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We introduce the concept of a bounded below set in a lattice. This can be used
to give a generalization of Rota's broken circuit theorem to any finite lattice. We
then show how this result can be used to compute and combinatorially explain the
Mo� bius function in various examples including non-crossing set partitions, shuffle
posets, and integer partitions in dominance order. Next we present a generalization
of Stanley's theorem that the characteristic polynomial of a semimodular super-
solvable lattice factors over the integers. We also give some applications of this
second main theorem, including the Tamari lattices. � 1997 Academic Press

1. BOUNDED BELOW SETS

In a fundamental paper [25], Whitney showed how broken circuits
could be used to compute the coefficients of the chromatic polynomial of
a graph. In another seminal paper [20], Rota refined and extended
Whitney's theorem to give a characterization of the Mo� bius function of a
geometric lattice. Then one of us [21] generalized Rota's result to a larger
class of lattices. In this paper we will present a theorem for an arbitrary
finite lattice that includes all the others as special cases. To do so, we shall
need to replace the notion of a broken circuit by a new one which we call
a bounded below set. Next we present some applications to lattices whose
Mo� bius functions had previously been computed but in a less simple or less
combinatorial way: shuffle posets [13], non-crossing set partition lattices
[15, 19], and integer partitions under dominance order [5, 6, 12].
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The second half of the paper is dedicated to generalizing the result of
Stanley [23] that the characteristic polynomial of a semimodular super-
solvable lattice factors over the integers. We replace both supersolvability
and semimodularity by weaker conditions which we call left-modularity
and the level condition, respectively, in such a way that the conclusion still
holds. Examples of this factorization (not covered by Stanley's theorem)
are provided by certain shuffle posets and the Tamari lattices [9, 14]. We
end with a further generalization of Rota's theorem and a section of com-
ments and questions.

Throughout this paper L will denote a finite lattice. Any relevant defini-
tions not given can be found in Stanley's text [24]. We will use 7 for the
meet (greatest lower bound) and 6 for the join (least upper bound) in L.
Since L is finite it also has a unique minimal element 0� and a unique maxi-
mal element 1� . The Mo� bius function of L, + : L � Z, is defined recursively by

+(x)={
1 if x=0� ,

& :
y<x

+( y) if x>0� .

We let +(L)=+(1� ). Note that + is the unique Z-valued function on L such
that �y�x +( y)=$0� x (Kronecker delta).

Our goal is to give a new combinatorial description of +(x). Let A(L) be
the set of atoms of L, i.e., those elements covering 0� . Give A(L) an
arbitrary partial order, which we denote \ to distinguish it from the par-
tial order � in L. So \ can be anything from a total order to the total
incomparability order induced by �. A nonempty set D�A(L) is bounded
below or BB if, for every d # D there is an a # A(L) such that

a Id (1)

and

a<� D. (2)

So a is simultaneously a strict lower bound for d in the order \ and for
� D in �. We will say that B�A(L) is NBB if B does not contain any D
which is bounded below. In this case we will call B an NBB base for
x=� B. We can now state our main result.

Theorem 1.1. Let L be any finite lattice and let \ be any partial order
on A(L). Then for all x # L we have

+(x)=:
B

(&1) |B| (3)

where the sum is over all NBB bases B of x and | } | denotes cardinality.
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Proof. For x # L define +~ (x)=�B (&1) |B| summed over all NBB bases
B of x. To prove that +~ (x)=+(x) it suffices to show �y�x +~ ( y)=$0� x . If
x=0� then x=� B only for B=< which is NBB. So

:
y�0�

+~ ( y)=+~ (0� )=(&1)0=1

as desired.
If x>0� then to get �y�x +~ ( y)=0 we first set up a corresponding signed

set S. Let

S=[B : B an NBB base for some y�x].

The sign of B # S will be =(B)=(&1) |B|. Then from the definitions

:
y�x

+~ ( y)= :
B # S

=(B).

If we can find a sign-reversing involution on S then this last sum will be
zero and we will be done. From the set of atoms a�x pick one, a0 , which
is minimal with respect to \. Consider the map on S defined by @(B)=
B q a0 where q is symmetric difference. (Here and afterwards we omit set
braces around singletons writing, for example, a0 instead of [a0].) Clearly
@ is a sign-reversing involution provided it is well defined, i.e., we must
check that B being NBB implies that @(B) is NBB.

If @(B)=B"a0 then clearly @(B) is still NBB. We will do the case B$ :=
@(B)=B _ a0 by contradiction. Suppose B$$D where D is bounded below.
Then a0 # D since B itself is NBB. Let a be the corresponding element
guaranteed by the definition of a bounded below set. Then a Ia0 and
a<� B$�x which contradicts the definition of a0 . K

Here is an example to illustrate this result. Suppose the lattice L and par-
tial order \ are as given in Fig. 1. To find the bounded below sets, note
that by (1) no set containing an element minimal in \ is BB. Furthermore
(2) implies that no single element set is BB either. (These observations will
be important in our other examples.) Thus the only possible BB set is
[a, c], and it does satisfy the definition since b Ia, c and b<�[a, c]=1� .
So x has one NBB base, namely [a, b] and so +(x)=(&1)2 which is easily
checked from the definition of +. Similarly +( y)=(&1)2. Finally 1� has no
NBB bases and so +(1� )=0 (the empty sum).

We should see why our theorem implies Rota's broken circuit result. To
do this we need to recall some definitions. Let L be a geometric lattice with
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Fig. 1. A lattice L and partial order \ on A(L).

rank function \. It is well known, and easy to prove, that if B�A(L) then
\(� B)�|B|. Call B independent if \(� B)=|B| and dependent otherwise.
A circuit C is a minimal (with respect to inclusion) dependent set. Now let
\ be any total order on A(L). Then each circuit C gives rise to a broken
circuit C$=C"c where c is the first element of C under \. A set B�A(L)
is NBC (no broken circuit) if B does not contain any broken circuit and
in this case B is an NBC base for x=� B. Rota's NBC theorem [20] is as
follows.

Theorem 1.2 (Rota). Let L be a finite geometric lattice and let \ be
any total order on A(L). Then for all x # L we have

+=(&1)\(x) } (number of NBC bases of x).

To derive this result from Theorem 1.1, we first prove that when L is
geometric and \ is total then the NBB and NBC sets coincide. For this
it suffices to show that every broken circuit is bounded below and that
every bounded below set contains a broken circuit. If C$=C"c is a broken
circuit, then for every c$ # C$ we have c Ic$ and c<� C=� C$ so C$ is
BB. For the other direction, if D is bounded below then consider the
\-first element of d of D and let a # A(L) be the element guaranteed by the
BB definition. Then by (2) we have \(� D 6 a)<|D _ a|. So D _ a is
dependent and contains a circuit C. Now (1) and the choice of a and d
show that for the corresponding broken circuit we have C$�D. Thus NBB
and NBC sets are the same in this setting. Finally Rota's expression for
+(x) is obtained from ours by noting that when L is semimodular then all
NBB bases for x have the same size, namely \(x). Similar arguments show
that the main result of [21] is a special case of Theorem 1.1.

