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make connections with the q, t-Catalan numbers. We end with
some open questions raised by this work.
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Fig. 1. The quadrant and a board.

1. Introduction

Our point of departure will be the famous Factorization Theorem of Goldman, Joichi,
and White [4]. To state it, we first need to set up some standard notation for rook
theory. Consider the tiling, Q, of the first quadrant with unit squares (also called “cells”
or “boxes”) displayed on the left in Fig. 1. We give each square the coordinates of its
northeast corner, so the circle in the diagram of Q is in cell (2, 3). A board is a finite subset
B ⊂ Q. We will be particularly interested in boards associated with (integer) partitions.
A partition is a weakly increasing sequence (b1, . . . , bn) of nonnegative integers. We will
use the same notation for the corresponding Ferrers board B = (b1, . . . , bn) which consists
of the bj lowest squares in column j for 1 � j � n. The board B = (1, 3, 3) is shown on
the right in Fig. 1 and it will be used as our running example for this section.

For any board, B, a rook placement is a subset P ⊆ B such that no two squares of P
are in the same row or column. The elements of P are usually called rooks. We let

rk(B) = the number of rook placements P ⊆ B with k rooks.

Note that we always have r0(B) = 1 and r1(B) = |B| where | · | denotes cardinality. For
B = (1, 3, 3) we have r0(B) = 1, r1(B) = 7, r2(B) = 10, r3(B) = 2, and rk(B) = 0 for
k � 4. We wish to consider the generating function for these integers in the variable x

and using the basis of falling factorials

x↓n = x(x− 1)(x− 2) . . . (x− n + 1)

for n � 0. This brings us to the Factorization Theorem.

Theorem 1.1 (Factorization Theorem). (See [4].) If B = (b1, . . . , bn) is any Ferrers board
then

n∑
k=0

rk(B)x↓n−k =
n∏

j=1
(x + bj − j + 1). �
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Fig. 2. Levels and rook placements.

Motivated by connections to wreath products of cyclic groups with symmetric groups,
Briggs and Remmel [2] considered rook placements where rows are replaced by sets of
rows called levels. Fix a positive integer m. Partition the rows of Q into levels where the
ith level consists of rows (i − 1)m + 1, (i − 1)m + 2, . . . , im. The situation for m = 2 is
shown on the left in Fig. 2 where the boundaries between the levels have been thickened.

Given a board, B, an m-level rook placement (called an m-rook placement by Briggs
and Remmel) is P ⊆ B where no two elements of R are in the same level or the same
column. Note that when m = 1 we recover the ordinary notion of a rook placement. By
way of example, in Fig. 2, the placement on the middle board is a 2-level rook placement
while the one on the right is not since it has two rooks in the first level. We let

rk,m(B) = the number of m-level rook placements P ⊆ B with k rooks.

In general, we will add a subscript m to quantities when considering their m-level equiv-
alents. For B = (1, 3, 3) we have r0,2(B) = 1, r1,2(B) = 7, r2,2(B) = 6, and rk(B) = 0
for k � 3. It is not hard to see that there is a natural bijection between m-level rook
placements of n rooks on the mn×n board and elements of the wreath product Cm �Sn

of the cyclic group Cm with the symmetric group Sn. In fact, Briggs and Remmel were
able to use such placements to prove a wreath product generalization of a theorem of
Frobenius relating the Eulerian polynomials and Stirling numbers of the second kind.

To state the Briggs–Remmel generalization of Theorem 1.1, we need a few more
concepts. One is of an m-falling factorial which is

x↓n,m = x(x−m)(x− 2m) . . .
(
x− (n− 1)m

)
.

Another is the m-floor function defined by

�n�m = the largest multiple of m less than or equal to n

for any integer n. As an example �17�3 = 15 since 15 � 17 < 18. Finally, define a
singleton board to be a Ferrers board B = (b1, . . . , bn) such that there is at most one
bj in each open interval of integers (km, (k + 1)m), k � 0. These were called m-Ferrers
boards in [2].
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Theorem 1.2. (See [2].) If B = (b1, . . . , bn) is a singleton board then

n∑
k=0

rk,m(B)x↓n−k,m =
n∏

j=1

(
x + bj − (j − 1)m

)
. �

Our first goal is to remove the singleton board restriction and prove a generalization
of this theorem for any Ferrers board. This will be done in the next section. In Section 3,
we give a p, q-analogue of our result using statistics related to the inversion number of a
permutation. Call boards B,B′ m-level rook equivalent if rk,m(B) = rk,m(B′) for all k.
In Section 4 we extend to all m a theorem of Foata and Schützenberger [3] giving a
distinguished member of each 1-level rook equivalence class. Goldman, Joichi and White
used the Factorization Theorem to enumerate the number of Ferrers boards 1-level rook
equivalent to a given board. In Section 5 we generalize this formula to count m-level
rook equivalent singleton boards for arbitrary m. The rest of the paper is devoted to the
following dual problem. Rather than changing the product side of Theorem 1.2, keep the
same product for all Ferrers boards and expand it in the m-falling factorial basis. What
do the coefficients count? We show in Section 6 that they are generating functions for
certain weighted file placements, where such placements allow more than one rook in a
given row. The next two sections investigate properties of the corresponding equivalence
classes. In particular, in Section 8 we count the number of boards in a given class and show
how this formula can be obtained using ideas from the theory of q, t-Catalan numbers.
The last section contains some open questions related to our work.

2. The m-Factorization Theorem

In order to generalize Theorem 1.2 to all Ferrers boards, it will be convenient to break
a board up into zones depending on the lengths of the columns. Given integers s, t, the
interval from s to t will be denoted [s, t] = {s, s + 1, . . . , t}. An m-zone, z, of a board
B = (b1, . . . , bn) is a maximal interval [s, t] such that �bs�m = �bs+1�m = · · · = �bt�m.
To illustrate this concept, consider m = 3 and the board B = (1, 1, 2, 3, 5, 7) shown in
Fig. 3. In this case the zones are z1 = [1, 3] since �b1�3 = �b2�3 = �b3�3 = 0, z2 = [4, 5]
since �b4�3 = �b5�3 = 3, and z3 = [6, 6] since �b6�3 = 6. The zones in Fig. 3 are separated
by thick lines (as are the levels). Note that a Ferrers board is a singleton board if and
only if each zone contains at most one column whose length is not a multiple of m. This
is the reason for our choice of terminology.

In addition to taking m-floors, we will have to consider remainders modulo m. Given
an integer n, we denote its remainder on division by m by ρm(n) = n − �n�m. If z is a
zone of a Ferrers board B = (b1, . . . , bn) then its m-remainder is

ρm(z) =
∑
j∈z

ρm(bj).
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Fig. 3. The zones of (1, 1, 2, 3, 5, 7) when m = 3.

In Fig. 3, the boxes corresponding to the 3-remainders of the zones are shaded. In
particular ρ3(z1) = 1 + 1 + 2 = 4, ρ3(z2) = 0 + 2 = 2, and ρ3(z3) = 1. We are now in a
position to state and prove our generalization of Theorem 1.2.

Theorem 2.1 (m-Factorization Theorem). If B = (b1, . . . , bn) is any Ferrers board then

n∑
k=0

rk,m(B)x↓n−k,m =
n∏

j=1

⎧⎨⎩
x + �bj�m − (j − 1)m + ρm(z)

if j is the last index in its zone z,
x + �bj�m − (j − 1)m otherwise.

Proof. Since this is a polynomial identity, it suffices to prove it for an infinite number of
values for x. We will do so when x is a nonnegative multiple of m. Consider the board
Bx derived from B by adding an x × n rectangle below B. Fig. 4 shows a schematic
representation of Bx. Note that since x is a multiple of m, the zones and remainders of
B and Bx are the same. We will show that both the sum and the product count the
number of m-rook placements on Bx consisting of n rooks.

For the sum side, note that any placement of n rooks on Bx must have k rooks in B

and n− k rooks in the rectangle for some 0 � k � n. By definition, rk,m(B) counts the
number of placements on B. Once these rooks are placed, one must place the remaining
rooks in the x×(n−k) subrectangle consisting of those columns of the original rectangle
not used for the rooks on B. Placing these rooks from left to right, there will be x choices
for the position of the first rook, then x−m choices for the next, and so on, for a total
of x↓n−k,m choices. Thus the sum side is rn,m(Bx) as desired.

On the product side, it will be convenient to consider placing rooks on Bx zone by
zone from left to right. So suppose z = [s, t] is a zone and all rooks in zones to its left
have been placed. Because z is a zone we have �bs�m = · · · = �bt�m = cm for some
constant c. Also, among all the rooks placed in the columns of z, there is at most one
which is in the set of squares R corresponding to ρm(z). If there are no rooks in R then
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Fig. 4. The board Bx.

they all go in a rectangle of height x+ cm. Thus, using the same ideas as in the previous
paragraph, the number of placements is(

x + cm− (s− 1)m
)
(x + cm− sm) . . .

(
x + cm− (t− 1)m

)
. (1)

When there is one rook in R, say it is in the column with index i. So there are ρm(bi)
choices for the placement of this rook and the rest of the rooks go in a rectangle of height
x + cm. This gives a count of

ρm(bi)
(
x + cm− (s− 1)m

)
(x + cm− sm) . . .

(
x + cm− (t− 2)m

)
. (2)

Adding together the contributions from (1) and (2) and factoring, we see that the total
number of placements is(

x + cm− (s− 1)m
)
. . .
(
x + cm− (t− 2)m

)(
x + cm− (t− 1)m + ρm(z)

)
.

