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A LITTLEWOOD-RICHARDSON RULE FOR
FACTORIAL SCHUR FUNCTIONS

ALEXANDER I. MOLEV AND BRUCE E. SAGAN

Abstract. We give a combinatorial rule for calculating the coefficients in the
expansion of a product of two factorial Schur functions. It is a special case
of a more general rule which also gives the coefficients in the expansion of a
skew factorial Schur function. Applications to Capelli operators and quantum
immanants are also given.

1. Introduction

As λ runs over all partitions with length l(λ) ≤ n, the Schur polynomials sλ(x)
form a distinguished basis in the algebra of symmetric polynomials in the indepen-
dent variables x = (x1, . . . , xn). By definition,

sλ(x) =
det(xλi+n−i

j )1≤i,j≤n∏
i<j(xi − xj)

.

Equivalently, these polynomials can be defined by the combinatorial formula

sλ(x) =
∑
T

∏
α∈λ

xT (α),(1)

summed over semistandard tableaux T of shape λ with entries in the set {1, . . . , n},
where T (α) is the entry of T in the cell α.

Any product sλ(x)sµ(x) can be expanded as a linear combination of Schur poly-
nomials:

sλ(x)sµ(x) =
∑

ν

cν
λµ sν(x).(2)

The classical Littlewood-Richardson rule [LR] gives a method for computing the
coefficients cν

λµ. These same coefficients appear in the expansion of a skew Schur
function

sν/λ(x) =
∑

µ

cν
λµsµ(x).

A number of different proofs and variations of this rule can be found in the litera-
ture; see, e.g. [M1, S1], and the references therein.

Received by the editors September 2, 1997 and, in revised form, January 15, 1998.
1991 Mathematics Subject Classification. Primary 05E05; Secondary 05E10, 17B10, 17B35,

20C30.
Key words and phrases. Capelli operator, factorial Schur function, Littlewood-Richardson rule,

quantum immanant, Young tableau.

c©1999 American Mathematical Society

4429

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4430 ALEXANDER I. MOLEV AND BRUCE E. SAGAN

To state the rule, we introduce the following notation. If T is a tableau, then
let cw(T ) be the (reverse) column word of T , namely the sequence obtained by
reading the entries of T from top to bottom in successive columns starting from
the right-most column. We will call the associated total order on the cells of T
column order and write α < β if cell α comes before cell β in this order. A word
w = a1 · · · aN in the symbols 1, . . . , n is a lattice permutation if for 1 ≤ r ≤ N
and 1 ≤ i < n the number of occurrences of i in a1 · · · ar is at least as large as the
number of occurrences of i + 1.

The Littlewood-Richardson rule says that the coefficient cν
λµ is equal to the

number of semistandard tableaux T of the shape ν/µ and weight λ such that cw(T )
is a lattice permutation. (One usually uses row words in the formulation of the rule.
However, it is known that these two versions are equivalent [FG].) In particular,
cν
λµ is zero unless λ, µ ⊆ ν and |ν| = |λ|+ |µ|.

We will now state an equivalent formulation of this rule [JP, Z, KR] and establish
some notation to be used in Section 3. Let R denote a sequence of diagrams

µ = ρ(0) → ρ(1) → . . .→ ρ(l−1) → ρ(l) = ν,

where ρ → σ means that ρ ⊂ σ with |σ/ρ| = 1. Let ri denote the row number
of ρ(i)/ρ(i−1). Then the sequence r1 . . . rl is called the Yamanouchi symbol of R.
Equivalently, R corresponds to a standard tableau T of shape ν/µ where ri is the
row number of the entry i in T . A semistandard tableau T fits ν/µ if cw(T ) is the
Yamanouchi symbol for some standard Young tableau of shape ν/µ. For example,

T =
1 1 2
2 3

fits (4, 3, 1)/(2, 1) since cw(T ) = 21312 = r1 . . . r5 corresponds to the standard
tableau

2 4
1 5

3

or equivalently to the shape sequence

R : µ = (2, 1)→ (2, 2)→ (3, 2)→ (3, 2, 1)→ (4, 2, 1)→ (4, 3, 1) = ν.