Another corollary of this theorem is a special case of Rota's Crosscut
Theorem [20].
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Theorem 1.3 (Rota). Let L be any finite lattice. Then for all x # L

+(x)=:
B

(&1) |B| (4)

where the sum is over all B�A(L) such that � B=x.

To obtain (4) it suffices to take \ to be the total incomparability order
in Theorem 1.1. In fact our theorem (where the partial order on A(L) is
arbitrary) can be viewed as interpolating between the Crosscut Theorem
(where A(L) forms an antichain) and the NBC Theorem (where A(L)
forms a chain).

This raises the question of why one would want to consider an arbitrary
partial order \ on A(L) when one can always take the one induced by the
order in L. The reason is that the number of terms in the sum (4) is
generally much larger than the number in (3). From the viewpoint of
efficient computation of +, the best scenario is the same as the one in the
geometric case where (3) has exactly |+(x)| terms, all of the same sign.
A partial order \ on A(L) for which this happens for all x # L will be
called perfect. There are posets where no such \ exists, such as the k-equal
intersection lattices which were introduced by Bjo� rner, Lova� sz and Yao
[3, 4]. However, all the examples we will consider in the next sections are
perfect. Another thing to note is that if \ is perfect then so is any linear
extension of it. However, to make the combinatorics of + as clear as
possible it is often best to take a perfect \ with the least possible number
of order relations.

2. NON-CROSSING PARTITIONS

The non-crossing partition lattice was first studied by Kreweras [15]
who showed its Mo� bius function to be a Catalan number. By using NBB
sets we can combinatorially explain this fact and relate these bases to the
standard NBC bases for the ordinary partition lattice.

If ? is a partition of [n] :=[1, 2, ..., n] into k subsets, or blocks, then we
write ?=B1� } } } �Bk |&[n]. When it will cause no confusion, we will not
explicitly write out any blocks that are singletons. The set of ? |&[n] form
a lattice 6n under the refinement ordering. We say that ? is non-crossing
if there do not exist i, k # B and j, l # C for two distinct blocks B, C of ?
with i< j<k<l. Otherwise ? is crossing. The set of non-crossing partitions
of [n] forms a meet-sublattice NCn of 6n with the same rank function.
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Fig. 2. Partitions and their graphs.

However unlike 6n , NCn is not semimodular in general since if ?=13 and
_=24 then ? 7 _=0� and ? 6_=1234 so

\(?)+\(_)=2<3=\(? 7 _)+\(?6 _).

Here and throughout this paper, semimodularity refers to upper-semi-
modularity.

Another way to view non-crossing partitions will be useful. Let
G=(V, E) be a graph with vertex set V=[n]. Then G is non-crossing if
there do not exist edges ik, jl # E with i< j<k<l. Equivalently, G is non-
crossing if, when the vertices are arranged in their natural order clockwise
around a circle and the edges are drawn as straight line segments, no two
edges of G cross geometrically. Given a partition ? we can form a graph
G? by representing each block B=[i1<i2< } } } <il] by a cycle with edges
i1 i2 , i2 i3 , ..., il i1 . (If |B|=1 or 2 then B is represented by an isolated vertex
or edge, respectively.) Then it is easy to see that ? is non-crossing as a
partition if and only if G? is non-crossing as a graph. In Fig. 2 we have
displayed some partitions and their graphs.

Fig. 3. The partial order for A(NC4).
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The atoms of NCn are the partitions of the form $=ij where we will
always assume i< j. Then G$ is a single edge, so we can consider any
B�A(NCn) as a graph GB with an edge for each $ # B. Define ij Ii $j $ if
and only if j< j $. So the poset (A(NCn), \ ) will be ranked with the
elements at rank j&2 being all atoms of the form ij. An example for n=4
is given in Fig. 3.

In order to characterize the NBB sets, we first need a lemma.

Lemma 2.1. Let $, $$ be a pair of atoms such that either $ and $$ have
the same rank in (A(NCn), \ ) or the graph of D=[$, $$] is crossing. Then
D is BB.

Proof. Suppose first that the two atoms have the same rank. Then $=ij
and $=i $j where without loss of generality i<i $< j. Let :=ii $. Then
$, $$i : and $ 6$$=ii $j>: so D is BB.

Suppose instead that the given atoms are crossing. So we have $=ij and
$=i $j $ with i<i $< j< j $. Letting :=ii $ we get the same inequalities as
before, noting that $ 6 $$=ii $jj $. K

Theorem 2.2. The NBB bases of 1� in NCn are all B obtained by picking
exactly one element from each rank of (A(NCn), \ ) so that the corresponding
graph GB is non-crossing.

Proof. First suppose that B is an NBB base of 1� . Then by the previous
lemma we know that B contains at most one element from each rank and
that GB is non-crossing. If we do not pick an element from some rank then
GB is not connected. But such a non-crossing graph has a block of � B for
each component of GB , contradicting � B=1� .

Conversely, suppose B is picked according to the two given rules. Then
GB is connected and so � B=1� . If B$D with D a BB set we will derive
a contradiction. Let $ # D be \-minimal and let :=ij be the corre-
sponding element guaranteed by the definition of bounded below. Then (1)
and our choice of $ shows that for any $$=i $j $ # D we have i, j< j $. Since
B is non-crossing, so is D and thus � D is the same in NCn and 6n . It
follows from (2) that there is a path in GD of the form i=i0 , i1 , ..., il= j
where each edge [ik ik+1] is an atom of D. But our remarks about $$ imply
that i0<i1 and il&1>il so there must be an index m such that im&1<im>
im+1. Thus D has two elements from the same \-rank, the promised
contradiction. K

Note that the graphs GB in the previous theorem are certain spanning
trees on the vertex set [n]. Furthermore, to get the NBB bases for all
elements of NCn it suffices to use the non-crossing restriction but picking
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at most one element from each rank. Finally, if one removes the non-
crossing restriction one gets exactly the standard NBC bases for the
geometric lattice 6n .

It is now easy to compute the Mo� bius function of NCn . It suffices to do
this for 1� since for any ?=B1� } } } �Bk # NCn , the interval [0� , ?]$
>i NC |Bi | . Recall that the Catalan numbers are defined by

Cn=
1

n+1 \
2n
n + .

Corollary 2.3 (Kreweras). We have

+(NCn)=(&1)n&1 Cn&1.

Proof. All trees on n vertices have n&1 edges. Furthermore it is easy
to see that the number Tn of non-crossing trees on [n] of the given form
and Cn&1 satisfy the same initial conditions and recurrence relation,

Tn={
1 if n=1

:
0<i<n

TiTn&i if n>1.