Remembering that �bs�m = · · · = �bt�m = cm, we see that this is exactly the contribution
needed for the product. �

We should show why our result implies the theorems of Goldman–Joichi–White and
Briggs–Remmel. In both cases, it is clear that the sum sides correspond, so we will
concentrate on the products.

For Theorem 1.1 we take m = 1. Since �n�1 = n for any n, ρ1(z) = 0 for any zone z

and the two cases in Theorem 2.1 are the same. So the contribution of the jth column
to the product is

x + �bj�1 − (j − 1) · 1 = x + bj − j + 1

in agreement with the Factorization Theorem.
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As for Theorem 1.2, suppose that B is a singleton board and consider any zone
z = [s, t]. If s � j < t then bj is a multiple of m and

x + �bj�m − (j − 1)m = x + bj − (j − 1)m.

And if j = t then ρm(z) = ρm(bt) so that

x + �bt�m − (t− 1)m + ρm(z) = x + bt − (t− 1)m.

So in either case one gets the same factor as in the Briggs–Remmel result.

3. A p, q-analogue

In this section we will derive a p, q-analogue of Theorem 2.1. Such an analogue was
given by Remmel and Wachs [9] for Theorem 1.1 and was generalized to singleton boards
by Briggs and Remmel [2]. Before proving our result, we would like to motivate the
statistics we will be using on p and q.

Let Sn denote the symmetric group of all permutations π = a1 . . . an of {1, . . . , n}
written in 1-line notation. One of the most famous statistics on Sn is the inversion
number which is defined by

inv π =
∣∣{(i, j): i < j and ai > aj

}∣∣.
By way of illustration, if π = 4132 then inv π = 4 because of the pairs (i, j) = (1, 2),
(1, 3), (1, 4), and (3, 4). A good source of information about inversions and other statistics
is Stanley’s book [12]. Similarly we can consider the coinversion number defined by

coinv π =
∣∣{(i, j): i < j and ai < aj

}∣∣.
To obtain the generating function for these two statistics we define, for any complex

number x, the p, q-analogue of x to be

[x]p,q = px − qx

p− q
.

We will sometimes drop the subscripts if no confusion will result. Note that if n is a
nonnegative integer then, by division, we have

[n]p,q = pn−1 + pn−2q + · · · + qn−1. (3)

For such n, we also define the p, q-factorial by

[n]p,q! = [1]p,q[2]p,q . . . [n]p,q.

The following is a famous result of Rodrigues.
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Fig. 5. Cohooks and the diagram.

Theorem 3.1. (See [10].) For any integer n � 0,∑
π∈Sn

pcoinv πqinv π = [n]p,q!. �

To relate inversions and coinversions to rook placements, it is useful to use the notion
of a cohook. Let B be a board and (i, j) ∈ B. The cohook of (i, j) is

cHi,j =
{(

i′, j′
)
∈ B: either i′ = i and j′ � j or j′ = j and i′ � i

}
.

In Fig. 5, the board on the left shows the cohook cH2,3 in the Ferrers board (2, 4, 4, 4)
which is the set of boxes indicated by the dashed lines. Hooks and cohooks play an
important role in enumerative combinatorics and the representation theory of Sn. The
reader can consult Sagan’s book [11] for details. It will be convenient for us to distinguish
two subsets of cHi,j , namely the coarm

cAi,j =
{(

i, j′
)
∈ B: j′ < j

}
and the coleg

cLi,j =
{(

i′, j
)
∈ B: i′ > i

}
.

So we have the disjoint union cHi,j = {(i, j)} 	 cAi,j 	 cLi,j .
Any permutation π ∈ Sn can be considered as a placement P (π) of n rooks on the

n × n board Bn where the rooks correspond to the ones in the permutation matrix
of π = a1 . . . an. So the rooks in P (π) are in positions (i, n − ai + 1), 1 � i � n,
where we complement the second component because we are using Cartesian, rather than
matrix, coordinates. The center board in Fig. 5 shows the placement for the permutation
π = 4132 considered previously. The diagram of π is the set of squares

D(π) = Bn

∖( ⋃
(i,j)∈P (π)

cHi,j

)
.

For π = 4132, D(π) is the set of squares in the center board of Fig. 5 which do not
contain dashes. The diagram of a permutation has applications in Schubert calculus.
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See, for example, the article of Bergeron [1]. It is easy to see that |D(π)| = inv π. In fact,
we have i < j and ai > aj in π if and only if (i, n−aj +1) ∈ D(π). To obtain coinv π one
counts the squares remaining in Bn after removing the (i, j) corresponding to π, their
colegs, and their arms which are all squares (i, j′) with j′ > j.

To define an m-cohook of a square (i, j) ∈ B, one just replaces the coleg of (i, j) with
its corresponding level, giving

cHi,j;m =
{
(i, j)

}
	 cAi,j 	

{(
i′, j′

)
∈ B: i′ > i and j, j′ are in the same level

}
where the third set of elements in the disjoint union is called the m-coleg. The board on
the right in Fig. 5 displays cH2,3;2 for B = (2, 4, 4, 4). The m-diagram and m-inversion
number of a placement P ⊆ B and now defined in the expected way:

Dm(P ) = B
∖( ⋃

(i,j)∈P

cHi,j;m

)
and invm P =

∣∣Dm(P )
∣∣.

One similarly defines the m-coinversion number, coinvm P .
To describe the statistics we will work with, it will be convenient to partition the

m-diagram as follows. Given a board B and a placement P ⊆ B we let

αm(P ) = the number of (i, j) ∈ B above a rook of P and not in the m-coleg of
any rook in P,

βm(P ) = the number of (i, j) ∈ B below a rook of P and not in the m-coleg of
any rook in P,

εm(P ) = the number of (i, j) ∈ B in a column with no rook of P and not in
the m-coleg of any rook in P ,

where α, β, and ε stand for above, below, and empty, respectively. An example for a
3-level rook placement on the board (1, 1, 2, 3, 5, 7) is shown in Fig. 6 where the boxes
for each statistic are labeled with the corresponding Greek letter. It is clear from the
definitions that invm(P ) = αm(P ) + εm(P ) and coinvm(P ) = βm(P ) + εm(P ).

We can now define the p, q-analogue of the rook numbers which we will be using.
Namely, as in [2], for any board B, we let

rk,m[B] =
∑
P

pβm(P )−(c1+···+ck)mqαm(P )+εm(P ) (4)

where the sum is over all m-level rook placements P ⊆ B with k rooks and c1 < · · · < ck
are the indices of the columns in which the rooks are placed. The placement in Fig. 6
would contribute a term of p−26q7 to the sum. The reason for the unexpected exponent
on p is because, when we mimic the proof of Theorem 2.1, the rooks on the rectangular
portion of Bx will never contribute to the m-coinversion number of B.
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Fig. 6. The α, β and ε for a 3-level placement on (1, 1, 2, 3, 5, 7).

We will now generalize the p, q-analogue of Theorem 1.2 given by Briggs and Remmel
to all Ferrers boards. To state their result, we will use the p, q version of the m-falling
factorial given by

[x]↓n,m = [x][x−m][x− 2m] . . .
[
x− (n− 1)m

]
.

Note that the subscripts no longer refer to p and q.

Theorem 3.2. (See [2].) If B = (b1, . . . , bn) is a singleton board then

n∑
k=0

pxk+m
(k+1

2
)
rk,m[B][x]↓n−k,m =

n∏
j=1

[
x + bj − (j − 1)m

]
. �

Our generalization will need a finer invariant than the remainder of a zone as used in
the m-Factorization Theorem. In particular, if z = [s, t] is a zone of a board (b1, . . . , bn)
and i ∈ z, then the ith partial remainder of z is defined by

ρi,m(z) =
∑

s�j�i

ρm(bj).

We also permit i = s− 1 in which case ρi,m(z) = 0.

Theorem 3.3. If B = (b1, . . . , bn) is any Ferrers board then

n∑
k=0

pxk+m
(k+1

2
)
rk,m[B][x]↓n−k,m

=
n∏

j=1

⎧⎨⎩
qρm(z)[x + �bj�m − (j − 1)m] +

∑
i∈z p

x+�bi�m−(i−1)mqρi−1,m(z)[ρm(bi)]
if j is last in zone z,

[x + �bj�m − (j − 1)m] otherwise.



Author's personal copy

140 K. Barrese et al. / J. Combin. Theory Ser. A 124 (2014) 130–165

Proof. We will follow the method of proof and notation for Theorem 2.1 while keeping
track of the two statistics. We wish to show that both sides of the equality are the
generating function ∑

Px⊆Bx

pβm(Px)qαm(Px) (5)

where the sum is over all m-level placements of n rooks on Bx. Note that since there is
a rook in every column of Bx, αm(Px) = invm Px and βm(Px) = coinvm Px.

We start with the sum side in the theorem. Consider all m-level placements Px ⊆ Bx

with k rooks on B in columns c1 < · · · < ck. We wish to show that these Px contribute the
same monomials to the theorem’s sum and to (5). We will use the notation P = Px ∩B

and R for the x× n rectangular portion of Bx.
We first claim that

pxk+m
(k+1

2
)
rk,m[B] (6)

gives the contribution to (5) of all cells of Bx which are either in B or are in R below a
rook of B. Recalling Eq. (4), we see that the monomials in (6) are of the form

pβm(P )+(x−(c1−1)m)+(x−(c2−2)m)+···+(x−(ck−k)m)qαm(P )+εm(P ).