The coefficient cν
λµ is then equal to the number of semistandard tableaux T of shape

λ that fit ν/µ.
The factorial Schur function sλ(x|a) is a polynomial in x and a doubly-infinite

sequence of variables a = (ai). It can be defined as the ratio of two alternants (3)
(see the beginning of Section 2) by analogy with the ordinary case. This approach
goes back to Lascoux [L1]. The sλ(x|a) are also a special case of the double Schubert
polynomials introduced by Lascoux and Schützenberger as explained in [L2]. The
combinatorial definition (4) for the particular sequence a with ai = i−1 (again, see
the beginning of Section 2) is due to Biedenharn and Louck [BL] while the case for
general a is due to Macdonald [M2] and Goulden–Greene [GG]. The equivalence
of (3) and (4) was established independently in [M2] and [GG].

Specializing ai = 0 for all i, the functions sλ(x|a) turn into sλ(x). They form
a basis in the symmetric polynomials in x over C[a] so one can define the cor-
responding Littlewood-Richardson coefficients cν

λµ(a); see (5). Our main result is
Theorem 3.1 which gives a combinatorial rule for calculating a two-variable gener-
alization cν

θµ(a, b) of these coefficients (8), where θ is a skew diagram. In the case
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|ν| = |θ|+|µ| the rule turns into a rule for computing the intertwining number of the
skew representations of the symmetric group corresponding to the diagrams θ and
ν/µ [JP, Z]. Specializing further to µ = ∅ (respectively θ = λ), we get the classical
Littlewood-Richardson rule in the first (respectively second) formulation above. A
Pieri rule for multiplication of a double Schubert polynomial by a complete or ele-
mentary symmetric polynomial is given by Lascoux and Veigneau [V]. Lascoux has
pointed out that the Newton interpolation formula in several variables [LS] can also
be used to give an alternative proof of the factorial Littlewood-Richardson rule.

In Section 4 we consider the specialization ai = i− 1. The corresponding coeffi-
cients cν

λµ(a) turn out to be the structure constants for the center of the universal
enveloping algebra for the Lie algebra gl(n) and for an algebra of invariant differ-
ential operators in certain distinguished bases. We also obtain a formula which
relates these coefficients to the dimensions of skew diagrams. This implies a sym-
metry property of these coefficients.

2. Preliminaries

Let x = (x1, . . . , xn) be a finite sequence of variables and let a = (ai), i ∈ Z, be
a doubly-infinite variable sequence. The generalized factorial Schur function for a
partition λ of length at most n can be defined as follows [M2]. Let

(y|a)k = (y − a1) · · · (y − ak)

for each k ≥ 0. Then

sλ(x|a) =
det

[
(xj |a)λi+n−i

]
1≤i,j≤n∏

i<j(xi − xj)
.(3)

There is an explicit combinatorial formula for sλ(x|a) analogous to (1):

sλ(x|a) =
∑
T

∏
α∈λ

(xT (α) − aT (α)+c(α)),(4)

where T runs over all semistandard tableaux of shape λ with entries in {1, . . . , n},
T (α) is the entry of T in the cell α ∈ λ and c(α) = j− i is the content of α = (i, j).

The highest homogeneous component of sλ(x|a) in x obviously coincides with
sλ(x). Therefore the polynomials sλ(x|a) form a basis for R[x]Sn where R = C[a],
and one can define Littlewood-Richardson type coefficients cν

λµ(a) by

sλ(x|a)sµ(x|a) =
∑

ν

cν
λµ(a)sν(x|a).(5)

Comparing the highest homogeneous components in x on both sides and using the
Littlewood-Richardson Rule for the sλ(x) we see that

cν
λµ(a) =

{
cν
λµ if |ν| = |λ|+ |µ|,

0 if |ν| > |λ|+ |µ|.(6)

Contrary to the classical case, the coefficients cν
λµ(a) turn out to be nonzero if

|ν| < |λ|+|µ| and λ, µ ⊆ ν. This makes it possible to compute them using induction
on |ν/µ| while keeping λ fixed.