The result now follows from Theorems 1.1 and 2.2. K

There is another natural ordering of A(NCn) for which a result similar
to Theorem 2.2 holds, namely ij \i $j $ if and only if [i, j]$[i $, j $] as
intervals of integers. With this ordering, NBB bases of 1� again correspond
to trees with vertex set [n], but this time they are the non-crossing trees
in which each vertex is either greater than all its neighbors or less than all
its neighbors. It follows easily that, in any such tree, [1, n] is an edge, and
deletion of this edge leaves two smaller such trees with vertex sets [k] and
[k+1, n] for some k. This observation easily implies that the numbers of
such trees satisfy the recurrence for the Catalan numbers. In fact, there is
a simple bijection between these trees and proper parenthesizations P of
the product of n factors (one of the most familiar interpretations of the
Catalan numbers). To describe the bijection, identify the n factors with the
elements of [n], in order. For any particular parentherization P, consider
the sub-products defined by P. For example, if n=5 and P is (((12) 3)(45)),
then the sub-products are (12), ((12) 3), (45), and (((12) 3)(45)) itself. Now
to build the corresponding T, take the vertex set [n] and draw, for each
sub-product of P, an edge from the first to the last element of the sub-
product. In the previous example, the edges would be 12, 13, 45, and 15.
It is a variant of this ordering which allows us to compute + for the non-
crossing Bn and Dn lattices.
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3. NON-CROSSING BN AND DN

In this section, we apply Theorem 1.1 to calculate the Mo� bius invariants
+(1� ) of the non-crossing Bn and Dn (and intermediate) lattices. These
lattices were introduced by Reiner [19] who computed + using generating
functions. Non-crossing Bn consists of those partitions ? of [1, 2, ..., n, &1,
&2, ..., &n] that satisfy three conditions: First, ? is invariant under the
involution k [ &k. Second, at most one block of ? is fixed by this involu-
tion; if there is such a block, it is called the zero-block of ?. Third, the par-
tition is non-crossing (as in Section 2), with respect to the ordering
1<2< } } } <n<&1<&2< } } } <&n. (The first two of these conditions
determine a lattice isomorphic to that associated with the hyperplane
arrangement Bn .) Non-crossing Dn is the subposet consisting of those ? for
which the zero-block, if present, does not consist of only a single pair
[k, &k]. An intermediate lattice can be associated to every subset S�[n],
by allowing the zero-block to be [k, &k] only if k � S. We use the
notations NBCn , NCDn , and NCBDn(S) for these lattices; thus NCBn=
NCBDn(<) and NCDn=NCBDn([n]).

We begin by calculating +(1� ) for NCBn and afterward indicate the minor
changes needed to handle the rest of these lattices. The atoms of NCBn are
of three sorts. First, there are the partitions where one block consists of
two positive numbers, say [i, j], another block is [&i, &j], and all the
remaining blocks are singletons. Second, there are the partitions where one
block consists of a positive and a negative number, say [i, &j], another is
[&i, j], and the rest are singletons. Third, there are the partitions whose
only non-singleton block is of the form [i, &i]. Following Zaslavsky [26],
we depict atoms as signed edges in a graph whose vertex set is [n]. An
atom of the first sort is depicted as a positive edge ij, one of the second sort
is depicted as a negative edge ij, and one of the third sort is depicted as a
(negative) half-edge at i. (There is no such thing as a positive half-edge.) To
avoid confusion, we emphasize that these signed graphs are quite different
from the graphs with vertex set [1, 2, ..., n, &1, &2, ..., &n] used in deciding
whether a partition is non-crossing. We sometimes identify an atom with
the corresponding edge; in particular, we may refer to an atom as positive
or negative.

We partially order the atoms as follows. Associate to each atom, depicted
as a signed edge ij, the interval [i, j]�[n]; in the case of a half-edge at
i, the interval consists of just i. Then define a Ib to mean that either the
interval associated to atom a properly includes that associated to atom b
or the two intervals are equal and a is negative while b is positive. (Notice
that, apart from signs and half-edges, this matches the ordering described
at the end of the Section 2.)
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Regarding atoms as signed edges, we regard sets of atoms as signed
graphs with vertex set [n]. It is not difficult (though a bit tedious) to verify
that every NBB set B has, as a graph, the following properties.

(i) No two signed edges cross.

(ii) No vertex i has a neighbor j<i and also a neighbor j $>i.

(iii) Any path joining two vertices i and j and consisting entirely of
vertices k with i�k� j must be just a single signed edge ij.

(iv) There is no cycle of length �3. (A 2-cycle, consisting of a
positive edge and a negative edge in the same place, is permitted;
we refer to such a pair of signed edges as a double-edge.)

(v) No two negative atoms in B have disjoint associated intervals.

(vi) If the interval associated to one atom in B is properly included
in the interval associated to another, and if the former atom is
negative, then so is the latter.

(vii) If there is a negative atom in B, then there is exactly one, say
a, that is I-maximal (i.e., its interval is inclusion-minimal); all
other atoms in B are negative if their intervals properly include
that of a and positive otherwise.

(viii) B has at most one half-edge, has at most one double-edge, and
cannot have both.

Actually, only items (i), (ii), (v), and (vi) in this list directly use the NBB
assumption. The other four items follow from these purely graph-theoreti-
cally.

Conversely, any signed graph satisfying (i) through (viii) is NBB when
viewed as a set of atoms of NCBn . We leave the verification to the reader,
with the hint that items (i), (v), and (vi) ensure that the join of any atoms
from this set is the same whether computed in NCBn or in Bn , because
none of these atoms cross when regarded as partitions of [1, 2, ..., n, &1,
&2, ..., &n].

From this characterization of the NBB sets in NCBn , we easily obtain a
characterization of the NBB bases of 1� . These bases (regarded as signed
graphs) are obtainable as follows. First, take a non-crossing tree T with
vertex set [n] in which each vertex is either greater than all its neighbors
or less than all its neighbors. (This part is just as at the end of Section 2.)
Then pick either an edge or a vertex of T. If you picked an edge e, then
make it a double-edge, give negative signs to all the edges of T whose inter-
vals properly include that of e, and give all remaining edges of T positive
signs. If you picked a vertex v, then attach a (negative) half-edge at v, give
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negative signs to all edges of T whose interval contains v, and give all
remaining edges of T positive signs.

Finally, to apply Theorem 1.1, we count the NBB bases for 1� , i.e., we
count the signed trees of the sort just described. We already saw in
Section 2 that there are

Cn&1=
1
n \

2n&2
n&1 +=

1
2n&1 \

2n&1
n +

ways to choose T. Then there are 2n&1 ways to choose an edge or vertex,
since there are n vertices and n&1 edges. After this choice, the rest of the
construction of the NBB signed graph is completely determined. So the
number of NBB bases for 1� is

Cn&1 } (2n&1)=\2n&1
n + .

Every NBB base of 1� has exactly n elements, namely the n&1 edges of T
(with signs) plus either an extra edge if you chose an edge and doubled it
or an extra half-edge if you chose a vertex. Therefore, +(NCBn)=
(&1)n ( 2n&1

n ).
The calculation for NCBDn(S) is almost exactly the same. The only dif-

ference is that half-edges can occur only at vertices not in S. Thus, in the
description of NBB bases for 1� , we need only replace ``pick an edge or a
vertex of T '' with ``pick an edge of T or a vertex not in S.'' Thus, the
number of options at this step is no longer 2n&1 but only 2n&1&|S|.
Therefore, we obtain, in agreement with Reiner's calculation ([19]), the
Mo� bius for NCBDn(S):

+(NCBDn(S))=(&1)n Cn&1 } (2n&1&|S| ).