For the exponent on q, αm(P ) counts the cells for αm(Px) which are above a rook in P

and εm(P ) does the same for cells of B which are above a rook in R. For p’s exponent,
βm(P ) counts the cells for βm(Px) which are below a rook in P and also in B. The sum
in the exponent accounts for the cells for βm(Px) which are below a rook in P and in
the rectangle R since there will be (ci − i)m rows that will be eliminated in column i

because of rooks in R to the left of the column.
There remains to show that [x]↓n−k,m is the contribution to (5) of all ways to place

rooks in the remaining columns of R, where we only need consider the cells in R itself.
In the first such column, there are x ways to place a rook and these give exactly the
x terms in the sum for [x] in Eq. (3). Similarly, the contribution of the next column is
[x −m], and so on, for a total of [x]↓n−k,m. This finishes the proof for the sum side of
the theorem.

For the product, as in the proof of the m-Factorization Theorem, we break the demon-
stration up into two cases depending on whether a rook is placed in the region R
corresponding to the remainder of zone z or not. If there are no rooks in R then, by
arguments similar to those already given, the contribution to (5) will be

qρm(z)[x + cm− (s− 1)m
]
[x + cm− sm] . . .

[
x + cm− (t− 1)m

]
.

When there is a rook in column i of R, then px+�bi�m−(i−1)m[ρm(bi)] gives the contri-
bution of the cells of Bx in column i for all possible placements in that column of R.



Author's personal copy

K. Barrese et al. / J. Combin. Theory Ser. A 124 (2014) 130–165 141

A factor qρi−1,m(z) will come from the fact that all the cells in R to the left of column i

will be above a rook of Bx. And the cells in R to the right of column i contribute nothing
since they are in the m-coleg of the rook in column i. Considering the contributions from
the other columns of z in this case gives a total contribution of

px+�bi�m−(i−1)mqρi−1,m(z)[ρm(bi)
][
x + cm− (s− 1)m

]
· [x + cm− sm] . . .

[
x + cm− (t− 2)m

]
.

Summing everything together gives the factors corresponding to z in the product of the
theorem. Multiplying over all zones completes the proof. �
4. Rook equivalence

Two Ferrers boards B,B′ are m-level rook equivalent if rk,m(B) = rk,m(B′) for all
k � 0. In this case we will write B ≡m B′. We will drop the “m” and just say “rook
equivalent” if m = 1. Foata and Schützenberger [3] proved a beautiful theorem giving
a distinguished board in each equivalence class. Call a Ferrers board B = (b1, . . . , bn)
increasing if 0 < b1 < · · · < bn.

Theorem 4.1. (See [3].) Every Ferrers board is rook equivalent to a unique increasing
board. �

The purpose of this section is to extend Theorem 4.1 to arbitrary m. The Foata–
Schützenberger result was reproved by Goldman, Joichi, and White using their Factoriza-
tion Theorem. To see the connection, suppose that B = (b1, . . . , bn) and B′ = (b′1, . . . , b′n)
are two Ferrers boards. Although we are writing the boards with the same number of
columns, this is no restriction since we can always pad the shorter board with columns
of height 0 on the left. So B and B′ are rook equivalent if and only if they have the same
generating function in the falling factorial basis. By Theorem 1.1, this happens if and
only if the two vectors

ζ(B) =
(
−b1, 1 − b2, 2 − b3, . . . , (n− 1) − bn

)
and

ζ
(
B′) =

(
−b′1, 1 − b′2, 2 − b′3, . . . , (n− 1) − b′n

)
are rearrangements of each other since these are the zeros of the corresponding products.
We call ζ(B) the root vector of B. For example, if B = (1, 1, 3) and B′ = (2, 3) then,
rewriting B′ = (0, 2, 3), we have ζ(B) = (−1, 0,−1) and ζ(B′) = (0,−1,−1) and so
B ≡ B′. We should note that padding a board B with zeros will change the entries
of ζ(B). Also, if ζ(B) is a rearrangement of ζ(B′) then the same will be true when
padding both B and B′ with any given number of zeros.
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Fig. 7. A board B and l(B) when m = 2.

We now return to considering general m. Define the m-level root vector of B =
(b1, . . . , bn) to be ζm(B) = (a1, . . . , an) where

aj =
{

(j − 1)m− �bj�m − ρm(z) if j is the last index in its zone z,
(j − 1)m− �bj�m otherwise.

The next result is immediate from Theorem 2.1.

Proposition 4.2. Ferrers boards B and B′ having the same number of columns satisfy
B ≡m B′ if and only if ζm(B) is a rearrangement of ζm(B′). �

Our first order of business will be to restrict the class representative problem to
considering singleton boards B = (b1, . . . , bn) since then the aj are simpler to compute.
Indeed, the argument in the last paragraph of Section 2 shows that in this case

aj = (j − 1)m− bj

for all j. To describe a singleton board in each equivalence class, let Qi denote the
set of squares in the ith level of the tiling Q of the first quadrant and, for any board
B = (b1, . . . , bn), let li = |B ∩ Qi|. For example, if m = 2 and B = (1, 3, 3) as shown on
the left in Fig. 7, then l1 = 5, l2 = 2, and li = 0 for i � 3. For any Ferrers board B, if t
is the largest index with lt �= 0 then we let l(B) = (lt, lt−1, . . . , l1). We call this function
the l-operator on boards. The board on the right in Fig. 7 shows l(1, 3, 3) = (2, 5).

Lemma 4.3. For any m and any Ferrers board B = (b1, . . . , bn) the sequence l(B) =
(lt, . . . , l1) is a partition, the Ferrers board l(B) is singleton, and B ≡m l(B).

Proof. To see that l(B) is a partition first note that, for any i > 1, the set of columns
of B ∩ Qi is a subset of the columns of B ∩ Qi−1. Furthermore, for each of the former
columns we have m squares of that column in B ∩Qi−1. It follows that li(B) � li−1(B)
as desired.

To show that l(B) is singleton, it suffices to show that if li is not a multiple of m then
�li�m < �li−1�m. Let c be the number of columns of B∩Qi which contain m squares and d
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be the number of columns containing fewer than m squares. By assumption d > 0. Since
these c + d columns of B ∩ Qi−1 must all contain m cells we have li < (c + d)m � li−1.
Taking floors finishes this part of the proof.

To prove rook equivalence, pick any I = {i1 > · · · > ik} ⊆ {1, . . . , t}. It suffices to
show that the number of ways to place rooks on the levels of B indexed by I is the
same as the number of ways to place rooks in the columns of l(B) indexed by I. For the
former, if one places the rooks level by level from top to bottom then, since each rook
in a higher level rules out m squares in each level below it, we obtain a count of

li1(li2 −m)(li3 − 2m) . . .
(
lik − (k − 1)m

)
.

Now consider placing the rooks in l(B) column by column from left to right. Since l(B)
is singleton, each rook placed eliminates m squares in each column to its right from
consideration. Thus we obtain the same count as before. �

The possible ζm-vectors of singleton boards are easy to characterize.

Proposition 4.4. Consider a vector ζ = (a1, . . . , an) where a1 = 0. Let B = (b1, . . . , bn)
where we define bj = (j − 1)m − aj for all j. We have that ζ = ζm(B) where B is a
singleton board if and only if the following conditions are satisfied:

(i) aj+1 � aj + m for j � 1, and
(ii) if neither of aj+1, aj are multiples of m then �aj+1�m � �aj�m.

Proof. We claim that (i) and the fact that a1 = 0 are equivalent to B being a weakly
increasing sequence of nonnegative integers. Since a1 = 0 we have b1 = −a1 = 0 which
is nonnegative. And for j � 1

bj+1 − bj = (jm− aj+1) −
(
(j − 1)m− aj

)
= m + aj − aj+1. (7)

So (i) is equivalent to B being weakly increasing. A similar argument shows that (ii) is
equivalent to the singleton condition. �

We are finally in a position to give distinguished representatives for the m-level equiv-
alence classes. A Ferrers board B = (b1, . . . , bn) is called m-increasing if b1 > 0 and
bj+1 � bj +m for j � 1. Note that a 1-increasing board is increasing in the sense of the
definition before Theorem 4.1. Also note that, although most properties of Ferrers boards
are not affected by padding with columns of length zero, the m-increasing condition will
be destroyed.

Theorem 4.5. Every Ferrers board is m-level rook equivalent to a unique m-increasing
board.
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Proof. By Lemma 4.3, it suffices to show that any singleton board B is m-level rook
equivalent to a unique m-increasing board. An example of the construction of this board
is given after this proof to illustrate the technique. Let N = |B| + 1 and pad B with
columns of zeros so as to write B = (b1, . . . , bN ). By the choice of N , any board B′

which is m-equivalent to B can be written as B′ = (b′1, . . . , b′N ) and b1 = b′1 = 0. Letting
ζm(B) = (a1, . . . , aN ) and ζm(B′) = (a′1, . . . , a′N ), the choice of N also ensures that
a1 = a′1 = 0 and ai, a

′
i � 0 for all i.

We claim that a singleton board B′ = (b′1, . . . , b′n) will be m-increasing if and only
ζm(B′) = (a′1, . . . , a′n) is weakly decreasing. Indeed, this follows directly from (7).

We first show existence. By the previous paragraph, we wish to rearrange ζm(B) in
such a way that the portion of the rearrangement corresponding to nonzero entries of the
board is weakly decreasing. And the portion of the rearrangement corresponding to zero
entries of the board must be of the form 0,m, 2m, . . . , cm for some c. So choose cm to be
the largest multiple of m in ζ = ζm(B). We claim that the elements 0,m, . . . , (c − 1)m
also occur in ζ. Consider the multiples of m in the first zone of B. Since b1 = 0, these will
all be zeros. It follows that in ζ we have entries 0,m, . . . , im for some i. Now consider
the multiples of m in the next zone of B. Since they are all at least m and there is at
most one non-multiple of m in the first zone, in ζ we will have entries jm, (j + 1)m, . . .

for some j � i+ 1. This will continue until we get to a zone giving rise to the entry cm.
The inequalities on the factors of m between adjacent zones imply the claim.

