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Abstract

We determine the Möbius function of a poset of compositions of an integer. In

fact we give two proofs of this formula, one using an involution and one involving

discrete Morse theory. This composition poset turns out to be intimately connected

with subword order, whose Möbius function was determined by Björner. We show that

using a generalization of subword order, we can obtain both Björner’s results and our

own as special cases.

1 Introduction

If A is any set then the corresponding Kleene closure or free monoid, A∗ is the set of words
with letters from A, i.e.,

A∗ = {w = w(1)w(2) . . . w(n) | n ≥ 0 and w(i) ∈ A for all i}.

We denote the length (number of elements) of w by |w|.

∗This work was partially done while the author was on leave at DIMACS
†Partially supported by an award from DIMACS and an NSF VIGRE grant to the Rutgers University

Department of Mathematics.
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Letting P denote the positive integers, we see that P
∗ is the set of integer compositions

(ordered partitions). We can turn P
∗ into a partially ordered set by letting u ≤ w if there

is a subword w(i1)w(i2) . . . w(il) of w having length l = |u| such that u(j) ≤ w(ij) for
1 ≤ j ≤ l. For example, 433 ≤ 16243 because of the subword 643. Bergeron, Bousquet-
Mélou and Dulucq [2] were the first to study P

∗, enumerating saturated chains that begin at
its minimal element. Snellman has also studied saturated chains in this poset as well as two
other partial orders on P

∗ [21, 22]. One of these other partial orders was originally defined
by Björner and Stanley [8] who showed that it has analogues of many of the properties of
Young’s lattice. One of the main results of this paper is a formula for the Möbius function
of P

∗.
This order on P

∗ is closely related to subword order. If A is any set then the subword
order on A∗ is defined by letting u ≤ w if w contains a subsequence w(i1), w(i2), . . . , w(il)
such that u(j) = w(ij) for 1 ≤ j ≤ l = |u|. By way of illustration, if A = {a, b} then
abba ≤ aabbbaba because w(1)w(3)w(5)w(8) = abba. Note that we use the notation A∗ when
referring to subword order as opposed to the partial order on P

∗, even though we use ≤
for both. We will always give enough context to make it clear which poset we are dealing
with. Björner [4] was the first to completely determine the Möbius function of subword
order, although special cases had been obtained previously by Farmer [13] and Viennot [24].
In fact, Björner gave two proofs of his formula, one using an involution [5] and one using
shellability [4]. He also gave a demonstration with Reutenauer [6] via generating functions on
monoids. Another proof was given by Warnke [26] using induction while Wang and Ma [25]
used Cohen-Macaulayness to investigate µ. We derive the Möbius function formula for P

∗

using first combinatorial and then topological techniques.
In the next section we review Björner’s result for subword order as well as the related

definitions which will be useful for P
∗. It contains a statement of our formula for the Möbius

function of P
∗ in Theorem 2.2. Section 3 is devoted to giving a proof of this theorem using

a sign-reversing involution.
Although intervals in A∗ are shellable, those in P

∗ need not even be connected as evident
from the example in Figure 2, so we need a more powerful tool to study the topology of
the composition poset. For this we turn to discrete Morse theory, which was developed by
Forman [14, 15] and can be used to compute the homology of any CW-complex subject to
certain mild regularity restrictions. A method for applying this theory to the order complex
of a poset was given by Babson and Hersh [1] and further studied by Hersh herself [16]. Since
this is a relatively recent addition to the combinatorial toolbox, we provide an exposition of
the basic ideas of the theory in Section 4. The subsequent section gives a Morse theoretic
proof of Theorem 2.2.

The similarity between the formulas for the Möbius functions of A∗ and P
∗ leads one to

ask if there is a common generalization. In fact, if P is any poset then there is a partial
order on P ∗ which we call generalized subword order. It has been used in the context of
well-quasi-ordering; see Kruskal’s article [18] for a survey of the early literature. When P is
a chain or an antichain, one recovers our results or Björner’s, respectively. This construction
is studied in Section 6. We end with a section of comments and open problems.
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2 Subword and composition order

We now review Björner’s formula for the Möbius function of subword order, reformulating
it slightly so as to emphasize the connection to the composition order which is our main
objective. We assume the reader is familiar with Möbius functions, but all the necessary
definitions and theorems we use here can be found in Stanley’s text [23, §3.6–3.7].

We first need to restate the definition of the partial order in A∗ in a way that, although
slightly more complicated, has a direct connection with the Möbius function. Suppose we
have a distinguished symbol, 0, and suppose that 0 6∈ A. Then a word η = η(1)η(2) . . . η(n) ∈
(A ∪ 0)∗ has support

Supp η = {i | η(i) 6= 0}.

An expansion of u ∈ (A∪0)∗ is a word ηu ∈ (A∪0)∗ such that the restrictions of u and ηu to
their supports are equal. For example, if u = abba then one expansion of u is ηu = a0b0b00a.
An embedding of u into w is an expansion ηuw of u which has length |w| and satisfies

ηuw(i) = w(i) for all i ∈ Supp ηuw.

Note that u ≤ w in A∗ if and only if there is an embedding of u into w. The example
expansion ηuw given above is exactly the embedding which corresponds to the subword of
w = aabbbaba given at the beginning of the third paragraph of this paper. If w is clear from
context we simply write ηu for ηuw.

The Möbius function of A∗ counts certain types of embeddings. If a ∈ A then a run of
a’s in w is a maximal interval of indices [r, t] such that

w(r) = w(r + 1) = . . . = w(t) = a.

Continuing our example, the runs in w = aabbbaba are [1, 2], [3, 5], [6, 6], [7, 7], and [8, 8].
Call an embedding ηu into w normal if, for every a ∈ A and every run [r, t] of a’s in w, we
have

(r, t] ⊆ Supp ηu

where (r, t] denotes the half-open interval. In our running example, this means that w(2) = a

and w(4) = w(5) = b must be in any normal embedding. (If r = t then (r, t] = ∅, so there
is no restriction on runs of one element.) Thus in this case there are precisely two normal
embeddings of u into w, namely

ηu = 0a0bba00 and 0a0bb00a.