4. SHUFFLE POSETS

The poset of shuffles was introduced by Greene [13]. We need to recall
some of his definitions and results before applying Theorem 1.1. Let A be
a set, called the alphabet of letters. A word over A is a sequence
u=u1u2 } } } un of elements of A. All of our words will consist of distinct
letters and we will sometimes also use u to stand for the set of letters in the
word, depending upon the context. A subword of u is v=ui1 } } } uil where
i1< } } } <il . If u, v are any two words then the restriction of u to v is the
subword uv of u whose letters are exactly those of u & v. A shuffle of u and
v is any word s such that s=u_+ v as sets (disjoint union) and su=u, sv=v.
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Fig. 4. The lattice W2, 1 .

Given nonnegative integers m, n Greene defined the poset of shuffles
Wm, n as follows. Fix disjoint words x=x1 } } } xm and y= y1 } } } yn . The
elements of Wm, n are all shuffles w of a subword of x with a subword of y.
The partial order is v�w if vx$wx and vy�wy. It is easy to see that W

has minimal element 0� =x, maximal element 1� =y and is ranked with rank
function

\(w)=(m&|wx| )+|wy|. (5)

For example, W2, 1 is shown in Fig. 4 where x=de and y=D.
In order to apply the NBB Theorem we will need to describe the join

operation in Wm, n . Greene does this using crossed elements, not to be con-
fused with the crossing partitions discussed in Section 2. Given u, v # Wm, n

then x # x is crossed in u, v if there exist yi , yj # y such that i� j and x
appears before yi in one of the two words but after yj in the other. For
example if x=def and y=DEF then for the pair u=dDEe, v=Fdef the
only crossed letter is d. The join of u, v is then the unique word w greater
than both u, v such that

wx=[x # ux & vx : x is not crossed]
wy=uy _ vy .

(6)
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In the previous example, u 6v=DEFe. This example also shows that Wm, n

is not geometric since the semimodularity law is violated:

\(u)+\(v)=3+1<5=\(u 6v)�\(u 6 v)+\(u 7 v).

The set atoms Am, n=A(Wm, n) consists of two types. An a-atom, respec-
tively b-atom, is one obtained from x by deleting a letter of x, respectively
inserting a letter of y. Let Aa denote the set of a-atoms and similarly for Ab .
Define \ on Am, n to be the poset whose relations are all those of the form
a Ib with a # Aa and b # Ab .

Lemma 4.1. Suppose b, b$ # Ab . If b, b$ have crossed elements then
D=[b, b$] is a BB set of (Am, n , \ ).

Proof. Our hypothesis and (6) show that (b6 b$)x /x (proper contain-
ment of sets). So there is an a-atom a with a�(b 6 b$) x which forces
a<b 6b$ in Wm, n . Since by definition a Ib, b$ the element a satisfies the
definition of a BB set. K

The next result will characterize the NBB bases and show that the
converse of the previous lemma also holds.

Theorem 4.2. Let s be a shuffle of x, y and consider

B s =Aa _ [b # Ab : b�s].

Then the NBB bases of y # Wm, n under the given partial order are exactly
the Bs .

Proof. Suppose first that B is an NBB base of y. Then for each element
y # y we must have a corresponding b-atom by in order to get � B=y.
In fact there must be exactly one such atom for each y # y and these atoms
must all lie below a shuffle s, for otherwise B would contain a BB pair as
in Lemma 4.1. It follows that �y by=s. So in order to get � B=y we must
have Aa �B. Thus B is of the form B s as desired.

Conversely, consider any B s . It is easy to see that � B s =y. We will
show that B s is NBB by contradiction. Suppose that D�B s is a BB set.
Then (1) forces D to contain only b-atoms which in turn implies � D�s.
Now pick any d # D and let a # Am, n be the atom guaranteed by the defini-
tion of BB. Then a is an a-atom and a<� D�s. But this contradicts the
fact that there are no a-atoms below any shuffle of x and y. Thus B s is an
NBB base of y and our characterization is complete. K

To determine the Mo� bius function of Wm, n it suffices to compute +(1� )
since for any w # Wm, n the interval [0� , w] is isomorphic to a product of
Wp, q 's for certain p�m and q�n.
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Corollary 4.3 (Greene). We have

+(Wm, n)=(&1)m+n \m+n
m + .

Proof. The bases Bs all have size m+n and the number of possible
shuffles s is ( m+n

m ). The result now follows from Theorems 1.1 and 4.2. K

5. THE DOMINANCE ORDER

Bogart [5] and Brylawski [6] first computed the two-variable Mo� bius
function of the lattice of integer partitions under dominance. Subsequently
Greene [12] gave two alternative ways to compute this function. Our NBB
set characterization leads to a formula in Corollary 5.2 which is essentially
equivalent to, but simpler than, Greene's second description of + [12,
Theorem 4.1].

We begin by reviewing the relevant definitions. A partition * of n is a
weakly decreasing sequence of positive integers *1�*2� } } } �*r whose
sum is n. For any such partition * and any non-negative integer k, we write
|*|k for �k

i=1 *i , where *i is interpreted as 0 for i>r, so |*| k=n for all
k�r. A partition * dominates another partition & (of the same n), written
*�&, if |*|k�|&|k for all k. In terms of Ferrers diagrams (in the English
orientation) *�& means that the diagram for * can be obtained from that
of & by moving some squares up to earlier rows.

It is well known that this ordering makes the set of partitions of n into
a lattice Pn ; we review the construction of joins in Pn because it will be
needed for our NBB calculations. A composition of n is like a partition
except that the parts *i need not be in weakly decreasing order. The
dominance order of compositions is defined exactly as for partitions, and
the result is a lattice in which joins are easily computed since |* 6 &|k=
max[ |*|k , |&|k]. The join of two partitions, computed in this lattice of com-
positions, need not be a partition. However, for every composition * there
is a unique smallest partition above *, which we call the partition reflection
of *. Joins of partitions in Pn can be computed by first forming the join in
the dominance lattice of compositions and then forming the partition
reflection of the result. We should point out that the partition reflection of
a composition need not be simply the result of rearranging the parts into
weakly decreasing order. For example, the partition reflection of (1,3) is
not (3,1) but (2,2).

The bottom element 0� of Pn is the partition (1, 1, ..., 1) and the only atom
is (2, 1, 1, ..., 1). By Theorem 1.3, these are the only elements of Pn where
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the Mo� bius function has a non-zero value. But we can also consider the
Mo� bius function of elements in any upper interval [;, 1� ]; indeed, the value
of this Mo� bius function at some *�; is what is usually called the (two-
variable) Mo� bius function +(;, *).

To calculate this Mo� bius function, we fix ;, we describe the atoms of
[;, 1� ], and we calculate the joins of sets of atoms with particular attention
to determining when one atom is below a join of others. Then, we describe
an appropriate partial ordering \ of the atoms, characterize its NBB sets,
and use Theorem 1.1 to evaluate the Mo� bius function.

For the rest of this section, let ;=(;1 , ;2 , ..., ;r) be a fixed but arbitrary
partition of n. By a wall we mean a maximal sequence of at least two
numbers k for which the corresponding ;k are equal. (This corresponds to
a flat in Greene's terminology.) Thus, an interval [i, j]�[1, r] is a wall if
and only if i< j and ;i&1>;i=;j>;j+1. Here and below, we use the con-
vention that ;0=� and ;r+1=0, so that 1 (respectively, r) can be part of
a wall if the first (respectively, last) two components of ; are equal. If [i, j]
is a wall then we call i its top and j its bottom, the terminology being
suggested by the Ferrers diagram.