We now define ζ ′ = (a′1, . . . , a′N ) where

(
a′1, a

′
2, a

′
3, . . . , a

′
c+1
)

= (0,m, 2m, . . . , cm)

and (a′c+2, a
′
c+3, . . . , a

′
N ) is the rest of ζ arranged in weakly decreasing order. Since a′1 = 0,

we can show that ζ ′ corresponds to an m-increasing board by checking conditions (i) and
(ii) of Proposition 4.4. Condition (i) is clearly true for j � c. For j = c, one can show, by
using a proof as in the previous paragraph and the choice of cm as the largest multiple
of m in ζ, that a′c+2 < (c+1)m. So (i) also holds in this case. And for j > c the fact that
the sequence is weakly decreasing makes (i) a triviality. The same reasoning as for (i)
shows that (ii) must also hold. Thus, defining B′ = (b′1, . . . , b′N ) where b′j = (j−1)m−a′j
for all j results in a singleton board. Furthermore, by construction, b′1 = · · · = b′c+1 = 0
and (b′c+2, . . . , b

′
N ) is m-increasing. Hence removing the zeros from B′ leaves the desired

m-increasing board.
To show uniqueness, suppose ζ ′ = (a′1, . . . , a′N ) is a rearrangement of ζ corresponding

to a padded m-increasing board. Then ζ ′ must start with 0,m, . . . , cm for some c and
be weakly decreasing thereafter by Eq. (7). Without loss of generality, we can assume
a′c+2 �= (c + 1)m, since if the two are equal we can just add a′c+2 to the initial run of
multiples of m. So ζ ′ will be the rearrangement of ζ constructed in the existence proof
as long as cm is the largest multiple of m in ζ. But if cm is not the largest multiple of
m in ζ then (a′c+2, . . . , a

′
N ) must contain an element greater than or equal to (c + 1)m.

And since this portion of ζ ′ is weakly decreasing, this forces a′c+2 > (c + 1)m since
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equality was ruled out earlier. But then a′c+1 = cm and a′c+2 do not satisfy condition (i)
of Proposition 4.4, contradicting the fact that ζ ′ corresponds to a singleton board. This
finishes the proof of uniqueness and of the theorem. �

To illustrate the construction in the previous proof, consider m = 2 and the sin-
gleton board B = (1, 2, 2, 3). Now N = 1 + 2 + 2 + 3 = 8 and we pad B with
zeros to length 8 + 1 = 9, obtaining B = (0, 0, 0, 0, 0, 1, 2, 2, 3). Thus ζ = ζ2(B) =
(0, 2, 4, 6, 8, 9, 10, 12, 13). The largest multiple of 2 in ζ is 12, so we rearrange ζ to
begin with the multiples of 2 up through 12 and then decrease. The result is ζ ′ =
(0, 2, 4, 6, 8, 10, 12, 13, 9) with associated board B′ = (0, 0, 0, 0, 0, 0, 0, 1, 7). Removing the
initial zeros, we get the 2-increasing board (1, 7) which is easily seen to be 2-level rook
equivalent to B.

5. Enumeration of singleton boards

Goldman, Joichi, and White [4] used their factorization theorem to give a simple
formula for the size of a given rook equivalence class. The basic idea is to count, for
any board B, the number of rearrangements of ζ1(B) which correspond to a Ferrers
board. To state their result, given any finite vector ν of nonnegative integers, we let
n(ν) = (n0, n1, . . .) be defined by

ni = the number of copies of i in ν.

So ni(ν) = 0 if i < 0 or i is sufficiently large.

Theorem 5.1. (See [4].) Let B = (b1, . . . , bN ) be a Ferrers board where N = |B|+ 1, and
suppose n(ζ1(B)) = (n0, n1, . . .). The number of Ferrers boards in the equivalence class
of B is

∏
i�1

(
ni + ni−1 − 1

ni

)
. �

Because the entries of ζm(B) are more complicated for m � 2, we will not be able
to count all boards in an m-level equivalence class. But we can at least enumerate the
singleton boards. The formula will be in terms of multinomial coefficients.

Theorem 5.2. Let B = (b1, . . . , bN ) be a singleton board where N = |B|+ 1, and suppose
n(ζm(B)) = (n0, n1, . . .). Then the number of singleton boards which are m-level rook
equivalent to B is

∏
i�0

(
nim + nim+1 + · · · + nim+m − 1
nim − 1, nim+1, nim+2, . . . , nim+m

)
.
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Proof. By the choice of N we have that ζ = ζm(B) begins with a zero and has all entries
nonnegative. So it suffices to compute the number of rearrangements of ζ beginning
with 0 and satisfying conditions (i) and (ii) of Proposition 4.4. Let d be the maximum
entry of ζ. If d = 0 then the result is easy to verify, so assume d > 0. Let cm be the
largest nonnegative multiple of m with cm < d. Note that cm exists since d > 0 and also
that, by the argument given in the proof of Theorem 4.5, ncm > 0.

Consider the vector ζ ′ = (a′1, . . . , a′n) obtained from ζ by removing all entries which
are larger than cm. We claim that ζ ′ = ζm(B′) for some singleton board B′. As usual, we
use Proposition 4.4. Certainly a′1 = a1 = 0 since none of the zeros were removed from ζ.
Suppose, towards a contradiction, that condition (i) is false in that a′j+1 > a′j + m for
some j. Let ai be the element of ζ corresponding to a′j . But since we removed the largest
elements of ζ we have

ai+1 � a′j+1 > a′j + m = ai + m

which is impossible. A similar contradiction demonstrates (ii), and our claim is proved.
Now, by induction, it suffices to show that the number of rearrangements of ζ which

come from a given ζ ′ by inserting elements larger than cm is(
ncm + ncm+1 + · · · + ncm+m − 1

ncm − 1, ncm+1, ncm+2, . . . , ncm+m

)
.

Consider elements aj , aj+1 in ζ. First note that if aj comes from ζ ′ and aj+1 > cm then
we must have aj = cm. If this were not the case then, since aj < cm < aj+1, to make
condition (i) true neither aj nor aj+1 would be multiplies of m. But by the same pair
of inequalities we would have �aj+1�m � cm > �aj�m which contradicts condition (ii).
Thus we can insert elements greater than cm only after copies of cm itself. In addition,
any aj+1 with cm < aj+1 � cm + m can come after aj = cm as it is easily verified that
we always have conditions (i) and, vacuously, (ii) for such aj+1.

We also claim that the elements larger than cm can be arranged in any order with
respect to each other. To see this, suppose cm < aj , aj+1 � cm + m. Condition (i) is
immediate because of the given bounds. And if neither is a multiple of m then we have
cm < aj , aj+1 < cm + m which implies condition (ii).

Finally, if aj > cm and aj+1 comes from ζ ′ then aj+1 < aj and conditions (i) and (ii)
are trivial. So an element greater than cm can be followed by any element of ζ ′.

We now enumerate the number of ζ coming from ζ ′ using the structural properties
from the previous three paragraphs. There are ncm copies of cm and ncm+1 + ncm+2 +
· · ·+ ncm+m elements to be inserted after these copies where the space after a copy can
be used multiple times. And any element of ζ ′ can follow the inserted elements. So the
total number of choices for this step is the binomial coefficient(

ncm + ncm+1 + · · · + ncm+m − 1
ncm+1 + ncm+2 + · · · + ncm+m

)
.
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Fig. 8. A file placement.

Now we need to arrange the elements greater than cm among themselves. This can be
done arbitrarily, so the number of choices is(

ncm+1 + ncm+2 + · · · + ncm+m

ncm+1, ncm+2, . . . , ncm+m

)
.

Multiplying the two displayed expressions and canceling (ncm+1 +ncm+2 + · · ·+ncm+m)!
gives the desired result. �

Note that the result just proved does indeed generalize Theorem 5.1. This is because
when m = 1, every board is a singleton board. And the products clearly coincide in this
case.

6. File placements

Thus far our focus has been to keep the sum side of Theorem 1.2 the same and modify
the product side to get equality for all Ferrers boards. Another possibility would be to
keep the product side the same, expand it in the m-falling factorial basis, and see if the
coefficients of the linear combination count anything. This will be our approach in the
current section. An equivalent formula in the case where m = 2, albeit in a different rook
model, can be found in a paper of Haglund and Remmel [5, Theorem 8].

It turns out that these coefficients count weighted file placements. A file placement
on a board B is F ⊆ B such that no two rooks (elements) of F are in the same column.
However, we permit rooks to be in the same row. Fig. 8 displays such a placement on
the Ferrers board (2, 2, 3, 3, 3, 3).

We let

fk(B) = the number of file placements F ⊆ B with k rooks.

It is easy to count such placements. If B has bj squares in column j for 1 � j � n

(B need not be a Ferrers board) then fk(B) = ek(b1, . . . , bn) where ek is the kth elemen-
tary symmetric function. So in order to get more interesting results, we will weight file
placements.

Fix, as usual, a positive integer m. Given a board B and a file placement F ⊆ B, let
t be the largest index of a row in B and consider y1, . . . , yt where yi is the number of
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rooks of F in row i. Define the m-weight of F to be

wtm F = 1↓y1,m1↓y2,m . . . 1↓yt,m.