Define
(

w

u

)

n
to be the number of normal embeddings of u into w.

We now have everything in place to state Björner’s result.

Theorem 2.1 (Björner [4]). If u,w ∈ A∗ then

µ(u,w) = (−1)|w|−|u|

(

w

u

)

n

.

Finishing our example, we see that

µ(abba, aabbbaba) = (−1)8−4 · 2 = 2.
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We now turn to P
∗. The definitions of support and expansion are exactly as before, but

the notion of embedding must be updated to reflect the different partial order. To this end
we define an embedding of u into w as an expansion ηu of u having length |w| such that

ηu(i) ≤ w(i) for 1 ≤ i ≤ |w|.

Again, u ≤ w in P
∗ is equivalent to the existence of an embedding of u into w. An interval

in P
∗ is displayed in Figure 2.
If u ≤ w and ηw is an expansion of w then there is a unique last or rightmost embedding

ρuw of u into ηw which has the property that for any other embedding ηuw of u into ηw one
has Supp(ηuw) ≤ Supp(ρuw). (If S = {i1 < · · · < im} and S ′ = {i′1 < · · · < i′m} then we
write S ≤ S ′ to mean that ij ≤ i′j for 1 ≤ j ≤ m.) Note that ρuw depends on ηw, not just
on w, but the expansion of w used will always be clear from context.

Like subword order, we define normal embeddings for P
∗ in terms of runs (defined in the

same way in this context). We say that an embedding ηu into w is normal if the following
conditions hold.

1. For 1 ≤ i ≤ |w| we have ηu(i) = w(i), w(i) − 1, or 0.

2. For all k ≥ 1 and every run [r, t] of k’s in w, we have

(a) (r, t] ⊆ Supp ηu if k = 1,

(b) r ∈ Supp ηu if k ≥ 2.

Comparing this with Björner’s definition, we see that in P
∗ a normal embedding can have

three possible values at each position instead of two. Also, the run condition for ones is the
same as in A∗, while that condition for integers greater than one is complementary. As an
example, if w = 2211133 and u = 21113, then there are two normal embeddings, namely
ηu = 2101130 and 2011130. Note that 2001113 and 0211130 are not normal since they violate
conditions (1) and (2), respectively.

As with subword order, the Möbius function for compositions is given by a signed sum
over normal embeddings, although here the sign of a normal embedding depends on the
embedding itself and not just the length of the compositions. Given a normal embedding ηu

into w we define its defect to be

d(ηu) = #{i | ηu(i) = w(i) − 1}.

The sign of the embedding is, then, (−1)d(ηu).
We can now state our main theorem about P

∗.

Theorem 2.2. If u,w ∈ P
∗ then

µ(u,w) =
∑

ηu

(−1)d(ηu)

where the sum is over all normal embeddings ηu into w.

In the example of the previous paragraph, this gives

µ(21113, 2211133) = (−1)2 + (−1)0 = 2.

Although this example does not show it, it is possible to have cancellation among the terms
in the sum for µ.
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3 Proof by sign-reversing involution

We now prove Theorem 2.2 using a sign-reversing involution. The proof is similar in nature
to Björner’s proof in [5], but is significantly more complicated.

Proof (of Theorem 2.2). If u = w then there is exactly one normal embedding ηww and it
has defect 0. This gives (−1)0 = 1 = µ(w,w), as desired.

Now assume that u < w = w(1) · · ·w(n). Since the Möbius recurrence uniquely defines
µ, it suffices to show that

∑

v∈[u,w]

∑

ηvw

(−1)d(ηvw) = 0,

where the inner sum is over all normal embeddings of v into w. We prove this by constructing
a sign-reversing involution on the set of normal embeddings ηvw for v ∈ [u,w].

Let ρuv denote the rightmost embedding of u into ηvw, so for all i ∈ [1, n],

ρuv(i) ≤ ηvw(i) ≤ w(i). (1)

Also let s denote the left-most index where ρuv and w differ, i.e., s = min{i : ρuv(i) 6= w(i)}.
Since u < w, s must exist, and by the definition of s we have

ρuv(i) = ηvw(i) = w(i) for all i ∈ [1, s). (2)

Set k = w(s), so ηvw(s) is k, k − 1, or 0 by normality and ρuv(s) ≤ k − 1. Finally, let [r, t]
denote the indices of the run of k’s in w that contains the index s.

Our involution maps ηvw to the embedding ηvw = ηvw(1) · · · ηvw(n) where ηvw(i) = ηvw(i)
for all i 6= s and ηvw(s) is determined by the following rules. If k = 1 then

ηvw(s) =

{

0 if ηvw(s) = 1,
1 if ηvw(s) = 0.

(3)

If k ≥ 2, s > r, and ρuv(s) = 0 then

ηvw(s) =

{

0 if ηvw(s) = k − 1,
k − 1 if ηvw(s) = 0.

(4)

Finally, if k ≥ 2 and either s = r or ρuv(s) 6= 0 then

ηvw(s) =

{

k − 1 if ηvw(s) = k,
k if ηvw(s) = k − 1.

(5)

It is not obvious that this map is defined for all normal embeddings ηvw when k ≥ 2. For
example, if s > r and ρuv(s) = 0, then we should apply (4), but it is a priori possible that
ηvw(s) = k, in which case (4) is not defined. However, since s > r, ρuv(s− 1) = w(s− 1) = k

by (2), and this contradicts our choice of ρuv as the rightmost embedding of u into ηvw.
Similar issues arise when s = r or ρuv(s) 6= 0: if s = r then ηvw(s) 6= 0 by normality, and if
ρuv(s) 6= 0 then ηvw(s) 6= 0 by (1).