The starting point of our calculation is the fact that the polynomials sλ(x|a)
possess some (characteristic) vanishing properties; see [S2, O1]. We use the fol-
lowing result from [O1]. For a partition ρ with l(ρ) ≤ n define an n-tuple aρ =
(aρ1+n, . . . , aρn+1).
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Theorem 2.1 (Vanishing Theorem). Given partitions λ, ρ with l(λ), l(ρ) ≤ n

sλ(aρ|a) =
{

0 if λ 6⊆ ρ,∏
(i,j)∈λ(aλi+n−i+1 − an−λt

j+j) if λ = ρ,

where λt is the diagram conjugate to λ.

In particular, sλ(aλ|a) 6= 0 for any specialization of the sequence a such that
ai 6= aj if i 6= j. We reproduce the proof of the Vanishing Theorem from [O1] for
completeness.

Proof. The ij-th entry of the determinant in the numerator of the right hand side
of (3) for x = aρ is

(aρj+n−j+1 − a1) · · · (aρj+n−j+1 − aλi+n−i).(7)

The condition λ 6⊆ ρ implies that there exists an index k such that ρk < λk. Then
for i ≤ k ≤ j we have

1 ≤ ρj + n− j + 1 ≤ ρk + n− k + 1 ≤ λk + n− k ≤ λi + n− i,

and so all the entries (7) with i ≤ k ≤ j are zero. Hence, the determinant is zero
which proves the first part of the theorem.

Now let us set x = aλ in (3). Then the ij-th entry of the determinant is

(aλj+n−j+1 − a1) · · · (aλj+n−j+1 − aλi+n−i),

which equals zero for i < j and is nonzero for i = j. This means that the matrix is
lower triangular with nonzero diagonal elements. Taking their product and dividing
by ∏

i<j

(aλi+n−i+1 − aλj+n−j+1)

we get the desired equation.

3. Calculating the coefficients

We will be able to prove more general results by introducing a second infinite
sequence of variables denoted b = (bi), i ∈ Z. Let θ and µ be skew and normal (i.e.,
skewed by ∅) diagrams, respectively. Define Littlewood-Richardson type coefficients
cν
θµ(a, b) by the formula

sθ(x|b)sµ(x|a) =
∑

ν

cν
θµ(a, b)sν(x|a),(8)

where sθ(x|b) is defined as in (4) with λ replaced by θ and a replaced by b.
As in Section 1, consider a sequence of diagrams

R : µ = ρ(0) → ρ(1) → . . .→ ρ(l−1) → ρ(l) = ν,(9)

and let ri be the row number of ρ(i)/ρ(i−1). Construct the set T (θ, R) of semis-
tandard θ-tableaux T with entries from {1, . . . , n = |x|} such that T contains cells
α1, . . . , αl with

α1 < . . . < αl and T (αi) = ri, 1 ≤ i ≤ l,

where < is column order. Let us distinguish the entries in α1, . . . , αl by barring
each of them. For example, if n = 2 and

R : (2, 1)→ (2, 2)→ (3, 2)
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so that r1r2 = 21, then for θ = (3, 2)/(1) we have

T (θ, R) =
{

1 1
1 2 ,

1 2
1 2 ,

1 2
1 2 ,

1 2
1 2 ,

1 2
2 2

}
.

We also let

T (θ, ν/µ) =
⊎
R

T (θ, R),

where the union is over all sequences R of the form (9). Finally, for each cell α with
αi < α < αi+1, 0 ≤ i ≤ l, set ρ(α) = ρ(i). (Inequalities involving cells with out-
of-range subscripts are ignored.) For instance, if l = |ν/µ| = 2, then the following
schematic diagram gives the layout of the ρ(α)

θ =

ρ(0)

α1

ρ(1)

α2

ρ(2)

.

We are now in a position to state the Littlewood-Richardson rule for the cν
θµ(a, b).

The reader should compare the following formula with the combinatorial one for
the sλ(x|a) in (4).