In the example of Fig. 8 with m = 3 we have

wtm F = 1↓3,3 · 1↓0,3 · 1↓2,3 = (1)(−2)(−5) · (1) · (1)(−2) = −20.

Note that if F is actually a rook placement then wtm F = 1 because 1↓0,m = 1↓1,m = 1
for any m.

Given a board, B, we define the associated m-weighted file placement numbers to be

fk,m(B) =
∑
F

wtm F

where the sum is over all file placements F ⊆ B with k rooks. These are the coefficients
which we seek.

Theorem 6.1 (m-Weight Factorization Theorem). For any Ferrers board B = (b1, . . . , bn)

n∑
k=0

fk,m(B)x↓n−k,m =
n∏

j=1

(
x + bj − (j − 1)m

)
. (8)

Proof. In the manner to which we have become accustomed, we consider the board Bx

obtained by attaching an x×n rectangle R to B where x is a nonnegative multiple of m.
Consider mixed placements F ⊆ Bx which are file placements when restricted to B, but
satisfy the m-level condition when restricted to R. We will compute S =

∑
F wtm F

where the sum is over the mixed placements F on Bx with n rooks.
We first recover the sum side of Eq. (8). The mixed placements with k rooks on B

will contribute fk,m(B) to S from these rooks. And x↓n−k,m will be the contribution
from the n− k rooks on R since any rook placement has m-weight equal to one as noted
previously. So

fk,m(B)x↓n−k,m =
∑
Fk

wtm F k (9)

where the sum is over all mixed placements F k ⊆ Bx having k rooks in B. Now summing
over k gives us the desired equality.

To obtain the product, let B′ and B′
x be B and Bx with their nth columns removed,

respectively. By induction on n, it suffices to prove that

n∑
k=0

fk,m(B)x↓n−k,m =
(
x + bn − (n− 1)m

) n−1∑
k=0

fk,m
(
B′)x↓n−k−1,m. (10)
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Comparing Eqs. (9) and (10), we see it suffices to show that, for any mixed placement
F ′ ⊆ B′

x,

(
x + bn − (n− 1)m

)
wtm F ′ =

∑
F

wtm F (11)

where the sum is over all mixed placements F ⊆ Bx whose restriction to B′
x is F ′. To

this end, let y0 be the number of rooks in F ′ which are in R. Also let yi, 1 � i � bn, be
the number of rooks in the ith row of F ′ ∩B′. Since every column of F ′ has a rook, we
have

y0 + y1 + · · · + ybn = n− 1. (12)

We now consider two cases depending on whether the rook in column n of F lies in
B or in R. If it lies in R then, by the m-level condition, there are x − y0m places for
the rook. Since these placements are in rows not occupied by rooks of F ′, each of them
contributes a factor of 1 to the weight for a total change in weight of x− y0m from this
case. Now suppose that the rook lies in B, say in the ith row. Then in passing from
F ′ to F , the weight is changed from 1↓yi,m to 1↓yi+1,m. This means that the weight
is multiplied by 1 − yim when placing a rook in row i of B. Adding together all the
contributions and using Eq. (12) gives

x− y0m +
bn∑
i=1

(1 − yim) = x + bn − (n− 1)m.

This completes the proof of Eq. (11) and of the theorem. �
We note that Theorem 6.1 is another generalization of the Factorization Theorem.

Indeed, when m = 1, then any file placement having a row with y � 2 rooks will
have a factor of 1↓y,1 = 0. And any rook placement will have a weight of 1. Thus
fk,1(B) = rk,1(B).

7. Weight equivalence classes

Given m, define two boards B,B′ to be m-weight file equivalent, written B ≈m B′,
if fk,m(B) = fk,m(B′) for all k � 0. Our goal in this section is to find distinguished
representatives for the m-weight file equivalence classes. Interestingly, our result will
be dual to the one for m-level rook equivalence in the sense that the inequalities will
be reversed. In order to define the representatives, we will have to assume that all our
boards start with at least one zero. So for this section we will write our Ferrers boards
in the form B = (b0, b1, . . . , bn) where b0 = 0.
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We can use Theorem 6.1 to test m-weight file equivalence. The m-weight root vector
of a Ferrers board B = (b0, b1, . . . , bn) is

ωm(B) = (−b0,m− b1, 2m− b2, . . . , nm− bn).

From the m-weight Factorization Theorem we immediately get the following.

Proposition 7.1. Ferrers boards B and B′ having the same number of columns satisfy
B ≈m B′ if and only if ωm(B) is a rearrangement of ωm(B′). �

We will also need a characterization of the vectors which can be m-weight root vectors.
The proof of the next result is similar to that of Proposition 4.4 and so is omitted.

Proposition 7.2. Consider a vector ω = (a0, a1, . . . , an). Let B = (b0, b1, . . . , bn) where
we define bj = jm − aj for all j. We have that ω = ωm(B) where B is a Ferrers board
if and only if the following conditions are satisfied:

(i) a0 = 0, and
(ii) aj+1 � aj + m for j � 0. �

Now define a Ferrers board B = (b0, b1, . . . , bn) to be m-restricted if bj+1 � bj + m

for all j � 0. We now show that the m-weight file equivalence class of any Ferrers board
contains a unique m-restricted board. An example of the construction of this board
follows the proof.

Theorem 7.3. Every Ferrers board B = (b0, . . . , bn) is m-weight file equivalent to a unique
m-restricted board.

Proof. Similarly to the proof of Theorem 4.5, we rewrite B = (b0, . . . , bN ) where N = |B|.
This assures us that any equivalent board B′ = (b′0, . . . , b′N ) has ωm(B′) which is non-
negative and starts with zero. Also, using Eq. (7), we see that B′ is m-restricted if and
only if ω(B′) is weakly increasing. So consider ω′ = (a′0, . . . , a′N ) which is the unique
weakly increasing rearrangement of ω = ωm(B) = (a0, . . . , aN ). It suffices to show that
ω′ = ωm(B′) for some board B′. So we just need to check the two conditions of Proposi-
tion 7.2. Condition (i) follows from the choice of N and the fact that ω is nonnegative.
For condition (ii), assume, towards a contradiction, that there is an index i such that
a′i+1 > a′i + m. Let aj be the element of ω which was rearranged to become a′i+1. Then
aj = a′i+1 > 0 and so there must be an element ak with k < j and ak < aj . Let k be
the largest such index. By the choice of k and the fact that ω satisfies (ii), we must have
ak � aj −m. Thus

a′i < a′i+1 −m = aj −m � ak < aj = a′i+1.
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But then when rearranging ω in weakly increasing order, ak should have been placed
between a′i and a′i+1, a contradiction. �

By way of illustration, suppose that we take m = 2 and B = (1, 5). This gives
N = |B| = 6 and ω = ω2(B) = (0, 2, 4, 6, 8, 10, 12)− (0, 0, 0, 0, 0, 1, 5) = (0, 2, 4, 6, 8, 9, 7).
The weakly increasing rearrangement of ω is ω′ = (0, 2, 4, 6, 7, 8, 9) and so B′ =
(0, 2, 4, 6, 8, 10, 12) − (0, 2, 4, 6, 7, 8, 9) = (0, 0, 0, 0, 1, 2, 3).

There is a close relationship between the m-increasing boards introduced in Sec-
tion 4 and m-restricted boards. This is easy to see if m = 1. In this case, board B is
1-increasing if and only if its transpose Bt (obtained by interchanging rows and columns)
is 1-restricted. Indeed, a Ferrers board is 1-increasing if and only if the northwestern
boundary of B contains no horizontal line segment of length at least 2. And a board
is 1-restricted if and only if this boundary contains no vertical line segment of length
at least 2. Note also that when m = 1, the l-operator of Section 4 satisfies l(B) = Bt.
In generalizing these ideas to all m, it is the l-operator which is key as the next result
shows.

Proposition 7.4. The l-operator has the following properties.

(i) If B is m-restricted then l(B) is m-increasing.
(ii) If B is m-increasing then l(B) is m-restricted.
(iii) If B is a singleton board then l2(B) = B, so l is an involution on singleton boards.

Proof. (i) Let B = (b1, . . . , bn) be m-restricted and l(B) = (lt, . . . , l1). Keeping in mind
that the subscripts in l(B) are decreasing, we wish to show that li � li+1 + m. Let Bj

be the set of cells in column j and let cj = |Bj ∩Qi| and dj = |Bj ∩Qi+1| for all j. Now
li − li+1 =

∑
j(cj − dj) and cj − dj � 0 for all j. Since B is m-restricted, there is an

index k such that Bk has its highest cell in Qi. Let k be the largest such index. Using
the fact that B is m-restricted again forces Bk+1 to have its highest cell in Qi+1. Thus,
using the m-restricted condition a third time,

li − li+1 � (ck − dk) + (ck+1 − dk+1) =
(
bk − (i− 1)m

)
− 0 + m− (bk+1 − im)

= bk − bk+1 + 2m � m

which is what we wished to prove
(ii) This is similar to (i), finding an upper bound for li − li+1 using the fact that, for

an m-increasing board, there is at most one Bk with its highest square in Qi for each i.
Details are left to the reader.