Having established that this map is indeed defined on all normal embeddings, we have
several properties to prove. First, it is evident from (3), (4), and (5) that the number
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of elements equal to k − 1 changes by exactly one in passing from ηvw to ηvw, and thus
(−1)d(ηvw) = −(−1)d(ηvw). We must now prove that ηvw is a normal embedding of v into w

for some v ∈ [u,w] and that this map is an involution.
We begin by showing that ηvw is an embedding of some v ∈ [u,w] into w. It follows

from the fact that ηvw is an embedding into w and the definition of our map that ηvw is an
embedding of some word v into w, so we only need to show that v ≥ u. We prove this by
showing that

ηvw(i) ≥ ρuv(i) (6)

for all i ∈ [1, n]. This is clear for all i 6= s because for these indices ηvw(i) = ηvw(i) ≥ ρuv(i).
Furthermore, ρuv(s) ≤ k − 1 by the definition of s, so the only case in which (6) is not
immediate is when k ≥ 2 and ηvw(s) = 0. However, this can only occur from using (4),
which requires that ρuv(s) = 0, completing the demonstration that v ∈ [u,w].

We now aim to show that ηvw is a normal embedding. If ηvw(s) > 0 then Supp(ηvw) ⊇
Supp(ηvw), so the normality of ηvw follows from the normality of ηvw and the fact that ηvw(s)
is either k − 1 or k. If ηvw(s) = 0 then there are two cases depending on whether (3) or
(4) was applied. Suppose first that (3) was applied, so k = 1. Comparing (3) with the
definition of normality, we see that it suffices to show s = r. Suppose to the contrary that
s ∈ (r, t]. Since s is the left-most position at which ρuv and w differ, we have ρuv(s) = 0 and
ρuv(s− 1) = 1. However, this contradicts our choice of ρuv as the rightmost embedding of u

in ηvw. Now suppose that (4) was applied, so s > r and ρuv(s) = 0. Then (2) implies that
ηvw(r) = ηvw(r) = k, and normality is preserved.

It only remains to show that this map is an involution. Consider applying the map to
ηvw. In this process we define ρuv to be the rightmost embedding of u into ηvw, s = min{i :
ρuv(i) 6= w(i)}, and k = w(s). We then follow the rules (3), (4), and (5) to construct an
embedding ηvw, which we would like to show is equal to ηvw.

First we claim that ρuv = ρuv. Suppose to the contrary that ρuv 6= ρuv. By (6), ηvw(i) ≥
ρuv(i) for all i, so ρuv also gives an embedding of u into v, and thus the only way we can
have ρuv 6= ρuv is if ρuv is further to the right than ρuv. This requires that

0 = ρuv(s) < ρuv(s) ≤ k (7)

and that
ηvw(s) < ηvw(s). (8)

Because we are assuming that ρvw is further to the right than ρvw, there is some position
to the left of s at which ρuv is nonzero. In fact, (2) shows that we must have ρuv(s− 1) 6= 0
and also implies that

ηvw(s) < ρuv(s) = ρuv(s − 1) = w(s − 1). (9)

We now consider the three cases arising from each of the rules (3), (4), and (5) in turn.
Suppose (3) was applied so k = 1. It follows from (8) and the definition of our map that

ηvw(s) = 0. Also (7) and (9) give w(s − 1) = ρuv(s) = 1. However, this implies that ηvw

zeroed out a 1 which was not the first in its run, contradicting normality.
Now suppose (4) was applied. Then by (8) we have ηvw(s) = k − 1. We also have s > r

which in conjunction with (9) gives ρuv(s) = w(s−1) = k. This implies that ηvw(s) < ρuv(s),
but that contradicts the v version of (1).
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Figure 1: A Morse function on a CW-complex

Finally suppose that (5) was used. By (7) it must be the case that s = r. Also,
equation (8) gives ηvw(s) = k − 1 and ηvw(s) = k. Now applying (7) and (9) we have
k − 1 < w(s − 1) = ρuv(s) ≤ k, so w(s − 1) = k which contradicts that fact that s = r.

Now that we have established the equality of ρuv and ρuv, the fact that this map is an
involution can be readily observed. We must have s = s, so k = k, and thus we apply the
same rule to go from ηvw to ηvw as we applied to get ηvw from ηvw, and each of these rules
is clearly an involution.

4 Introduction to discrete Morse theory

In this section we review the basic ideas behind Forman’s discrete Morse theory [14, 15]
as well as Babson and Hersh’s method for applying the theory to the order complex of a
poset [1].

Let X be a CW-complex. Since we will be working in reduced homology, we assume that
X has an empty cell ∅ of dimension −1 which is contained in every cell of X. If σ is a d-cell
(cell of dimension d) in X then let σ∂ be the set of (d− 1)-cells τ which are contained in the
closure σ. Dually, let σδ denote the set of (d + 1)-cells τ such that σ ⊂ τ .

A real-valued function f on the cells of X is a Morse function if it satisfies the following
two conditions.

1. For every cell σ of X we have

(a) #{τ ∈ σ∂ | f(τ) ≥ f(σ)} ≤ 1, and

(b) #{τ ∈ σδ | f(τ) ≤ f(σ)} ≤ 1.

2. If τ ∈ σδ and f(τ) ≤ f(σ) then σ is a regular face of τ .

Intuitively the first condition says that, with only certain exceptions, f increases with di-
mension. In fact, f(σ) = dim σ is a perfectly good Morse function on X, although we will
see shortly that it is not very interesting. A simple example of a Morse function on a CW-
complex is given in Figure 1 where the value of f is given next to each cell σ and we also set
f(∅) = −1.
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The fact that condition (1) holds for every cell implies that, in fact, at most one of the
two sets under consideration has cardinality equal to 1. Thus the function f induces a Morse
matching between pairs of cells σ, τ with σ ∈ τ ∂ and f(σ) ≥ f(τ). The regularity condition
ensures that for each such pair there is an elementary collapse of τ onto τ − (τ ∪ σ). The
cells which are not matched by f are called critical. Since each collapse is a homotopy
equivalence, X can be collapsed onto a homotopic complex Xf built from the critical cells.
In our example, the cells labeled 1 and 2 are matched and after collapsing we clearly have
a complex which is still homotopically a circle. Note that if we take f to be the dimension
function then every cell is critical and Xf = X, so the cell complex does not simplify in this
case which does not help in understanding its structure.

Let m̃d be the number of critical d-cells of X and let b̃d be the d-th reduced Betti
number over the integers. We also use χ̃(X) for the reduced Euler characteristic. From the
considerations in the previous paragraph, we have the following Morse inequalities which
are analogous to those in traditional Morse theory.