The atoms of [;, 1� ] are of two sorts:

(i) If 1�i<r and neither i nor i+1 is in a wall (i.e., ;i&1>;i>
;i+1>;i+2), then ; is covered by the partition : that agrees with
; except that :i=;i+1 and :i+1=;i+1&1. We denote this
atom : of [;, 1� ] by i+1 � i, since its Ferrers diagram is
obtained from that of ; by moving a square from row i+1 up
to row i.

(ii) If [i, j] is a wall, then ; is covered by the partition that agrees
with ; except that :i=;i+1 and :j=;j&1. We denote this : by
j � i.

For both types of :, we refer to the set of k where |:|k {|;|k as the criti-
cal interval of :, I: . (This is not the same as Brylawski's use of ``critical.'')
It consists of only i for : of type (i) and it is [i, j&1] for : of type (ii).
Note that |:|k=|;| k+1 if and only if k # I: . Note also that different atoms
of [;, 1� ] have disjoint critical intervals and

.+
:

I:=[1, r&1]"[k : [i, k] or [k+1, i] is a wall for some i]. (7)

So an element of [1, r&1] lies in a critical interval unless it is the bottom
of a wall or the immediate predecessor of the top of a wall.
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Let us consider the join of some subset B�A([;, 1� ]), first in the sense
of compositions and then in the sense of partitions. If # is the composition
join, then from the previous paragraph

|#|k&|;| k={0 if k � X
1 if k # X

(8)

where X=�+ : # B I: . If this # is a partition, then it is also the join in the
partition sense; otherwise, we must take its partition reflection. So we con-
sider next how # could fail to be a partition and how it is changed by
reflection.

By (8) the components of # differ from those of ; by \1 or 0. It follows
that any failure of # to be a partition, i.e., any occurrence of #k<#k+1 ,
must arise in one of two ways: ;k=;k+1 or ;k+1+1. The first possibility
can be excluded, because it requires k and k+1 to be part of a wall, say
[i, j]. If the critical interval [i, j&1]�X then by (7) and (8) we have
#i=;i+1, #j=;j&1, and # agrees with ; on the rest of [i, j]; if, on the
other hand, [i, j&1] & X=<, then # agrees with ; on all of [i, j]. In
either case, we cannot have #k<#k+1. So any occurrence of #k<#k+1 has
;k=;k+1+1, #k=;k&1=;k+1 , and #k+1=;k+1+1=;k . Thus by (8)
X must contain k&1 and k+1 but not k.

Consider the set Y obtained by adjoining to X all those numbers k � X
for which k&1, k+1 # X and ;k=;k+1+1. Let & be the composition of n
such that

|&|k&|;| k={0
1

if k � Y
if k # Y.

(9)

The preceding observations show that & is a partition, because, by enlarging
X to Y, we have corrected all the failures of # to be a partition. Further-
more, & clearly dominates #. We claim that & is the partition reflection of
#, i.e., that every partition ' dominating # also dominates &. To see this, it
suffices to show that |'|k>|#|k for k # Y&X; but if this failed for some k,
then ' would fail to be a partition because 'k<'k+1 just as for #. Thus,
& is the join of B in Pn .

We must also determine which atoms of [;, 1� ] other than members of
B are below &. Distinct atoms have disjoint critical intervals, so the atoms
we are looking for are those whose critical intervals are singletons k where
k # Y&X. Note that there is an atom with critical interval k if and only if
either k and k+1 constitute a wall or neither of them belongs to a wall.
The former alternative is irrelevant in the present context, since k # Y&X
implies ;k=;k+1+1. So we need only consider the second alternative,
where ;k&1>;k>;k+1>;k+2 .

109MO� BIUS FUNCTIONS



File: 607J 161617 . By:XX . Date:17:04:97 . Time:11:22 LOP8M. V8.0. Page 01:01
Codes: 2726 Signs: 1740 . Length: 45 pic 0 pts, 190 mm

We are ready to begin the description of the NBB bases for an arbitrary
*�;. Let A be the set of atoms of [;, *]. If � A{* then +(;, *)=0 by
Theorem 1.3, so from now on we assume � A=*. Call an atom b # A of
the form k+1 � k special if ;k=;k+1+1 and A also contains atoms a, c
equal to k+2 � k+1, k � k&1, respectively. The preceding discussion
shows that b<a 6 c; conversely, if an atom in A is under the join of some
other atoms in A, then it must be special. We let S/A be the set of
special atoms.

Let us list the atoms in A according to the ordering of their critical
intervals. By a special run in this list, we mean a maximal sequence of con-
secutive _ # S. Define a partial ordering \ on A by imposing on each
sequence

{=_0 , _1 , ..., _q+1={$ (10)

where _1 , ..., _q is a special run (so {, {$ � S) the relations

_3i+1 I_3i , _3i+2 for 1�3i+1�q.

An example is given in Fig. 5. Note that this ordering makes [_3i , _3i+2]
a BB set for each i. We let Sj , 0� j�2, be the set of elements in all special
runs of the form _3i+ j for some i, so S=S0 _+ S1 _+ S2 .

Theorem 5.1. Let [;, *] be an interval in Pn with atom set A such that
� A=*. Then * has an NBB base in A if and only if there is no special run
of length 1 modulo 3. If a base exists, then it is unique and equals

B=A"S2 . (11)

Proof. If B is an NBB base of * then it must include A"S since these
elements are not � the join of any others. Now consider any sequence of
the form (10). Since { � S we have { # B and this forces _2 � B since [{, _2]
is BB. Now we must put _1 , _3 # B since neither is below �(A"_2). Now
repeat the argument with _3 in place of { to inductively see that the only
possible candidate for an NBB base is (11). But if there is a special run (10)

Fig. 5. The partial order on an extended special run.
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of length 3k+1 for some k then _3k and {$=_3k+2 form a BB set in B, a
contradiction. If no such run exists then we never have such a pair in B and
so it is NBB as desired. K

Corollary 5.2. Let [;, *] be an interval in Pn with atom set A. If
� A{* then +(;, *)=0. If � A=* then let ri , 0�i�2 be the number of
special runs of length i modulo 3. Then

+(;, *)={0
(&1) |A"S|+r2

if r1�1
if r1=0.

Proof. We have already noted that +(;, *)=0 if � A{*. For the
other two cases, suppose first that r1�1. Then * has no NBB base in
[;, *] by Theorem 5.1 so +(;, *)=0 by Theorem 1.1. If r1=0 then by the
same two results

+(;, *)=(&1)|B| =(&1) |A"S|+|S0|+|S1| .