Theorem 3.1. The coefficient cν
θµ(a, b) is zero unless µ ⊆ ν. If µ ⊆ ν, then

cν
θµ(a, b) =

∑
T∈T (θ,ν/µ)

∏
α∈θ

T (α) unbarred

(
(aρ(α))T (α) − bT (α)+c(α)

)
.

As immediate specializations of this result, note the following.
1. If a = b and θ is normal, then this is a Littlewood-Richardson rule for the

sλ(x|a).
2. If a = b and µ is empty, then this is a rule for the expansion of a skew factorial

Schur polynomial.
3. If |ν| = |θ|+|µ|, then cν

θµ(a, b) is independent of a and b and equals the number
of semistandard tableaux of shape θ that fit ν/µ. This coincides with the
number of pictures between θ and ν/µ [JP, Z]. In particular, cν

θµ(a, b) = cν
θµ,

an ordinary Littlewood-Richardson coefficient.
4. If µ = ∅ and θ = λ is normal, then this is a rule for the re-expansion of a

factorial Schur polynomial in terms of those for a different sequence of second
variables. In particular,

sλ(x|a) =
∑
ν⊆λ

gλν(a)sν(x)

where

gλν(a) = (−1)|λ/ν|
∑

T∈T (λ,ν)

∏
α∈λ

T (α) unbarred

aT (α)+c(α).

A different expression for gλν(a) in terms of double Schubert polynomials is
provided by the Newton interpolation formula in several variables [LS].
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We present the proof of Theorem 3.1 as a chain of propositions.
Note that the first claim of the theorem follows immediately from the Vanishing

Theorem. Indeed, let ν be minimal (with respect to containment) among all par-
titions in (8) such that cν

θµ(a, b) 6= 0. Suppose ν 6⊇ µ. Then setting x = aν in (8)
and using the first part of the Vanishing Theorem gives

0 = cν
θµ(a, b)sν(aν |a).

But by the Vanishing Theorem’s second part we have sν(aν |a) 6= 0 and so a con-
tradiction to cν

θµ(a, b) 6= 0.
We shall assume hereafter that µ ⊆ ν and also write

|aρ| = aρ1+n + · · ·+ aρn+1.

Proposition 3.2. If µ ⊆ ν with |ν/µ| = l, then

sµ(aν |a)
sν(aν |a)

=
∑

µ→ρ(1)→···→ρ(l−1)→ν

1
(|aν | − |aρ(0) |) · · · (|aν | − |aρ(l−1) |)

,

where ρ(0) = µ.

Proof. Setting x = aµ in (8) and using the Vanishing Theorem gives

cµ
θµ(a, b) = sθ(aµ|b).(10)

Further, for θ = (1) and a = b relation (8) takes the form (cf. [OO, Theorem 9.1])

s(1)(x|a)sµ(x|a) = s(1)(aµ|a)sµ(x|a) +
∑
µ→ρ

sρ(x|a)

which follows from (10), (6), and the Branching Theorem for the ordinary Schur
functions.

Setting x = aν in the previous equation and using the Vanishing Theorem we
get

s(1)(aν |a)sµ(aν |a) = s(1)(aµ|a)sµ(aν |a) +
∑

µ→ρ⊆ν

sρ(aν |a).(11)

We have

s(1)(aν |a)− s(1)(aµ|a) = |aν | − |aµ|
and so (11) gives

sµ(aν |a)
sν(aν |a)

=
1

|aν | − |aµ|
∑

µ→ρ⊆ν

sρ(aν |a)
sν(aν |a)

.

Induction on |ν/µ| completes the proof.

It will be convenient to have a notation for sums like those occurring in the
previous proposition. So let

H(µ, ρ) =
∑

µ→ρ(1)→···→ρ(r−1)→ρ

1
(|aρ| − |aρ(0) |) · · · (|aρ| − |aρ(r−1) |)

,(12)

and

H ′(ρ, ν) =
∑

ρ→ρ(r+1)→···→ρ(l−1)→ν

1
(|aρ| − |aρ(r+1) |) · · · (|aρ| − |aρ(l) |) ,(13)

where ρ(0) = µ and ρ(l) = ν.
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Proposition 3.3. We have the formula

cν
θµ(a, b) =

∑
µ⊆ρ⊆ν

sθ(aρ|b)H(µ, ρ)H ′(ρ, ν).