Theorem 4.1 (Forman [15]). For any Morse function on a cell complex X we have

1. b̃d ≤ m̃d for d ≥ −1, and

2. χ̃(X) =
∑

d≥−1

(−1)dm̃d.

(One can get further inequalities relating various partial alternating sums of the b̃d and
m̃d.) Continuing our example, we see that m̃−1 = m̃0 = m̃1 = 1 which bound b̃−1 = b̃0 = 0
and b̃1 = 1, as well as χ̃(X) = −1 + 1 − 1 = −1, as expected.

We now turn to the special case of order complexes. Let P be a poset and consider
an open interval (u,w) in P . The corresponding order complex ∆(u,w) is the abstract
simplicial complex whose simplices (faces) are the chains in (u,w). We are interested in the
order complex because of the fundamental fact [20] that

µ(u,w) = χ̃(∆(u,w)). (10)

Therefore finding a Morse function for ∆(u,w) could permit us to derive the correspond-
ing Möbius value as well as give extra information about its Betti numbers. Suppose we
have an ordering of the maximal chains of (u,w) (facets of ∆(u,w)), say C1, C2, . . . , Cl. Call
a face (subchain) σ of Ck new if it is not contained in any Cj for j < k. We would like to
construct a Morse matching inductively, where at the kth stage we extend the matching on
the faces in Cj for j < k by matching up as many of the new faces σ in Ck as possible. It
turns out that under fairly mild conditions on the facet ordering, one can construct such a
matching so that all the new faces in Ck are matched if there are an even number of them,
and only one is left unmatched if the number is odd. Thus adding each facet contributes
at most one critical cell. A maximal chain contributing a critical cell is called a critical
chain. In reading the details of this construction, the reader may find it useful to refer to the
example of the interval [322, 3322] ⊂ P

∗ given in Figure 2. Note that by abuse of notation
we include u and w when writing out a maximal chain C, even though C is really a subset
of the open interval (u,w). Also, because of the way our chain order is constructed, we start
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3322

2322 3222 3312 3321

1322 3122 3212 3221 332

322

C1 : 3322 1 2322 1 1322 1 0322

C2 : 3322 2 3222 2 3122 2 3022

C3 : 3322 2 3222 3 3212 3 3202

C4 : 3322 2 3222 4 3221 4 3220

C5 : 3322 3 3312 2 3212 3 3202

C6 : 3322 3 3312 3 3302 2 3202

C7 : 3322 4 3321 2 3221 4 3220

C8 : 3322 4 3321 4 3320 2 3220

Figure 2: The interval [322, 3322] and its maximal chains

with the top element w and work down to u which is dual to what is done normally. Thus
in a chain C, terms like “first” and “last” refer to this ordering of C’s elements. Finally, we
list the elements of a chain as embeddings into w for reasons which will become apparent
when we also describe the labels given to the edges (covers) of a chain.

To define the types of chain orderings we consider, suppose we have two chains C : w =
v0 v1 . . . u and C ′ : w = v′

0 v′
1 . . . u where x y means that

x covers y. Then we say that C and C ′ agree to index j if vi = v′
i for i ≤ j. In addition,

C and C ′ diverge from index j if they agree to index j and vj+1 6= v′
j+1. In addition, we

use the notation C ′ < C to mean that C ′ comes before C in the order under consideration.
An ordering of the maximal chains of [u,w] is a poset lexicographic order, or PL-order for
short, if it satisfies the following condition. Suppose C ′ and C diverge from index j with
C ′ < C. Then for any maximal chains D′ and D which agree to index j + 1 with C ′ and
C, respectively, we must have D′ < D. Note that orderings coming from the EL-labelings
introduced by Björner [3] or from the more general CL-labelings of Björner and Wachs [9]
are PL-orders as long as one breaks ties among labels consistently.

The PL-order we use in P
∗ is as follows. If x y is a cover then y is obtained from x

by reducing a single part of x by 1. Thus there is a unique normal embedding of y into x,
since if a 1 is reduced to 0 then it must be the first element in the run of ones to which it
belongs. Similarly, for any expansion ηx there is a unique normal embedding of y into ηx.
Now given any chain C : w = v0 v1 . . . u we inductively associate with each vj

an embedding ηvj
into w where ηv0

= w and, for j ≥ 0, ηvj+1
is the unique normal embedding

9



of vj+1 into ηvj
. We label the edge vj vj+1 of C with the index i of the position which

was decreased in passing from ηvj
to ηvj+1

. Furthermore, we often write ηvj
in place of vj

when listing the elements of C. Figure 2 illustrates this labeling. It is important to note
that although ηvj+1

is normal in ηvj
, it need not be normal in w. We should also remark that

this labeling is similar to the one used by Björner [4] in his CL-shelling of the intervals in
subword order. Finally, if one orders the chains of [u,w] using ordinary lexicographic order
on their label sequences, then the result is a PL-order. This is due to the fact that if two
chains agree to index j then their first j labels are the same. The chains in Figure 2 are
listed in PL-order.

We now return to the general exposition. To construct our matching, when we come to
a chain C : w = v0 v1 . . . u in a given order we must be able to determine
which faces of C are new. Denote the open interval I from vi to vj in C by

I = C(vi, vj) = vi+1 vi+2 . . . vj−1.

(Do not to confuse this with an open interval in the poset.) Then I is a skipped interval if
C − I ⊂ C ′ for some C ′ < C. It is a minimal skipped interval or MSI if it does not strictly
contain another skipped interval. In Figure 2, the MSI’s are circled. One can find the MSI’s
by taking the maximal intervals in C − (C ∩C ′) for each C ′ < C and then throwing out any
that are not containment minimal in C. Let I = I(C) be the set of MSI’s in C. Then it is
easy to check that a face σ is new in C if and only if σ has a nonempty intersection with
every I ∈ I(C).

The set I is not quite sufficient to construct the matching because the MSI’s can overlap
and we will need disjoint intervals. However, there are no containments among the intervals
in I, so they can be ordered I1, I2, I3, . . . according to when they are first encountered on
C. We now inductively construct a set J = J (C) of J-intervals as follows. Let J1 = I1.
Then consider the intervals I ′

2 = I2 − J1, I
′
3 = I3 − J1, . . .; throw out any which are not

minimal; and pick the first one which remains to be J2. Continue this process until there
are no nonempty modified MSI’s left. It happens that in all the critical chains for P

∗, the
intervals in I will already be disjoint and so we will not need this step.

