x)(b, y) | ab ∈ E(G), or xy ∈ E(H) and a = b}.

The Cartesian product of G and H is the graph, denoted G 2 H, on the vertex set V (G)×
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V (H) whose edge set is

E(G 2 H) = {(a, x)(b, y) | ab ∈ E(G) and x = y, or xy ∈ E(H) and a = b}.

The reader can consult the book of Imrich and Klavzar [13], for more details about products.

3 Lexicographic products of graphs

In this section we derive a necessary and sufficient condition for a connected graph G[H] to
be distance preserving. Furthermore we will find all the isometric subgraphs of G[H].

We first need a lemma about the distance function in G[H].

Lemma 3.1. Suppose G is a graph with |G| ≥ 2 and H is an arbitrary graph.
(a) Let G be connected. For distinct vertices (a, x) and (b, y) in G[H],

dG[H]

(
(a, x), (b, y)

)
=


dG(a, b) if a ̸= b,

2 if a = b, xy /∈ E(H),

1 if a = b, xy ∈ E(H).

(b) The graph G[H] is connected if and only if G is connected.

Proof. To see part (a), note in the case a ̸= b that, by the definition of lexicographic product,
a = a0, a1, · · · , al = b is a geodesic in G if and only if (a0, x), (a1, x1), · · · , (al−1, xl−1), (al, y)
is a geodesic in G[H] where xi is any vertex of H for 0 < i < l. Thus dG(a, b) =
dG[H]

(
(a, x), (b, y)

)
. In the second case, since G is connected and |G| > 1 we have ac ∈ E(G)

for some c, by definition of lexicographic product we have a path (a, x), (c, z), (a, y) where
z is any vertex of H. Moreover (a, x)(b, y) ̸∈ E(G[H]) so the distance must be 2. For the
third case, (a, x)(b, y) ∈ E(G[H]).

To see part (b), If G is connected with |G| ≥ 2 then all the distances are finite in G. By
part (a) this happens if and only if all the distances are finite in G[H] which means G[H] is
connected. For the converse, suppose a, b ∈ V (G). Since G[H] is connected there is a walk
(a, x0)(a1, x1), . . . , (al−1, xl−1), (b, xl) in G[H] where xi is any vertex of H for 0 ≤ i ≤ l. It
follows that a, a1, . . . , al−1, b will be a walk in G once subsequences of adjacent equal vertices
have been replaced by a single copy of the repeated vertex. Thus G is connected.

In order to state the main theorem of this section, we need some notation. Let

dp(G) = {k
∣∣ G has an isometric subgraph with k vertices}.

If a, b are integers with a < b, then let [a, b] = {a, a+ 1, a+ 2, . . . , b}. So a graph G is dp if
and only if dp(G) = [1, |G|]. Two elements a, b ∈ dp(G) bound a non-dp interval if the set
of integers c with a < c < b is nonempty and consists only of elements not in dp(G).

Finally, the projection of a subgraph K of G[H], denoted π(K), is the induced subgraph
of G whose vertex set is

V
(
π(K)

)
= {a

∣∣ (a, x) is a vertex of K}.
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Theorem 3.2. Let G be a connected graph with |G| ≥ 2 and H be an arbitrary graph with
|H| = n. Then

G[H] is dp if and only if b ≤ an+ 1

for every pair a, b ∈ dp(G) bounding a non-dp interval.

Proof. We claim, for an induced subgraph K of G[H] with π(K) having at least two vertices,

π(K) ≤ G if and only if K ≤ G[H]. (1)

To prove the forward direction of the claim, assume that π(K) ≤ G and consider distinct
vertices (a, x), (b, y) ∈ V (K). If a ̸= b then, using the same ideas as in the proof of the first
case in Lemma 3.1(a), we see that dπ(K)(a, b) = dK

(
(a, x), (b, y)

)
. Using π(K) ≤ G and the

lemma itself gives

dK
(
(a, x), (b, y)

)
= dπ(K)(a, b) = dG(a, b) = dG[H]

(
(a, x), (b, y)

)
as desired. If a = b and xy ̸∈ E(H), then a similar proof shows dK

(
(a, x), (b, y)

)
= 2 =

dG[H]

(
(a, x), (b, y)

)
. Finally, if a = b and xy ∈ E(H), then since K is induced we have

dK
(
(a, x), (b, y)

)
= 1 = dG[H]

(
(a, x), (b, y)

)
.