If a special run has length congruent to 0 (respectively, 2) modulo 3 then
its contribution to |S0 |+|S1 | is 0 (respectively, 1) modulo 2. The last case
now follows from the previous displayed equation. K

6. LL LATTICES

Stanley [23] defined a supersolvable lattice to be a pair (L, 2) where L
is a lattice, 2 : 0� =x0<x1< } } } <xn&1<xn=1� is a maximal chain of L,
and 2 together with any other chain of L degenerates a distributive lattice.
One often refers to L has supersolvable, 2 being tacitly understood. It is
easy to see that a supersolvable lattice has a rank function \. He showed
that, if such an L is also semimodular, then its characteristic polynomial

/(L, t)= :
x # L

+(0� , x) tn&\(x) (12)

factors as (t&a1)(t&a2) } } } (t&an), where ai is the number of atoms of L
that are below xi but not below xi&1. Our purpose in this section is to use
Theorem 1.1 to prove Stanley's factorization of the characteristic polyno-
mial for a wider class of lattices. For this purpose we will replace both
supersolvability and semimodularity by weaker hypotheses.

To state the first of our two hypotheses, we define an element x of a
lattice L to be left-modular if, for all y�z,

y 6 (x 7 z)=( y 6 x) 7z.
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It is standard to call (x, z) a modular pair if the preceding equation is
satisfied by every y that is �z. So x is left-modular if and only if every pair
with x on the left is modular. Note that left-modularity, unlike the
analogously defined right-modularity, is a self-dual concept of lattice
theory. Our first hypothesis is that

L has a maximal chain 2, all of whose elements are left-modular.

In this case we will call L itself left-modular.
Fix a maximal chain 2 : 0� =x0<x1< } } } <xn&1<xn=1� whose elements

may or may not be left-modular. We partition the set A of atoms of L into
pieces Ai=[a # A | a�xi but a�3 xi&1], which we call the levels of A, and
we partially order A by setting a Ib if and only if a is in an earlier level
than b, where ``earlier'' means having a smaller subscript. We say that this
order \ is induced by the chain 2. Note that an atom a cannot be �� S
for any set S of atoms from strictly lower levels, for there is an xi that is
� all elements of S but not �a. We can now state our second hypothesis.

If \ is induced by 2 and a Ib1 Ib2 I } } } Ibk then a�3 �
k

i=1

bi .

A lattice L having a chain 2 with this property will be said to satisfy the
level condition. If L is a finite lattice with a maximal chain satisfying both
the left-modular and level conditions then it is called an LL lattice.

Proposition 6.1. 1. If L is supersolvable then it is left-modular but not
conversely.

2. If L is semimodular then it satisfies the level condition ( for any
maximal chain) but not conversely.

Proof. Stanley has already pointed out that first statement holds [23,
Proposition 2.2 and ff.]. For the second, recall that semimodularity implies
that if x # L and a is an atom not below x then x 6 a covers x. Now prove
the implication by induction on k, the number of b atoms in the level
condition. The cases k=0 and k=1 are obvious, so suppose the result
holds for k&1 but fails for k. So we have a Ib1 Ib2 I } } } Ibk and
a��k

i=1 bi . Let c=�k&1
i=1 bi and notice that a�3 c by induction hypothesis.

Thus c<c 6 a�c 6 bk . But bk is an atom, so c 6 bk covers c. Therefore,
c6 a=c 6 bk�bk . But this is absurd, as c 6 a is a join of atoms from
levels strictly earlier than that of bk .

The implication is not reversible as the shuffle posets Wm, 1 serve as coun-
terexamples. It is not hard to check that the level condition holds when
y= y1 with 2 being the chain where the xi 's are first removed one at a time
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and then y1 is added. On the other hand, as long as m�2, there are pairs
of atoms not covered by their join (atoms that add y1 at opposite ends of
x), so Wm, 1 is not a semimodular lattice. K

We intend to generalize to LL lattices Stanley's factorization of the
characteristic polynomial. Since LL lattices need not be ranked, we need a
suitable substitute for the rank function used in defining the characteristic
polynomial. Let L be a left-modular lattice, with left-modular maximal
chain 2 inducing a partition into levels Ai as before. Define the generalized
rank of x # L to be

\(x)=number of Ai 's containing atoms�x.

Later in this section, we shall relate this \ to lengths of chains, but for now
we use it in (12) (with n still denoting the length of the chain 2) to define
the characteristic polynomial of any left-modular lattice. We shall obtain a
factorization of this polynomial for any LL lattice.

We first characterize the NBB sets using the following lemma.

Lemma 6.2. If a and b are distinct atoms from the same level Ai in a
left-modular lattice, then a 6b is above some atom c from an earlier level.

Proof. Since b is below xi but not below xi&1 , we have xi&1<
xi&1 6b�xi . By maximality of the chain 2, it follows that xi&1 6 b=xi�
a6 b. Applying left-modularity of xi&1 with y=b and z=a 6b, we find
that

b6 (xi&1 7 (a 6 b))=(b 6 xi&1) 7 (a 6b)=a 6 b.

But b�3 a so the right side of this equation is not b. Since the left side is
also not b, we have that xi&1 7 (a 6 b) is not 0� and so is above some atom
c satisfying the lemma. K

Theorem 6.3. In an LL lattice, the NBB sets are exactly those subsets
of A that have at most one member in each level Ai .

Proof. The level condition immediately implies that, if B�A has no
two members from the same level then no subset of it is BB. Conversely,
if B has two members at the same level then by the lemma just proved,
those two constitute a BB set. K

The following lemma is useful not only for our primary goal, factoring
the characteristic polynomial of an LL lattice, but also for relating our
generalized rank functions to lengths of chains.
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Lemma 6.4. Let B be an NBB set in an LL lattice. Then every atom
a�� B is at the same level as some element of B. In particular, any NBB
base for x has exactly \(x) elements.

Proof. It suffices to prove the first statement, since the second follows
from it and Theorem 6.3. So suppose B and a were a counterexample to the
first statement. Let Aj be the level containing a, and let y be the join of all
the elements of B of higher level than Aj . Since B has no element at level
Aj . Since B has no element at level Aj , we have a�� B�xj&1 6y. Setting
z=a 6 y, we obtain from the left-modularity of xj&1 that ( y 6 xj&1) 7 z=
y 6 (xj&1 7z).

On the left side of this last equation, both sides of the meet are �a, and
therefore so is the whole left side. On the right side, since z is a join of
atoms from levels Aj and higher, the level condition tells us that z is above
no atom of lower level than Aj , so no atom is below xj&1 7 z. Therefore
xj&1 7z=0� and the right side reduces to y.

Combining these results, we have a� y. But, in view of the definition of
y, this contradicts the level condition. K

We can now prove our generalization of Stanley's theorem on semi-
modular supersolvable lattices.

Theorem 6.5. If L is an LL lattice then characteristic polynomial of L
factors as

/(L, t)= `
n

i=1

(t&|Ai | )

Proof. Combining Theorems 1.1 and 6.3 along with the new definition
of \ we have

/(L, t)= :
x # L

:

� B=x
B NBB

(&1) |B| tn&\(x)

= :
\i : |B & Ai |�1

(&1) |B| tn&|B|

= `
n

i=1

(t&|Ai | ). K

To close this section, we point out two situations where our generalized
rank can be described in terms of lengths of chains.