We are finally in a position to describe the matching. List the maximal chains of [u,w]
using a PL-order. A family K of intervals of a maximal chain C covers the chain if C = ∪K.
There are three cases depending on whether I(C) or J (C) covers C or not. First suppose
that I(C) does not cover C, so neither does J (C), and pick x0 to be the first vertex in C−∪I.
Consider the map σ → σ∆{x0} where ∆ is symmetric difference (not the order complex).
One can show that this map is a fixed-point free involution on the new faces σ in C which
extends the Morse matching already constructed from the previous chains. Now suppose
that J = {J1, J2, . . . , Jr} does cover C and consider the new face σC = {x1, x2, . . . , xr}
where xi is the first element of Ji for 1 ≤ i ≤ r. Given any other new face σ 6= σC , we find
the interval Ji of smallest index where σ ∩ Ji 6= {xi} and map σ → σ∆{xi}. This involution
pairs up all new faces in C except σC , which is critical. Finally, suppose that I covers C

but J does not. Then we use the mapping of the second case to pair up all new faces whose
restriction to ∪J is different from σC . We also pair up the remaining new faces (including
σC) by using the mapping of the first case where we take x0 to be the first vertex in C−∪J .
Thus we have outlined the proof of the following theorem, remembering that the dimension
of a simplex is one less than its number of vertices.
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Theorem 4.2 ([1]). Let P be a poset and [u,w] be a finite interval in P . For any PL-
order on the maximal chains of [u,w], the above construction produces a Morse matching in
∆(u,w) with the following properties.

1. The maximal chain C is critical if and only if J covers C.

2. If C is critical then its unique critical cell has dimension #J (C) − 1.

5 A Morse theory derivation of µ

We are now ready to find the critical cells for the PL-order in P
∗ defined previously. We first

need three lemmas which will prove useful in a number of cases. Unless otherwise specified,
we always use the notation

C : w = v0
l1 v1

l2 v2
l3 . . . ld vd = u (11)

for labeled maximal chains, or

C : w = ηv0

l1 ηv1

l2 ηv2

l3 . . . ld ηu (12)

if we wish to be specific about the embeddings determined by C. We also use

l(C) = (l1, l2, . . . , ld)

for its label sequence.
Take an interval [u,w] ⊂ P

∗ with |u| = |w| and let mi = w(i) − u(i). Now consider
the multiset Muw = {{1m1, 2m2 , . . .}} where imi means that i is repeated mi times. Then
every permutation of M is the label sequence for a unique maximal chain in [u,w] and this
accounts for all the chains. (In fact, [u, v] is isomorphic to the poset of submultisets of Muw.)
We record this simple observation for later reference.

Lemma 5.1 (Same Length Lemma). If |u| = |w| then the the label function l gives a
bijection between the maximal chains in [u,w] and the permutations of Muw. In particular,
if Muw contains only one distinct element (possibly with multiplicity) then [u,w] contains a
unique maximal chain.

If |u| < |w| then we no longer have the nice bijection of the previous paragraph, but
we can still say something. Let C be a maximal chain as in (11) and let l′ = (l′1, . . . , l

′
d)

be any permutation of the label sequence l(C). Then l′ defines a sequence of expansions
ηv′

0
, ηv′

1
, . . . , ηv′

d
where ηv′

0
= w and for j ≥ 1 we get ηv′

j
from ηv′

j−1
by subtracting one from

position l′j in ηv′

j−1
. It is still true that C ′ : w = v′

0 v′
1 . . . v′

d = u is a

maximal chain in [u,w]. We call C ′ the chain specified by l′. Since ηv′

j
may not be a normal

embedding in ηv′

j−1
, we may not have l(C ′) = l′. Still, at the first place where l(C ′) and l′

differ, that difference must have been caused because using the label in l′ would have resulted
in changing a 1 to a 0 where that 1 was not the first in its run. Thus the corresponding
normal embedding in l(C ′) uses the first 1 in that run which is to the left. Hence l(C ′) ≤ l′

in lexicographic order. We summarize this discussion in the following lemma.
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Lemma 5.2 (Chain Specification Lemma). If C is a maximal chain in [u,w] and l′ is
any permutation of l(C) then l(C ′) ≤ l′ where C ′ is the chain specified by l′.

As our first application of the Chain Specification Lemma, we can determine what hap-
pens at descents. A descent of C is vj ∈ C such that lj > lj+1. An ascent is defined by
reversing the inequality.

Lemma 5.3 (Descent Lemma). If vj is a descent of C then it is an MSI.

Proof. Let l′ be the permutation of l(C) gotten by interchanging lj and lj+1 and let C ′ be
the chain specified by l′. Then by Lemma 5.2 we have l(C ′) ≤ l′ < l(C), so C ′ comes before
C in PL-order and it is easy to check that C ′ diverges from C at vj−1 and rejoins C at vj+1.
Thus {vj} is a skipped interval; and since the interval contains only one element it must also
be minimal.

We only need a few more definitions to state our result characterizing the critical chains.
A chain C will be said to have a certain property, e.g., weakly decreasing, if l(C) has that
property. Also, if ηu is a normal embedding into w then we need to keep track of the zero
positions which did not come from decreasing a 1 in w by letting

D(ηu) = #{i | ηu(i) = 0, w(i) ≥ 2}.

Theorem 5.4. Consider the maximal chains in [u,w] ⊂ P
∗ in the given PL-order.

1. There is a bijection between critical chains C and normal embeddings ηu into w where
the chain corresponding to ηu is the unique weakly decreasing chain ending at ηu.

2. If C is critical and ends at ηu then I(C) = J (C) and

#I(C) = d(ηu) + 2D(ηu) − 1.