Conversely, if K ≤ G[H], then we must show

dπ(K)(a, b) = dG(a, b)

for any two distinct vertices a, b in π(K). Again using the ideas in the proof of the first
case in Lemma 3.1(a), we see that dπ(K)(a, b) = dK

(
(a, x), (b, y)

)
for any x, y ∈ V (H). Using

K ≤ G[H] and the lemma itself, we have

dπ(K)(a, b) = dK
(
(a, x), (b, y)

)
= dG[H]

(
(a, x), (b, y)

)
= dG(a, b).

To prove the theorem suppose that |π(K)| = c, |G| = m and |H| = n so that |G[H]| =
mn. By definition of projection c ≤ |K| ≤ cn. Also every connected graph with at least two
vertices has isometric subgraphs with one vertex and with two vertices. So by equation (1),
G[H] will be dp if and only if ∪

c∈dp(G)

[c, cn] = [1,mn].

Since 1, 2,m ∈ dp(G), the last equality is equivalent to [a, an] ∪ [b, bn] being an interval for
every pair a, b ∈ dp(G) bounding a non-dp interval. But this is equivalent to b ≤ an+1.

The next result is an immediate corollary of the previous theorem.

Corollary 3.3. If G is dp with |G| ≥ 2 then so is G[H] for any graph H.

Similarly, the next result follows easily from Lemma 3.1 and equation (1).

Corollary 3.4. For a connected graph G with |G| ≥ 2 and an induced subgraph K of G[H],

K ≤ G[H] if and only if

{
π(K) ≤ G if |π(K)| ≥ 2,

diam(K) ≤ 2 if |π(K)| = 1.
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4 Cartesian product graphs

We now turn to Cartesian products and the sdp property. We first need some notation and
a few well-known results. A removal set in G is a set of vertices of G whose removal gives
an isometric subgraph, let

DP′(G) =
{
A ⊆ V (G)

∣∣G− A ≤ G
}

and dp′(G) =
{
|A|

∣∣A ∈ DP′(G)
}
.

Proposition 4.1. [4] Suppose G and H are graphs,
(a) If (a, x) and (b, y) are vertices of a Cartesian product G 2 H then

dG 2 H

(
(a, x), (b, y)

)
= dG(a, b) + dH(x, y).

(b) A path (a0, x0) . . . (al, xl) is geodesic in G 2 H if and only if a0 . . . al is a geodesic in
G after removal of repeated vertices and similarly for x0 . . . xl in H.

Next we consider isometric Cartesian product subgraphs of a Cartesian product graph.

Lemma 4.2. Suppose G′ and H ′ are nonempty subgraphs of G and H respectively, then
G′ 2 H ′ ≤ G 2 H if and only if G′ ≤ G and H ′ ≤ H.

Proof. For the forward direction using the assumption and proposition 4.1(a) we have

dG′(a, b) + dH′(x, y) = dG′ 2 H′
(
(a, x), (b, y)

)
= dG 2 H

(
(a, x), (b, y)

)
= dG(a, b) + dH(x, y),

for every pair of vertices (a, x), (b, y) ∈ V (G′ 2 H ′). As any distance in a subgraph is greater
than or equal to the corresponding distance in the original graph, we get dG′(a, b) = dG(a, b)
and dH′(x, y) = dH(x, y).