The first of these situations is in a semimodular (hence ranked), left-
modular (hence LL) lattice L. As above, let \ be the partial order of A(L)
induced by a maximal chain of left-modular elements and let \ be the
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generalized rank function given by the levels induced by the same chain.
Also, let \* be an arbitrary linear extension of \. We write NBB and
NBB* to mean NBB with respect to \ and \*, respectively. Notice that
every NBB* set is also an NBB set. As noted in our discussion of Rota's
NBC theorem, the size of any NBB* base for x is the ordinary rank of x.
By Lemma 6.4, the size of any NBB base for x is \(x). So the generalized
rank \(x) agrees with the ordinary rank of x provided x has at least one
NBB* base. This proviso can be reformulated as +(x){0, so the charac-
teristic polynomial is the same for both notions of rank. The proviso
cannot be omitted. A chain is a distributive lattice (hence also semimodular
and left-modular) in which our generalized rank is 1 for all elements except
0� and therefore differs from the ordinary rank if the chain has more than
two members.

The second situation is described in the following proposition, which
connects \ to lengths of chains even in some unranked lattices.

Proposition 6.6. Let L be a left-modular lattice which is atomic. Then
for all x # L we have

\(x)=the length of the longest 0� to x chain.

Proof. Let 0� =x0<x1< } } } <xn&1<xn=1� be the left-modular chain
used for the definitions of the sets Ai and thus of \. There are, for any
x # L, exactly \(x) values of i such that Ai contains an atom �x. The
elements x 7xi for these values of i (along with 0� ) constitute a chain of
length \(x) from 0� to x. It remains to show that no chain from 0� to x is
longer, and for this it suffices to show that, for all a<b in L, \(a)<\(b).

Let a<b and choose, by atomicity of L, an atom p�b such that p�3 a
and such that p # Aj for the smallest possible j. Then, by atomicity again,
xj&1 7b�a. This and the left-modularity of xj&1 imply

a=a 6 (xj&1 7 b)=(a 6 xj&1) 7 b.

If there were an atom q # Aj that is �a, then we would have xj&1<
q6 xj&1�xj and, by maximality of the chain of xi 's, q 6 xj&1=xj . But
then (a 6 xj&1) 7 b�xj 7 b�p. This and a�3 p contradict the equation
displayed above.

So there is no such q. But that means that the Ai 's counted by \(b)
include all those counted by \(a) and at least one more, namely Aj . There-
fore, \(a)<\(b). K

Notice that the hypotheses of the preceding proposition do not imply
that L is ranked. A counterexample is given by the six-element lattice
obtained from the eight-element Boolean algebra by removing two co-atoms.
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7. MORE EXAMPLES

We will now give two examples where our factorization theorem can be
applied but Stanley's cannot because the lattices involved are not semi-
modular.

The first example is the shuffle poset Wm, 1 with the maximal chain

x=x0<x1< } } } <xm+1=y (13)

where x1 , ..., xm are obtained by deleting the letters of x in some order.
(Note that we are using xi to denote an element of the chain rather than
a letter of x.) Greene [13] showed that the given chain satisfies the super-
solvability condition even when extended in Wm, n by adding the letters of
y in some order. So by Proposition 6.1 Wm, 1 is left-modular. We also
mentioned in the proof of the same proposition that this poset satisfies the
level condition. (However the level condition does not hold in Wm, n for
general n�2, and this is reflected by the fact that the corresponding
characteristic polynomials usually do not factor over the integers.) It is
now easy to see that the number of new atoms below xi in (13) is

|Ai |={1
m+1

if i�m
if i=m+1.

From Theorem 6.5 we immediately get the following.

Corollary 7.1. We have

/(Wm, 1 , t)=(t&1)m (t&m&1). K

Note that Wm, n is ranked in the ordinary sense and Greene computed
/(Wm, n , t) using the usual rank function. But, by Proposition 6.6, this rank
function coincides with ours.

For our second example we will use the Tamari lattices [8�11, 14]. Con-
sider all proper parenthesizations ? of the word x1 , x2 } } } xn+1. It is well
known that the number of these is the Catalan number Cn . Partially order
this set by saying that _ covers ? whenever

?= } } } ((AB) C ) } } } and _= } } } (A(BC )) } } }

for some subwords A, B, C. The corresponding poset turns out to be a
lattice called the Tamari lattice Tn . Figure 6 (left) gives a picture of T3 .
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Fig. 6. The Tamari lattice T3 .

A left bracket vector, (v1 , ..., vn), is a vector of positive integers satisfying

1. 1�vi�i for all i and

2. if Si=[vi , vi+1, ..., i] then for any pair Si , Sj either one set
contains the other or Si & Sj=<.

The number of left bracket vectors having n components is also Cn . In fact
given a parenthesized word ? we have an associated left bracket vector
v=(v1 , ..., vn) defined as follows. To calculate vi , start at xi in ? and move
left, counting the number of x's and the number of left parentheses you
pass (including xi itself) until these two numbers are equal. Then vi= j
where xj is the last x passed before the numbers balance. It is not hard to
show that this gives a bijection between parenthesizations and left bracket
vectors, thus inducing a partial order on the latter. In fact this induced
order is just the component-wise one. Figure 6 (right) gives the bracket
vector version of T3 .

Left bracket vectors are also directly related to the trees GB described in
Theorem 2.2, but with n+1 in place of n. Indeed, given a left bracket vec-
tor (v1 , ..., vn), we obtain such a tree GB with vertex set [n+1] by joining
i+1 to vi for i=1, 2, ..., n, and all trees as in Theorem 2.2 can be obtained
in this way.

We should note that we have used the left bracket vector rather than the
more traditional right bracket one because when using the former it is
easier to describe the join operation than the meet. (The situation is
reversed for the right bracket vector.) This makes it simpler to work with
some of our conditions which only involve joins. Expressions for the join
and meet can be obtained by dualizing results in [14] and [17] respec-
tively.

Proposition 7.2. Given left bracket vectors v=(v1 , ..., vn) and w=
(w1 , ..., wn) then

v 6 w=(max[v1 , w1], ..., max[vn , wn]).
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If we let m=(m1 , ..., mn) where mi=min[vi , wi] then v7 w=(l1 , ..., ln)
where the li are computed recursively by

li=min[mi , lmi , lmi+1 , ..., li&1]. K

To show that Tm is LL, consider the chain

2 : (1, ..., 1)<(1, 2, 1, ..., 1)<(1, 2, 2, 1, ..., 1)

<(1, 2, 3, 1, ..., 1)<(1, 2, 3, 2, 1, ..., 1)< } } } <(1, 2, 3, ..., n).

It is easy to see that this is of maximum length in Tn . The description of
join in Proposition 7.2 also gives a quick proof that the level condition
holds. To verify left-modularity will take more work.

A typical element of 2 looks like

x=(1, 2, ..., j&1, i, 1, ..., 1) (14)

where i� j. Take y=( y1 , ..., yn)�z=(z1 , ..., zn) in Tn . We wish to
compute y 6 (x 7 z)=(c1 , ..., cn) so we first consider x 7 z. Following the
notation of Proposition 7.2 we have

m=(z1 , ..., zj&1, min[zj , i], 1, ..., 1).

Using the recursive construction on the first j&1 components of m leaves
them unchanged since these are the initial components of a vector in Tj&1.
Also the last n& j components will still be 1 because mi is in the minimum
taken for li . So x 7 z is the same as m except possibly in the j th component
which is zj if zj�i or min[i, zi , ..., zj&1] if zj�i. Since y�z we have yj�zj

for all j and so

y6 (x 7 z)=(z1 , ..., zj&1 , cj , yj+1 , ..., yj) (15)

where

cj={zj

max[ yj , min[i, zi , ..., zj&1]]
if zj�i
if zj�i.