We shall prove this theorem by considering 3 cases: when C is weakly decreasing and
ends at a normal embedding, when C is weakly decreasing and does not end at a normal
embedding, and when C is not weakly decreasing. Note that for any embedding ηu into w,
there is at most one decreasing chain ending at ηu, and that if ηu is normal then such a chain
will exist because it will be possible to make each cover normal. Thus there is a bijection
between normal embeddings and weakly decreasing chains ending at them, but we need to
show such chains are critical. To do so, we define a plateau of C to be an interval C(vi, vj)
such that (li+1, li+2, . . . , lj) is a run of length at least 2 in l(C).

Proposition 5.5. If C is weakly decreasing and ends at a normal embedding ηu then C is
critical, I(C) = J (C), and #I(C) = d(ηu) + 2D(ηu) − 1.

Proof. Every descent is an MSI of C by the Descent Lemma, so any other MSI must be
contained in a plateau by minimality. In fact, we claim that any plateau C(vi, vj) is an MSI.
Without loss of generality we can assume vi = w (since otherwise vi is a descent and so no
MSI can contain it) and vj = u.

To show C = C(w, u) is a skipped interval, first note that by construction l(C) consists
of c repeated k = j − i ≥ 2 times, so w(c) = ηu(c) + k. Thus by normality and the fact that
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k ≥ 2 we get ηu(c) = 0 and w(c) = k. Using normality again implies that c cannot be the
first element in its run of k’s in w, and thus w(c − 1) = k. Because of this, there is a chain
C ′ from w to u all of whose labels are c − 1. By construction C ′ < C and C ∩ C ′ = ∅, so C

is a MSI as desired.
To show the plateau is minimal suppose, to the contrary, that there is a skipped interval

I ⊂ C and let w = v0, u = vj. Note that because |v0| = |v1| = . . . = |vj−1|, the Same Length
Lemma applies to show that there is only one chain (namely an interval of C) between any
two of these compositions. Thus the chain C ′ giving rise to I must rejoin C at an embedding
η′

u of u into w, and hence also contain v1 in order to cut out a proper subinterval. From this
and normality of ηu we have

η′
u(c) < k = w(c − 1) = ηu(c − 1). (13)

Also, |u| = |w| − 1 implies that C ′ must zero out exactly one element of w. Since C ′ < C,
that element must be in a position strictly to the left of position c, but then because ηu and
η′

u are both expansions of u we are forced to have ηu(c − 1) = η′
u(c), contradicting (13).

Now we know that I(C) consists of the descents and plateaus of C which are disjoint
and cover C by their definition, so J (C) = I(C) and C is critical by Theorem 4.2. To count
the number of MSI’s, note that if c is a position counted by d(ηu) then the vertex just before
the edge labeled c in C will be a descent, unless that edge is the very first one. On the other
hand, if c is counted by D(ηu) then the run of c’s in l(C) contribute both a plateau and a
descent just before the plateau to I (unless the run is at the beginning of C when only the
plateau will be an interval). In this manner we count each MSI exactly once for a total of
d(ηu) + 2D(ηu) − 1 intervals.

Proposition 5.6. If C is weakly decreasing and ends at an embedding ηu which is not normal
then C is not critical.

Proof. As in the proof of the previous proposition, it suffices to consider the case where l(C)
consists of a label c repeated k ≥ 2 times so that w(c) = ηu(c)+k. If ηu(c) > 0 then |w| = |u|
and so the Same Length Lemma applies to show that C is the only chain from w to c. In
particular, it is the lexicographically first chain and thus not critical.

If ηu(c) = 0 then w(c) = k and, since ηu is not normal, it must be that c is the first index
in this run of k’s in w. Let

ηu(c − 1) = w(c − 1) = h 6= k. (14)

To demonstrate that C is not critical, it suffices to show that there is no MSI I containing
the element v1 in C. Suppose, to the contrary that such an interval I exists and let C ′ be
a chain giving rise to I. Using the Same Length Lemma as in the proof of Proposition 5.5
(third paragraph) we see that C ′ must rejoin C at u and this forces I = C(w, u).

To finish the proof, it suffices to find a skipped interval I ′′ ⊂ I since that will contradict
the minimality of I. Let b be the smallest label in l(C ′). Then b < c since l(C ′) < l(C) = (ck).
The same argument used at the end of the third paragraph of the previous proposition
together with equation (14) give

η′
u(c) = ηu(c − 1) = h 6= k = w(c).
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Since the parts of a composition can only (weakly) decrease along a chain, we must have
η′

u(c) < w(c). It follows that c is a label on C ′. Now consider any permutation of l(C ′) which
starts l′′ = (c, b, ...) and let C ′′ be the chain specified by l′′. Then by construction and the
Chain Specification Lemma l(C ′′) ≤ l′′ < l(C). This implies that C ′′ < C in PL-order and,
by construction again, C ′′ contains v1. Thus no MSI of C can contain v1, a contradiction.

Our third and final proposition completes the proof of Theorem 5.4

Proposition 5.7. If C is not weakly decreasing then C is not critical.

Proof. If C is not weakly decreasing then it has an ascent v. It suffices to show that v

is in no MSI. Suppose, to the contrary, that v is in an MSI I = C(vi, vj). Then by the
Descent Lemma, I contains no descents and so C is weakly increasing from vi to vj. As in
the previous two proofs, it is no loss of generality to assume vi = w and vj = u so that C is
itself an MSI.

Since C is an MSI, it is not the first chain in [u,w]. That first chain is the unique weakly
increasing chain which ends at the rightmost embedding ρu of u into w. Thus if ηu is the
embedding defined by C then we must have ηu 6= ρu.

For ηu define
zη(j) = #{i ≤ j | ηu(i) = 0}

and similarly define zρ(j) for ρu. Because ρu is rightmost we always have zρ(j) ≥ zη(j)
with equality when j = |w|. But ρu is not equal to ηu, so there is an index a such that
zρ(a) > zη(a). Thus there is a first index c > a such that zρ(c) = zη(c). This definition of c

forces ηu(c) = 0 and ρu(c) = k for some k > 0. But ηu and ρu are embeddings of the same
composition, so there must be some index b with a ≤ b < c such that ηu(b) = ρu(c) = k and
ηu(i) = 0 for b < i ≤ c.