Conversely, suppose G′ and H ′ are isometric subgraphs, by proposition 4.1(a) we have

dG′ 2 H′
(
(a, x), (b, y)

)
= dG′(a, b) + dH′(x, y) = dG(a, b) + dH(x, y) = dG 2 H

(
(a, x), (b, y)

)
,

for each pair of vertices (a, x), (b, y) ∈ V (G′ 2 H ′). This complete the proof.

We now prove a lemma about removal sets of vertices.

Lemma 4.3. For nonemty subsets A and B in the vertex set of graphs G and H respectively,
A×B ∈ DP′(G 2 H) if and only if A ∈ DP′(G) and B ∈ DP′(H).

Proof. To prove the forward direction, we show A ∈ DP′(G) as B ∈ DP′(H) is similar. Let
a, b ∈ V (G−A) and x ∈ B. By Proposition 4.1(b), the (a, x)–(b, x) geodesics in (G−A) 2 B
are the same as the geodesics in (G 2 H)− (A×B). Now using this fact, Proposition 4.1(a),
and the assumption in this direction

dG−A(a, b) = d(G−A) 2 B

(
(a, x), (b, x)

)
= d(G 2 H)−(A×B)

(
(a, x), (b, x)

)
= dG 2 H

(
(a, x), (b, x)

)
.

Finally, applying Proposition 4.1(a) again shows that the last distance equals dG(a, b) as
desired.
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To see the backward direction, first note that (G 2 H) − (A × B) = ((G − A) 2 H) ∪
(G 2 (H −B)). So it suffices to show that

d(G 2 H)−(A×B)

(
(a, x), (b, y)

)
= dG 2 H

(
(a, x), (b, y)

)
for any (a, x) in (G−A) 2H and (b, y) inG 2 (H−B) since Lemma 4.2 takes care of the other
possibilities. Clearly there is a path (a, x), . . . , (a, y) with length dH(x, y) in (G − A) 2 H,
and also (a, y), . . . , (b, y) with length dG(a, b) in G 2 (H − B). The concatenation of these
paths is a path from (a, x) to (b, y) in (G 2 H) − (A × B) of length dG(a, b) + dH(x, y) =
dG 2 H

(
(a, x), (b, y)

)
and so must be a geodesic. This concludes the proof.

We are now in a position to prove the main theorem of this section.

Theorem 4.4. The product G 2 H is sdp if and only if G and H are sdp.

Proof. For the forward direction, we will prove that G is sdp, the proof for H being similar.
Take an sdp sequence of vertices for G 2 H. Fix x ∈ H and consider the subsequence
(a1, x), (a2, x), . . . , (an, x) where n = |G|. We claim that a1, a2, . . . , an is an sdp sequence
for G. Indeed, let G′ = G− {ai}si=1 and let K ′ be G 2 H with the vertices through (as, x)
removed so that G′ 2 {x} ⊆ K ′. Now if b, c ∈ V (G′) then, by Proposition 4.1(b), P is a b–c
geodesic in G′ if and only if P 2 {x} is a (b, x)–(c, x) geodesic in K ′. From this fact, the
sdp property of the original sequence, and Proposition 4.1(a) we obtain

dG′(b, c) = dK′
(
(b, x), (c, x)

)
= dG 2 H

(
(b, x), (c, x)

)
= dG(b, c)

as desired.
For the converse, suppose that if a1, . . . , an and b1, . . . , bm are sdp sequences for G and

H, respectively. Then it follows easily from Lemma 4.3 and the transitivity of the isometric
subgraph relation that

(a1, b1), . . . , (an, b1), (a1, b2), . . . , (an, b2), . . . , (a1, bm), . . . , (an, bm)

is an sdp sequence for G 2 H.

The relationship between Cartesian product and the dp property seems more delicate. In
particular, we note that G 2H can be dp even though G or H may not be. As an example
suppose a graph G consists of the cycle C7 with a pendant edge and H is the path P2. It is
easy to see that G does not have any isometric subgraph of order 5. But using Lemma 4.3
one can prove that G 2 H is dp. Computations suggest the following conjecture.

Conjecture 4.5. If G and H are dp then so is G 2 H.
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