(iii) Induct on |B|. Given B, let B′ be the board obtained by removing its first level.
Since B is singleton so is B′ and thus, by induction, l2(B′) = B′. If l(B) = (lt, . . . , l1)
then the definition of the l-operator shows that l(B′) = (lt, . . . , l2) and l1 = |B ∩ Q1|.
Applying l to l(B) we see that the column for l1 in l(B) adds m to every column
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of l2(B′). Hence every column of l2(B) which contains cells in Qi for i � 2 agrees with
the corresponding column in B. Also, again by definition of l, those columns of l2(B)
which lie wholly in Q1 are obtained from the column for l1 in l(B) by breaking it into
columns of length m and a column of length ρm(l1). Since this is also the unique way to
complete l2(B) so that it is a singleton board, it must be that l2(B) = B as desired. �

We now return to considering m-level rook equivalence classes as in Section 4. Using
the proposition just proved, we obtain a second distinguished representative in each
m-level rook equivalence class.

Corollary 7.5. Every Ferrers board is m-level rook equivalent to a unique m-restricted
singleton board.

Proof. By Theorem 4.5, we know that each class has a representative B which is
m-increasing and so also a singleton board. Applying the previous proposition and
Lemma 4.3, we see that l(B) is an m-restricted singleton board in the class. If there
is a second such board B′ �= l(B) then, by Proposition 7.4 again, l(B′) and l2(B) = B

will be distinct m-increasing singleton boards in the class, contradicting the uniqueness
part of Theorem 4.5. �
8. Weight equivalence class sizes

8.1. Enumeration

In this subsection we will generalize Theorem 5.1 to m-weight equivalence classes. We
will give two proofs of our result: one from first principles using ideas similar to those
in the proof of Theorem 5.2 and one using a connection with the theory of q, t-Catalan
numbers.

Theorem 8.1. Let B = (b0, . . . , bN ) be a Ferrers board where N = |B|, and suppose
n(ωm(B)) = (n0, n1, . . .). The number of Ferrers boards in the m-weight equivalence
class of B is

∏
i�1

(
ni + ni−1 + · · · + ni−m − 1

ni

)
.

Proof. We use Proposition 7.1 and count the number of rearrangements of ω = ω(B)
which correspond to a Ferrers board. Let d be the maximum value of an entry of ω.
Our assumptions imply that d is nonnegative and all entries of ω are between 0 and d

inclusive. Consider ω′ which is obtained from ωm(B) by removing all values equal to d.
Using Proposition 7.2, it is easy to see that ω′ = ωm(B′) for some Ferrers board B′. By
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induction, it suffices to show that the number of rearrangements of ω which come from
a given ω′ is (

nd + nd−1 + · · · + nd−m − 1
nd

)
. (13)

By condition (ii) in the proposition just cited, we can insert d after any element of ω′

which is at least d−m. So the number of places for insertion is nd−m + · · ·+nd−1. Since
we need to insert nd copies of d and more than one copy can go in a given place, the
number of choices is given by (13). �

For our second proof of Theorem 8.1, we will need some background on q, t-Catalan
numbers. These polynomials are important in combinatorics and in the study of diagonal
harmonics. See Haglund’s book [6] for more information in this regard. Catalan numbers
are intimately connected with lattice paths. An NE lattice path p is a walk on the
integer lattice Z2 starting at (0, 0) and using unit steps north (parallel to the y-axis) and
east (parallel to the x-axis). We write p = s1, s2, . . . , sn where each si = N or E. The
(ordinary) Catalan numbers can be defined by

Cn = the number of lattice paths ending at (n, n) which stay weakly below
the line y = x.

We will be concerned with q, t-analogues of the m-Catalan numbers, also called higher
Catalan numbers,

Cn,m = the number of lattice paths ending at (n, nm) which stay weakly below
the line y = mx.

To describe the statistics we will be using as powers of q and t, we will express these
concepts in terms of Ferrers boards. We warn the reader that the conventions of people
working with the Cn,m(q, t) differ from the ones in this paper. But their diagrams can
be obtained from ours by reflecting in the line y = x. Consider the m-triangular board

Δn,m =
(
0,m, 2m, . . . , (n− 1)m

)
.

To make the connection with lattice paths, we make the convention that the right-
hand border of Δn,m, as well as any other Ferrers board B with n columns, extends
up to the point (n, nm). We call the NE lattice path from (0, 0) to (n, nm) con-
sisting of the northwest-most points in B the boundary of B. So any NE lattice
path to (n,mn) and staying below y = mx must lie weakly southeast of the bound-
ary of Δn,m. The diagram on the left in Fig. 9 shows Δ4,2 with its boundary path
p = E,N,N,E,N,N,E,N,N,E,N,N thickened.
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Fig. 9. Δ4,2 and (0, 0, 3, 4) and its 2-bounce path.

Now if B = (b0, . . . , bn−1) we write B ⊆ Δn,m and say that B is contained in Δn,m

whenever bj � jm for 0 � j < n. We will be interested in

Bn,m = the set of Ferrers boards B such that B ⊆ Δn,m.

In the central diagram of Fig. 9 the white squares show B = (0, 0, 3, 4) inside Δ4,2 and
the boundary of B is thickened. Note that there is a bijection between Bn,m and the
lattice paths counted by Cn,m which is given by taking the boundary of the board. Note
also that if B = (b0, . . . , bn−1) ⊆ Δn,m then the jth coordinate of ωm(B), jm − bj , is
exactly the number of squares in the jth column of the set difference Δn,m \ B. Here,
and for the rest of this section, we will always start indexing columns at j = 0 and b0 = 0
for any board B. In Fig. 9, ω2(B) = (0, 2, 1, 2) and the squares counted by this vector
are shaded.

Our first definition of Cn,m(q, t) will be in terms of the m-area and m-diagonal inver-
sion statistics on boards. If B ⊂ Q is any board then we define its m-area to be

aream(B) = |B|.

In particular, if B ⊆ Δn,m and ωm(B) = (z0, . . . , zn−1) then

aream(Δn,m \B) = z0 + · · · + zn−1.

To motivate the second statistic, if π = a1 . . . an is any sequence of real numbers then we
can define its inversion number in the same way as was done for permutations, namely

inv π =
∣∣{i < j: ai − aj > 0}

∣∣.
The m-diagonal inversion number of π is defined by
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dinvm π =
m−1∑
k=0

∣∣{i < j: 0 � ai − aj + k � m}
∣∣. (14)

Note that, unlike other quantities we have defined, the 1-diagonal inversion number does
not coincide with the inversion number, although they are clearly related. We extend
this definition to boards by setting

dinvm B = dinvm

(
ωm(B)

)
.

With these statistics, we can define the higher q, t-Catalan numbers by

Cn,m(q, t) =
∑

B∈Bn,m

qdinvm Btaream(Δn,m\B). (15)

The second definition of Cn,m(q, t) which we will use involves the m-bounce statistic
for boards B ⊆ Δn,m, so-called because it can be thought of as the path of a ball bouncing
off of the boundary of B. To define this statistic, we must first define the m-bounce path
p for B as follows. Start p from (0, 0) and take horizontal steps stopping just short of the
first lattice point interior to B. (Interior means strictly southeast of B’s boundary.) Let
h0 denote the number of steps taken. In the right-hand diagram of Fig. 9, the 2-bounce
path is shown in circles and h0 = 2. Now take v0 = h0 vertical steps. At the ith stage
of this procedure, one starts from the current end of p and moves horizontally hi steps,
stopping just short of the first lattice point interior to B. This is followed by vi vertical
steps where

vi = hi + hi−1 + · · · + hi−m+1

with the convention that hj = 0 if j < 0. In Fig. 9 we mark the end of each vertical
segment by a solid circle to make it clearer when there are horizontal segments of length
zero. One can prove that eventually this path will reach (n, nm) where it terminates.
The complete sequence in Fig. 9 is

h0 = 2, v0 = 2, h1 = 0, v1 = 0 + 2 = 2,

h2 = 2, v2 = 2 + 0 = 2, h3 = 0, v3 = 0 + 2 = 2.

Using this information, the m-bounce statistic of B ∈ Bn,m is

bouncem B =
∑
i�0

ihi.

So, returning to our example,

bounce2(0, 0, 3, 4) = 0 · 2 + 1 · 0 + 2 · 2 + 3 · 0 = 4.
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Fig. 10. Constructing Φ(0, 0, 3, 4) when m = 2.

Using this statistic, we can define

Cn,m(q, t) =
∑

B∈Bn,m

qaream(Δn,m\B)tbouncem B . (16)

To show that (15) and (16) define the same polynomials, we will use a bijection
Φ : Bn,m → Bn,m introduced by Loehr [8]. Given B ∈ Bn,m, let n(ωm(B)) = (n0, n1, . . .).
To define B′ = Φ(B), we will first define the bounce path p of B′. Starting with Δn,m,
draw the unique bounce path p which has hi = ni for all i. It can be proved that such a
path exists. To illustrate, if ω = ω2(0, 0, 3, 4) = (0, 2, 1, 2) then n(ω) = (1, 1, 2, 0). So we
would construct the bounce path with

h0 = 1, v0 = 1, h1 = 1, v1 = 1 + 1 = 2,

h2 = 2, v2 = 2 + 1 = 3, h3 = 0, v3 = 0 + 2 = 2.

This path is illustrated in Fig. 10. Note that since hi = ni for all i we will have

bouncem B′ =
∑
i�0

ihi =
∑
i�0

ini = aream(Δn,m \B)

once B′ = Φ(B) is defined. Thus Φ will send the aream statistic to the bouncem statistic
as desired to show the equality of the two definitions.