We can now derive a contradiction by constructing a smaller skipped interval in C as
follows. We have w(c) ≥ ρu(c) = k and ηu(c) = 0. Since C is weakly increasing, the labels
equal to c must occur as a plateau. Therefore there must be vertices w′, u′ ∈ C such that
I ′ = C(w′, u′) satisfies ηw′(c) = k, ηu′(c) = 0, and l(I ′) = (ck). But

ηw′(i) = ηu′(i) = ηu(i) =

{

k if i = b,
0 if b < i < c,

so there is a chain C ′ from w′ to u′ with l(C ′) = (bk). Since b < c, I ′ is a skipped interval
and we have obtained the desired contradiction.

We can now rederive the formula for µ(u,w) in P
∗. Combining equation (10) with The-

orems 4.1, 4.2, and 5.4 we obtain

µ(u,w) = χ̃(u,w) =
∑

C

(−1)dim σC =
∑

ηu

(−1)d(ηu)+2D(ηu)−2 =
∑

ηu

(−1)d(ηu)

where the first sum is over all critical chains C in (u,w) and the other two are over all normal
embeddings ηu into w.

We end this section by remarking that the Morse method can be used as a powerful tool
not just for proving theorems but for discovering the correct statement to be proved. The
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reader may have found our definition of a normal embedding somewhat ad hoc. However, by
starting with the very natural chain labeling used above and looking at the critical chains,
one is quickly led to this definition in order to characterize the embeddings at which such
chains end. Similarly, the defect may seem to have come out of nowhere, but in order to
determine the dimension of the critical cells one is forced to define this quantity as well as
its big brother D(ηu).

6 Generalized subword order

We can now generalize both our result and Björner’s as follows. Let (P,≤P ) be any poset.
The generalized subword order over P is the partial order on P ∗ obtained by setting u ≤P ∗ w

if w contains a subsequence w(i1), w(i2), . . . , w(i|u|) such that u(j) ≤P w(ij) for 1 ≤ j ≤ |u|.
We get ordinary subword order when P = A is an antichain and we get the composition
poset when P = P.

It is a simple matter to recast this generalized order in terms of embeddings. Let 0̂ be
a special element which is not in P and let P̂ be the poset obtained by adjoining 0̂ as a
minimum element, i.e., 0̂ <P̂ x for all x ∈ P . Then the definitions of support and expansion
are as usual, just replacing 0 with 0̂. An embedding of u into w is a length |w| expansion ηu

of u with
ηu(i) ≤P̂ w(i) for 1 ≤ i ≤ |w|.

As expected, u ≤P ∗ w if and only if there is an embedding of u into w.
Finding an analogue of normality in this context is more delicate, and so far we have

only been able to do it for a special class of posets. However, there is evidence that more
general results are possible; the next section contains a discussion of this issue. First note
that the definition of a run carries over verbatim to any P ∗. Now call P a rooted tree if
its Hasse diagram is a tree with a minimum element. A rooted forest is a poset where each
connected component of its Hasse diagram is a rooted tree. Note that both antichains and
chains are rooted forests. Note also that if P is a rooted forest then P̂ is a rooted tree so
the following definition makes sense. If x ∈ P where P is a rooted forest then let x− be
the element adjacent to x on the unique path from x to 0̂ in the Hasse diagram for P̂ . For
a rooted forest, a normal embedding of u into w is an embedding ηu into w satisfying two
conditions.

1. For 1 ≤ i ≤ |w| we have ηu(i) = w(i), w(i)−, or 0̂.

2. For all x ∈ P and every run [r, t] of x’s in w, we have

(a) (r, t] ⊆ Supp ηu if x is minimal in P ,

(b) r ∈ Supp ηu otherwise.

Finally, we need the definition of defect in this situation, which is as expected:

d(ηu) = #{i | ηu(i) = w(i)−}
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for a normal embedding ηu into w. The following theorem is the promised generalization
of Theorems 2.1 and 2.2. Both of the two proofs we have given of the special case where
P = P generalize easily, with the minimal elements in P playing the rôle of 1 and the rest
functioning like the integers k ≥ 2.

Theorem 6.1. Let P be a rooted forest. Then the Möbius function of P ∗ is given by

µ(u,w) =
∑

ηu

(−1)d(ηu),

where the sum is over all normal embeddings ηu of u into w.

7 Comments and open problems

There are several possible avenues for future research. We discuss some of them here.

7.1 Generating Functions

As mentioned in the introduction, Björner and Reutenauer [6] gave another proof of the
formula for µ in A∗ using generating functions on monoids. Let Z〈〈A〉〉 denote the algebra
of formal series using the elements in A as noncommutative variables and the integers as
coefficients. Such a series can be written

f =
∑

w∈A∗

cww

for certain cw ∈ Z. For example, given u ∈ A∗ one can consider the series

m(u) =
∑

w≥u

(

w

u

)

n

w. (15)

Björner and Reutenauer showed that (15) is rational for any u and obtained, upon special-
ization of the variables, nice expressions for various ordinary generating functions associated
with the Möbius function of A∗. They also derived results for the zeta function of A∗. The
map m : A∗ → Z〈〈A〉〉 can be extended to a continuous linear endomorphism of Z〈〈A〉〉. In
fact, the full incidence algebra of A∗ is isomorphic to a subalgebra of this endomorphism
algebra. Björner and Reutenauer gave another proof of Theorem 2.1 using this fact.

It is natural to try and apply these ideas to P
∗, and more generally to rooted forests.

This has been done by Björner and Sagan [7].

7.2 The poset of permutations

Our original interest in P
∗ came from the rapidly growing subject of permutation patterns.

For an overview of permutation patterns the reader is referred to Bóna’s text [10]. Let Sn

denote the nth symmetric group and let π ∈ Sn and σ ∈ Sk. We say that π contains a
σ-pattern, and write π ≥ σ, if there are indices i1 < i2 < · · · < ik such that the subsequence
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31524

1423 2413 3124 2143 3142

312 123 132 213 231

12 21

1

Figure 3: The Hasse diagram for the interval [1, 31524] in the pattern containment ordering
on permutations

π(i1)π(i2) . . . π(ik) has the same pairwise comparisons as σ(1)σ(2) . . . σ(k). This subsequence
is called a copy of σ in π. For example, 312 ≤ 24153 because of the copy 413. This defines
a partial order on the set of all finite permutations. Wilf was the first to ask the following
question.