(16)

Now we concentrate on ( y6 x) 7 z=(d1 , ..., dn). Clearly

y 6 x=(1, 2, ..., j&1, max[i, yj], yj+1 , ..., yn)

Taking the minimum vector to compute ( y 6x) 7 z we get

m$=(z1 , ..., zj&1 , d $j , yj+1 , ..., yn)
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where d $j is zj if zj�i and max[i, yj] if zj�i. So in ( y 6 x) 7z we have
di=zi=ci for i< j by the same reasoning as before. We claim that di= yi

for i> j. From the minimization procedure in Proposition 7.2 we have
di�mi= yi . But in any lattice ( y 6 x) 7z� y 6 (x 7z) and so

di�ci for all 1�i�n. (17)

Since ci= yi for i> j this forces the desired equality.
To complete the proof of left-modularity we must show dj=cj and this

breaks up into three cases. If zj�i then we have that dj=zj=cj . If
yj�i�zj then d $j=i and dj=min[i, zi , ..., zj&1]. Comparison of this last
equation with (16) gives dj�cj and then (17) results in dj=cj . Finally if
i� yj�zj then d $j= yj and

dj=min[ yj , zyj
, ..., zj&1]� yj�cj .

Using (17) again finishes this last case.
It is now an easy matter to compute the characteristic polynomial. Note

that the atoms of Tn are all elements of the form (1, ..., 1, j, 1, ..., 1) with the
j�2 in the j th position. If x is as in (14) then it covers no new atoms if
i< j and exactly one new atom if i= j. Using Theorem 6.5 this translates
as follows.

Corollary 7.3. We have

/(Tn , t)=t( 2
n&1) (t&1)n&1.

8. A FURTHER GENERALIZATION

In this section, we briefly describe a generalization of Theorem 1.1. As
before, we work with a finite lattice L, but instead of an additional partial
ordering of the atoms we use an arbitrary function M assigning to each
x # L"0� a non-empty set M(x) of atoms �x. For comparison with
Theorem 1.1, the reader should regard the ordering \ used there as inducing
the function

M(x)=[a # A(L) | a is \-minimal among atoms�x].

But what follows applies also to M 's that do not arise from partial
orderings in this way.

For any set B of atoms, let S(B) be the subset obtained by deleting from
B all members of M(x) for all x�� B. By the core of B, we mean the set
obtained by starting with B and repeatedly applying S until the decreasing
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sequence B, S(B), S(S(B)), . . . stabilizes: the final Sn(B) is the core of B.
(This can also be described as the largest subset of B unchanged by S.) We
call B coreless if its core is empty.

Theorem 8.1. Let L be any finite lattice and let M be any function
assigning to every x # L"0� a nonempty set M(x) of atoms that are �x. Then
for all x # L we have

+(x)=:
B

(&1) |B|

where the sum is over all coreless B�A(L) whose join is x.

We omit the proof since it is essentially the same as that of Theorem 1.1.
The only difference is that, instead of choosing a \-minimal atom a0�x,
we choose an a0 # M(x).

Notice that, if M happens to be obtained from a partial order \ as
described previously, then non-empty cores with respect to M are the same
as BB sets with respect to \, and therefore coreless sets with respect to M
are the same as NBB sets with respect to \.

Notice also that the theorem of this section is ``stronger,'' in the sense of
having fewer summands in the formula for the Mo� bius function, when
M(x) is smaller, for this will make S(B) larger and therefore make B less
likely to be coreless. From this point of view, one should always take M(x)
to be a singleton. Of course considerations of naturality or clarity may
make other choices of M preferable ( just as they may make nonlinear
orderings \ preferable to the more efficient linear orderings in applications
of Theorem 1.1).

9. COMMENTS AND QUESTIONS

(1) It would be interesting to find other applications of our two main
theorems. The higher Stasheff�Tamari posets, S(n, d ), as recently defined in
[8] are obvious candidates. They are lattices for d�3 (although not in
general) and coincide wich the Tamari lattices for d=2.

(2) In a previous paper [21] one of us proved a somewhat weaker
generalization of Rota's NBC Theorem which, nonetheless, has some inter-
esting connections to our work and others. To state the result we must first
recall some definitions from [21]. Call B�A(L) independent if � B$<� B
for every proper subset B$/B. So C is dependent if � C$=� C for some
C$/C. Note that these generalize the corresponding notions for a
geometric lattice. The definitions of base, circuit, and broken circuit remain
as before. The main result of [21] can now be stated.
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Theorem 9.1. Let L be a finite lattice. Let \ be any total ordering of
A(L) such that for all circuits C we have

� C=� (C"min C ). (18)

Then for all x # L we have

+(x)=:
B

(&1) |B|

where the sum is over all NBC bases of x. K

We should note that not every lattice has a total ordering of the atoms
satisfying (18) and so this result is not as strong as Theorem 1.1. On the
other hand, there is an interesting relationship between a dual of this
restriction and the level condition from Section 6.

Proposition 9.2. Let L be a finite lattice. Let \ be an induced ordering
of A(L) such that for all circuits C having a unique maximal element we have

� C=� (C"max C).

Then L satisfies the level hypothesis.

Proof. Suppose, toward a contradiction, that we have b0 Ib1 I } } } I
bk and b0�� i�1 bi . Then D=[b0 , b1 , ..., bk] is dependent and so contains
a circuit C. Also C must have a unique maximal element bj because D
intersects each level at most once. So we have � C=� (C"bj), or equiv-
alently bj�� (C"bj). But this cannot happen since for some x of the
inducing chain we have bi�x for i< j but bj �3 x. K

In his work [1, Part III] on Tutte polynomials for hypermatroids,
Christos Athanasiadis defines a generalized lattice to be a triple
L=(L, E, f ) where L is a finite lattice, E is a set, and f : E � L is some
map. He then proves a theorem about the Mo� bius function of L in the case
that the hypermatroid associated with L satisfies condition (18). In the
case that E=A(L) and f is inclusion his result becomes a special case of
Theorem 9.1.

(3) There are certain to be topological ramifications of our work. In
fact Yoav Segev [22] has already proved that the order complex of any
lattice is homotopy equivalent to the simplicial complex of all NBB sets B
with � B<1� . This can be used to demonstrate a recent result of Linusson
[16] that the order complex of an interval in the partition lattice under
dominance is homotopy equivalent to a sphere or contractible.
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An important use of NBC sets is to give a basis for the Orlik�Solomon
algebra A(L) of a geometric lattice L [18]. If L is the intersection lattice
of a complex hyperplane arrangement, then A(L) is isomorphic to the
cohomology algebra of the complement of the arrangement. Recently there
has been a lot of interest in subspace arrangements [2]. The corresponding
intersection lattices are no longer geometric, but perhaps NBB sets can be
used to give information about the associated cohomology algebra in this
case. Recently, De Concini and Procesi [7] used algebraic geometric
techniques to show that this algebra is indeed determined solely by the
lattice and dimension information. This provides some hope that a
combinatorial description is also possible.
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