To obtain B′, we need one more concept. Let Hi be the set of steps counted by hi

and similarly for Vi. It is convenient to let V−1 and Hs+1 (where Vs is the last vertical
segment) consist of the vertices (0, 0) and (n, nm), respectively. For i � 0, define the ith
bounce rectangle Ri of the bounce path p to be the lattice rectangle whose southwest
and northeast vertices are the first lattice point on Vi−1 and the last lattice point on
Hi, respectively. Note that if either of these sets of steps are empty, then the rectangle
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degenerates to a line. On the left in Fig. 10 the rectangles are R0 which is the line
segment from (0, 0) to (1, 0), R1 which is a single square (shaded), R2 which is a 2 × 2
rectangle (shaded), R3 which is the line segment from (4, 3) to (4, 6), and R4 which is
the line segment from (4, 6) to (4, 8). Now B′ will have bounce path p if and only if the
boundary of B′ travels from the southwest corner to the northeast corner of each Ri and
coincides with the lowest step of Vi−1 on p. (If Vi−1 = ∅ then Ri is a line segment and the
bounce path just travels along it.) To determine the part of the boundary of B′ in Ri,
read the subword ωi of ω consisting of the symbols i, i− 1, . . . , i−m from left to right,
replacing each i by an E step and any of the other symbols by N steps. Continuing our
example with ω = (0, 2, 1, 2), we have

ω0 = (0), ω1 = (0, 1), ω2 = (0, 2, 1, 2), ω3 = (2, 1, 2), ω4 = (2, 2)

which translate to

(E), (N,E), (N,E,N,E), (N,N,N), (N,N,N).

The resulting path is displayed on the right in Fig. 10 using thickened lines and la-
beled with the symbols from each ωi. The final result is the board B′ = (0, 1, 2, 3) =
Φ(0, 0, 3, 4). One can prove the following result.

Theorem 8.2. (See [8].) The map Φ : Bn,m → Bn,m is a bijection such that, if Φ(B) = B′,

aream(Δn,m \B) = bouncem B′ and dinvm B = aream
(
Δn,m \B′). �

We now have everything in place to give the second proof of Theorem 8.1.

Proof of Theorem 8.1. Consider ΔN+1,m where the first subscript has been chosen so
that the whole m-weight equivalence class [B]m of B is contained in BN+1,m. By Propo-
sition 7.1, we know that |[B]m| is the number of rearrangements of ω = ωm(B) which
give rise to a Ferrers board. Note that rearranging ω does not change the vector n(ω).
So by the previous discussion, as ω ranges over these rearrangements, Φ(B) ranges over
all B′ ∈ BN+1,m whose bounce path has horizontal components hi = ni for all i.

Now we can count all possible B′, rectangle by rectangle. In Ri, the boundary of B′

must start with the first vertical step of Vi−1 and then travel to the last vertex of Hi. To
do this, it takes hi horizontal steps and vi−1 − 1 = hi−1 + · · · + hi−m − 1 vertical steps.
Remembering that hi = ni for all i, we see that the number of possible boundary paths
in Ri is (

hi + vi−1 − 1
hi

)
=
(
ni + ni−1 + · · · + ni−m − 1

ni

)
.

Taking the product over i gives the final result. �
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8.2. Bounding boards

Let B = (b1, . . . , bn) be a Ferrers board with b1 > 0. We say that ΔN,m is a bounding
board for B, or that B fits in ΔN,m if B′ ⊆ ΔN,m where B′ is B padded with zeros
until it has N columns. Usually we have been taking N = |B|+1 so that all members of
B’s m-weight equivalence class will also fit in ΔN,m. However, we can strengthen some
of these results and make computations with examples easier if we relax this restriction
on N . For this, we need the following lemma.

Lemma 8.3. If B fits in ΔN,m for some N and B′ ≈m B then B′ fits in ΔN,m.

Proof. It clearly suffices to prove this where N is the smallest value such that ΔN,m is a
bounding board for B. To find this value, we know that B fits in Δ = Δ|B|+1,m. So pad
B with zeros to get B = (b0, . . . , b|B|) and let ω = ωm(B) = (a0, . . . , a|B|). Let c be the
largest value such that b0 = · · · = bc = 0 and define the initial and final parts of ω to
be ωI = (a0, . . . , ac) and ωF = (ac+1, . . . , a|B|), respectively. By definition of c, we have
ωI = (0,m, . . . , cm) and

ac+1 < (c + 1)m. (17)

From the geometry of the situation we see that the smallest value of N is determined by
the minimum element in ωF and is, given that every change in N results in an m-fold
change in height,

N = |B| + 1 − �a/m�1

where a is a minimum element in ωF .
To complete the proof, we must show that if we make the same computations for B′,

then we will get the same minimum value of N . From the previous paragraph we see
it suffices to show that ωF and ω′

F have the same minimum value. There is no loss
of generality in assuming c � c′ which implies, since ω′ is a rearrangement of ω, that
ωI ⊆ ω′

I and ωF ⊇ ω′
F as sets. Thus a � a′ where a = minωF and a′ = minω′

F . Now
suppose, towards a contradiction, that a < a′. Since a /∈ ω′

F we must have a ∈ ω′
I and

so a = im for some i. If i � c then a appears in both ωI and ωF . And since a = im

appears only once in ω′
I , it must also appear in ω′

F which contradicts the fact that the
a′ = minω′

F . If i > c then a = im � (c + 1)m. But then, by Eq. (17), ac+1 < a which
contradicts the fact that a = minωF . So in either case we have a contradiction and are
done with the proof of the lemma. �

From now on we make the convention that if we say that B fits in ΔN,m and then
compute ωB(B) we are using the version of B with N columns. Even though the previous
lemma makes it possible to choose different values of N , it is important to be consistent
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and keep the same value during a given argument. We illustrate the use of the lemma
with the following result. An example follows the proof.

Proposition 8.4. The set Bn,m of boards fitting in Δn,m is a union of m-weight equivalence
classes. The number of such classes is (m + 1)n−1.

Proof. The first statement follows immediately from Lemma 8.3. For the second, apply-
ing Φ as in the second proof of Theorem 8.1, we see that this amounts to counting all
possible bounce paths p of boards in Bn,m. Note that such a p is completely determined
by the composition h = (h0, h1, . . . , hs) of n where hs is the last positive hi. (Any hi = 0
for i > s do not affect the path since it will have reached the line x = n and so must go
vertically up to (n,mn) no matter how many more zero components there are.) We also
have h0 > 0 since Δn,m starts with a column of zero height, forcing p to initially move
at least one unit horizontally. Another fact about h is that it can contain at most m− 1
consecutive parts equal to zero. (See [8] for a proof.) These are the only restrictions on
h and every h satisfying them comes from a bounce path.

We count the desired compositions using the usual “slashes and dashes” method. Con-
sider a string of n ones which determine n−1 spaces in between each pair of consecutive
ones. In each space we put one of the following: nothing, a plus sign, or up to m − 1
zeros. This will give a composition by adding together the ones with plus signs in be-
tween and considering them and the inserted zeros as the parts of the composition. So
in each of the n− 1 spaces we have m+ 1 choices of what to insert, giving a total count
of (m + 1)n−1. �

To illustrate the proof, consider the case when m = 3, n = 8, and h = (2, 3, 0, 2, 0, 0, 1).
This h would be obtained from a string of 8 ones by inserting elements to form

1 + 1 1 + 1 + 1 0 1 + 1 0 0 1.

8.3. A q-analogue

We next present a q-analogue of Theorem 8.1. For its statement, we need the
q-binomial coefficients defined by[

n

k

]
q

= [n]q!
[k]q![n− k]q!

where [n]q! is the result of setting p = 1 in [n]p,q!.

Theorem 8.5. Let B0 be a Ferrers board fitting inside ΔN,m and let n(ωm(B0)) =
(n0, n1, . . .). We have

∑
B≈mB0

qdinvm B = qc(n0,n1,...)
∏
i�1

[
ni + ni−1 + · · · + ni−m − 1

ni

]
q

,
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where

c(n0, n1, . . .) = m
∑
i�0

(
ni

2

)
+
∑
i�1

ni

m∑
j=1

(m− j)ni−j .

Here we are assuming that nk = 0 if k < 0.

Proof. Using Theorem 8.2 and arguing as in the first paragraph of the second proof of
Theorem 8.1, we see that the summation side of the identity in the theorem is

∑
B′

qaream(ΔN,m\B′)

where the sum is over all B′ that have the bounce path p with hi = ni for all i. Let
a be the number of squares between p and ΔN,m and a(B′) be the number of squares
between B′ and p so that aream(ΔN,m \B′) = a + a(B′). The theorem will follow from
the following two claims.

First, we claim that

qa = qc(n0,n1,...).

It suffices to show that the number of squares below ΔN+1,m which are above the hori-
zontal steps of p corresponding to ni is m

(
ni

2
)
+ni

∑m
j=1(m− j)ni−j . This area is broken

into a triangular region above the line y = m(ni−1 + · · ·+n0)x and a rectangular region
below. Easy calculations now show that m

(
ni

2
)

is the number of cells in the triangu-
lar portion while ni

∑m
j=1(m− j)ni−j gives the analogous count for the rectangle. This

proves the first claim.
The second claim is that

∑
B′

qa(B′) =
[
ni + ni−1 + · · · + ni−m − 1

ni

]
.

For this it suffices to show that the ith factor is the generating function for the possible
areas in the ith rectangle, Ri. Recall that the boundary of B′ in this rectangle starts
with a vertical step and then ranges over all lattice paths with ni horizontal steps and
ni−1 + ni−2 + · · · + ni−m − 1 vertical steps. It is well known that this count is given by
the q-binomial coefficient above. So we are done with the second claim and the proof of
the theorem. �

Since the q-binomial coefficients have leading and constant coefficients equal to one,
we immediately get two distinguished representatives of an m-weight equivalence class
from the previous theorem.
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Corollary 8.6. Every m-weight equivalence class contains unique boards B1 and B2 such
that

dinvm B1 � dinvm B � dinvm B2

for all boards B in the equivalence class.