Question 7.1 (Wilf [27]). What can be said about the Möbius function of permutations
under the pattern-containment ordering?

Given two permutations π ∈ Sm and σ ∈ Sn, their direct sum is the permutation of length
m + n whose first m elements form σ and whose last n elements are the copy of π gotten by
adding m to each element of π. For example, 132⊕32145 = 13265478. A permutation is said
to be layered if it can expressed as the direct sum of some number of decreasing permutations.
(An equivalent characterization of layered permutations is that they are the permutations
that contain neither a 231-pattern nor a 312-pattern.) Our previous example is layered
because 13254378 = 1 ⊕ 21 ⊕ 321 ⊕ 1 ⊕ 1. Clearly the set of layered permutation of length
n is in bijection with the set of compositions of n. Almost as clearly, this bijection sends
the pattern-containment order to the composition order we have considered, so Theorem 2.2
answers Wilf’s question for the set of layered permutations.

Any normal embedding approach to describing the Möbius function for permutations
in general would need to incorporate non-unitary weights, as witnessed by the fact that
µ(1, 31524) = 6.

7.3 Factor order

Subword order is not the only partial order on the set of words. We say that the word u is
a factor of the word w if there exist (possibly empty) words v1 and v2 so that w = v1uv2,
or in other words, if u occurs as a contiguous subword in w. Björner [5] showed that the
Möbius function for factor order only takes on values in {0,±1} and gave a recursive rule
that allows the computation of µ(u,w) in O(|w|2) steps.
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c

a b

Figure 4: The Hasse diagram for the poset Λ

The factor order can be defined on P ∗ for any poset P : we say that u is a factor of w if
there are words v1, v2, v3 such that:

1. w = v1v2v3,

2. |v2| = |u|,

3. u(i) ≤ v2(i) for all 1 ≤ i ≤ |u|.

Indeed, this is one of the orders on P
∗ studied by Snellman [21, 22]. The Möbius function of

P
∗ under factor order remains unknown.

7.4 Subwords over Λ

The smallest poset to which Theorem 6.1 is inapplicable is the poset Λ depicted in Figure 4.
The Möbius function of Λ∗ seems to be quite interesting. In fact, numerical evidence points
to a surprising connection with the Tchebyshev polynomials of the first kind, Tn(x), which
can be defined as the unique polynomials such that Tn(cos θ) = cos(nθ).

Conjecture 7.2. For all i ≤ j, µ(ai, cj) is the coefficient of xj−i in Ti+j(x).

As with the poset of permutations, a normal embedding interpretation of µ(ai, ci) would
need to use weights because, for example, µ(a, cc) = −3.

One possible way to attack this conjecture would be to use the three-term recurrence for
Tn(x). Translating this in terms of the conjecture, it would suffice to show that

µ(ai, cj) = 2µ(ai, cj−1) − µ(ai−1, cj−1)

for j ≥ i ≥ 1 However, we have not been able to see any relationship between the intervals
[ai, cj], [ai, cj−1], and [ai−1, cj−1] which would permit us to derive this relation for their Möbius
functions.

There are two closely related areas where the Tchebyshev polynomials have appeared. A
permutation π is said to avoid a permutation σ if it does not contain a σ-pattern. Chow and
West [11] showed that the generating function for the number of permutations in Sn avoiding
both 132 and 12 . . . k for fixed k can be expressed in terms of Tchebyshev polynomials of
the second kind. Mansour and Vainshtein [19] extended this result to count permutations
avoiding 132 and containing exactly r copies of 12 . . . k.

More recently, Hetyei [17] defined poset maps T and U which he called Tchebyshev
transformations of the first and second kind. This is because when applied to the ladder
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poset Ln, the cd-index of the images can be expressed in terms of Tn(x) and Un(x). Since
the cd-index is related to the Möbius function, it is conceivable that Hetyei’s map could be
used to prove our conjecture, but the posets T (Ln) are not isomorphic to any of our intervals
[ai, cj] in general, so it is not clear how to proceed. However, these maps are very interesting
in their own right and have been further studied by Ehrenborg and Readdy [12].

Acknowledgment. We are indebted to Patricia Hersh for useful discussions and references.
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[4] Björner, A. The Möbius function of subword order. In Invariant theory and tableaux
(Minneapolis, MN, 1988), vol. 19 of IMA Vol. Math. Appl. Springer, New York, 1990,
pp. 118–124.
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[10] Bóna, M. Combinatorics of permutations. Discrete Mathematics and its Applications
(Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2004.

[11] Chow, T., and West, J. Forbidden subsequences and Chebyshev polynomials. Dis-
crete Math. 204, 1-3 (1999), 119–128.

[12] Ehrenborg, R., and Readdy, M. The Tchebyshev transforms of the first and
second kinds. arXiv:math.CO/0412124.

[13] Farmer, F. D. Cellular homology for posets. Math. Japon. 23, 6 (1978/79), 607–613.

19

http://arxiv.org/abs/math.CO/0510282
http://arxiv.org/abs/math.CO/0508043
http://arxiv.org/abs/math.CO/0412124


[14] Forman, R. A discrete Morse theory for cell complexes. In Geometry, topology, &
physics, Conf. Proc. Lecture Notes Geom. Topology, IV. Internat. Press, Cambridge,
MA, 1995, pp. 112–125.

[15] Forman, R. Morse theory for cell complexes. Adv. Math. 134, 1 (1998), 90–145.

[16] Hersh, P. On optimizing discrete Morse functions. arXiv:math.CO/0311270.

[17] Hetyei, G. Tchebyshev posets. Discrete Comput. Geom. 32, 4 (2004), 493–520.

[18] Kruskal, J. B. The theory of well-quasi-ordering: A frequently discovered concept.
J. Combinatorial Theory Ser. A 13 (1972), 297–305.

[19] Mansour, T., and Vainshtein, A. Restricted permutations, continued fractions,
and Chebyshev polynomials. Electron. J. Combin. 7 (2000), Research Paper 17, 9 pp.
(electronic).

[20] Rota, G.-C. On the foundations of combinatorial theory. I. Theory of Möbius func-
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