Note that, from the proof of Theorem 8.5, B1 and B2 are uniquely defined by the fact
that B′

1 = Φ(B1) and B′
2 = Φ(B2) are the most northwest and most southeast possible

boards with the fixed bounce path p for their equivalence class. So the boundary of B′
1

coincides with p. And the boundary of B′
2 coincides with the southern most step on each

vertical portion of p and then proceeds to the next such step by taking a sequence of
horizontal steps followed by a sequence of vertical steps.

There is a simpler way to compute B1 and B2 which we now describe. Suppose B

is a board in the m-weight equivalence class in question and suppose that ΔN,m is
any bounding board for B. Let ω = ωm(B) and let ω̂ be the unique weakly increasing
rearrangement of ω. In other words, ω̂ is the rearrangement considered in the proof
of Theorem 7.3. In that demonstration we proved that ω̂ = ω(B1) for some Ferrers
board B1. Continuing our running example with B = (0, 0, 3, 4) we have ω = ω2(B) =
(0, 2, 1, 2) and so ω̂ = (0, 1, 2, 2). This corresponds to the board B1 = (0, 1, 2, 4). The
reader can now verify that Φ(B1) = (0, 1, 3, 3) whose boundary coincides with the bounce
path of Φ(B). In general, it is easy to see from the definition of Φ that this last statement
holds for any B and so B1 = B1.

We now want to indicate another construction of B1 which will more closely parallel
the construction of the board B2 which will equal B2. Let n = n(ω) = (n0, n1, . . . , nt).
We will construct a sequence of vectors ω̂0, . . . , ω̂t as follows. Let ω̂0 consist of n0 zeros.
Once ω̂i−1 has been created, we obtain ω̂i by inserting ni copies of i in the position as
far to the right in ω̂i−1 such that ω̂i still satisfies the conditions of Proposition 7.2 and so
corresponds to a board. It is easy to see by induction on i that this amounts to putting
the i’s at the end of ω̂i−1 and so ω̂t = ω̂ as defined in the previous paragraph. In the
running example

ω̂0 = (0), ω̂1 = (0, 1), ω̂2 = (0, 1, 2, 2) = ω̂.

Now to construct B2, we build a sequence ω̌0, . . . , ω̌t where ω̌0 = ω̂0 and ω̌i is obtained
from ω̌i−1 by inserting the ni copies of i as far to the left as possible so that ω̌i still
satisfies Proposition 7.2. Finally, we let B2 be the board with ωm(B2) = ω̌t. Using our
example once more, we have

ω̌0 = (0), ω̌1 = (0, 1), ω̌2 = (0, 2, 2, 1)
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so that B2 = (0, 0, 2, 5). Again, the reader can verify that Φ(B2) = (0, 1, 2, 2) whose
boundary is the most southeastern having the same bounce path as Φ(B) both in this
example and in general.

We will now use the descriptions of B1 and B2 to give a second proof of Corollary 8.6
without using the map Φ.

Proof of Corollary 8.6. We show that dinvm B1 in the unique minimum in the m-weight
equivalence class of B. The proof for B2 is similar. It suffices to show that ω̂ as defined
above has dinvm ω̂ as a unique minimum among all rearrangements of ω. Let π = a1 . . . an
be any sequence of real numbers with ai > ai+1 and let π be π with ai and ai+1 inter-
changed. We will show that dinvm π � dinvm π, and that under certain circumstances
dinvm π < dinvm π. Finally we will demonstrate that we can use adjacent transpositions
to transform any rearrangement of ω into ω̂ while weakly decreasing dinvm at each step
and strictly decreasing the statistic during at least one step. Note that it does not mat-
ter whether the intermediate rearrangements of ω correspond to Ferrers boards since we
only need to prove the inequalities for dinvm.

By considering the contribution of each pair ai, aj in π, one can rewrite the definition
of dinvm π in Eq. (14) as

dinvm π =
∑
i<j

fm(ai − aj)

where

fm(d) =

⎧⎨⎩
m− d + 1 if 0 < d � m,

m + d if −m � d � 0,
0 otherwise.

Considering the π and π defined above, we see that all terms of dinvm π − dinvm π

cancel except for those corresponding to the given value of i and j = i + 1. Letting
d = ai − ai+1 > 0 we see that if d > m then dinvm π − dinvm π = 0, and if 0 < d � m

then

dinvm π − dinvm π = fm(d) − fm(−d) = (m− d + 1) −
(
m + (−d)

)
= 1.

So in either case dinvm π � dinvm π, and if 0 < d � m then dinvm π < dinvm π.
Now given any rearrangement ω′ of ω, we can transform ω′ into ω̂ by eliminating ad-
jacent inversions at each step and thus always weakly decreasing dinvm. Furthermore,
by condition (ii) of Proposition 7.2, the last step will strictly decrease dinvm because ω̂

corresponds to a Ferrers board. This completes the proof. �
As a final remark about this section, the reader will have noticed that we gave two

proofs of Theorem 8.1, one from first principles and one using the q, t-Catalan machinery.
However, we only presented a proof of the latter type for its q-analogue, Theorem 8.5.
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This is because a demonstration of the former type already exists in the literature, see
the proof of Eq. (13) in [8] and set t = 1.

9. Open questions

9.1. Counting m-level equivalence classes

One would like to use Theorem 2.1 to obtain a formula for the size of any m-level
equivalence class. But the extra term in the factor for columns at the end of their zone
may make this difficult to do. Perhaps one could at least find a formula by putting some
extra condition on the remainder of the zones of the board such as we have done by
imposing the singleton restriction.

9.2. A weighted p, q-analogue

It would be very interesting to find a p, q-analogue of the m-weight Factorization
Theorem, Theorem 6.1. The main stumbling block seems to be finding the correct way
to translate Eq. (12) which is necessary since the final result cannot depend on the values
of the yi. In particular, one would need a way of writing [n− 1] as a linear combination
of the [yi] where the coefficient of [yi] did not depend on the other [yj ]. It is not clear
how to do this.

9.3. p, q-Hit and q-hit numbers for Ferrers boards

Given a board B contained in the n×n board, the k-th hit number of B with respect
to n, hk,n(B), is defined be the number of permutations σ ∈ Sn such that the rook
placement corresponding to σ has exactly k rooks in B. A classical result of Riordan and
Kaplansky [7] gives a simple relationship between the hit numbers and the rook numbers
of B, namely,

n∑
k=0

hk,n(B)xk =
n∑

k=0
rk(B)(n− k)!(x− 1)k.

There is a natural analogue of the hit numbers which we call the m-level hit numbers
for boards contained in the mn× n board. As previously noted, Briggs and Remmel [2]
observed that an m-level rook placement of n rooks on the mn×n board can be naturally
identified with an element in the wreath product Cm � Sn of the cyclic group Cm with
the symmetric group Sn. Thus given a board B contained in the mn× n board, we can
define the k-th m-level hit number of B with respect to n, hk,n,m(B), to be the number
of σ ∈ Cm � Sn such that the rook placement corresponding to σ has exactly k rooks
in B. There is a natural extension of the Riordan and Kaplansky’s result which relates
the m-level hit numbers of B to the m-level rook numbers of B, namely,
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n∑
k=0

hk,n,m(B)xk =
n∑

k=0
rk,m(B)

(
m(n− k)

)
↓n−k,m(x− 1)k.

Briggs and Remmel [2] defined a p, q-analogue of the m-level hit numbers hk,n,m[B]
by the following equation:

n∑
k=0

hk,n,m[B]xk =
n∑

k=0
rk,m[B]

[
m(n− k)

]
↓n−k,mpm(

(k+1
2
)
+k(n−k))

×
n∏

	=n−k+1

(
x− qm	pm(n−	)). (18)

They proved that for all singleton boards B, hk,m,n[B] is a polynomial in p and q with
non-negative integer coefficients. It is natural to ask whether such a result can be ex-
tended to all Ferrers boards. The answer is no, in general. For example, suppose m = 2
and B = (1, 1, 1). Then it is easy to check that r0,2[B] = q3, r1,2[B] = p−2+p−4q+p−6q2,
and r2,2[B] = r3,2[B] = 0. Thus in this case, (18) becomes

3∑
k=0

hk,3,2[B]xk = r0,2[B][6][4][2] + r1,2[B][4][2]p6(x− q6)
= [4][2]

(
q3[6] +

(
p4 + p2q + q2)(x− q6))

so that

h0,3,2[B] = [4][2]
(
q3[6] −

(
p4q6 + p2q7 + q8)),

h1,3,2[B] = [4][2]
(
p4 + qp2 + q2), and

h2,3,2[B] = h3,2,3[B] = 0.

Note that q3[6]−(p4q6+p2q7+q8) does not have non-negative coefficients since the terms
in q3[6] are all homogeneous of degree 8 and, hence, there is nothing to cancel −p4q6 or
−p2q7. However, if we set p = 1 then we do end up with hk,3,2[B] being a polynomial in q

with non-negative integer coefficients for all k. Thus a natural question to ask is whether
there are non-singleton Ferrers boards B such that m-level hit numbers hk,n,m[B] are
always polynomials in p and q with non-negative integer coefficients and, if so, can one
classify such non-singleton Ferrers boards. Similarly, it would be interesting to classify
those Ferrers boards B such that hk,n,m[B] are polynomials in q with non-negative
coefficients when p = 1.
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