Proof. We use induction on |ν/µ|, noting that (10) is the base case |ν/µ| = 0. Set
x = aν in (8) and divide both sides by sν(aν |a). By Proposition 3.2 we get

cν
θµ(a, b) = sθ(aν |b)H(µ, ν)−

∑
σ⊂ν

cσ
θµ(a, b)H(σ, ν).

By the induction hypotheses we can write this as

cν
θµ(a, b) = sθ(aν |b)H(µ, ν)−

∑
σ⊂ν

∑
µ⊆ρ⊆σ

sθ(aρ|b)H(µ, ρ)H ′(ρ, σ)H(σ, ν)

= sθ(aν |b)H(µ, ν)−
∑

µ⊆ρ⊂ν

sθ(aρ|b)H(µ, ρ)
∑

ρ⊆σ⊂ν

H ′(ρ, σ)H(σ, ν).

To complete the proof we note that∑
ρ⊆σ⊆ν

H ′(ρ, σ)H(σ, ν) = 0,

which follows from the identity

k∑
i=1

1
(u1 − u2) · · · (u1 − ui)(uk − ui) · · · (uk − uk−1)

= 0,

which holds for any variables u1, . . . , uk by induction on k > 1. (In the denominator
an empty product is, as usual, equal to 1.)

Note that a different expression for the cν
θµ(a, b) in terms of divided differences

can be deduced from the Newton interpolation formula in several variables [LS].

Proposition 3.4. We have the recurrence relation

cν
θµ(a, b) =

1
|aν | − |aµ|

 ∑
µ→µ′

cν
θµ′(a, b)−

∑
ν′→ν

cν′
θµ(a, b)

 .(14)

Proof. By Proposition 3.3 it suffices to check that

H(µ, ρ)H ′(ρ, ν) =
1

|aν | − |aµ|

 ∑
µ→µ′

H(µ′, ρ)H ′(ρ, ν)−
∑

ν′→ν

H(µ, ρ)H ′(ρ, ν′)

 .

This follows from the relations∑
µ→µ′

H(µ′, ρ) = (|aρ| − |aµ|)H(µ, ρ)

and ∑
ν′→ν

H ′(ρ, ν′) = (|aρ| − |aν |)H ′(ρ, ν).
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Given a sequence

R : µ = ρ(0) → ρ(1) → . . .→ ρ(l−1) → ρ(l) = ν,

and an index k ∈ {1, . . . , l} introduce a set of θ-tableaux Tk(θ, R) having en-
tries from the set {1, . . . , n} as follows. Each tableau T ∈ Tk(θ, R) contains cells
α1, . . . , αk−1, αk+1, . . . , αl such that

α1 < . . . < αk−1 < αk+1 < . . . < αl and T (αi) = ri, 1 ≤ i ≤ l, i 6= k.

As usual, we distinguish the entries in the αi, i 6= k, by barring them. Now modify
the ρ(α) for R by defining, for cells with unbarred entries,

ρ+(α) =
{

ρ(k) if αk−1 < α < αk+1,
ρ(α) otherwise,

and

ρ−(α) =
{

ρ(k−1) if αk−1 < α < αk+1,
ρ(α) otherwise.

Also define corresponding weights

S(R) =
∑

T∈T (θ,R)

∏
α∈θ

T (α)unbarred

(
(aρ(α))T (α) − bT (α)+c(α)

)
,

S+
k (R) =

∑
T∈Tk(θ,R)

∏
α∈θ

T (α)unbarred

(
(aρ+(α))T (α) − bT (α)+c(α)

)
,

and similarly for S−k (R). So Theorem 3.1 is equivalent to

cν
θµ(a, b) =

∑
R

S(R).(15)

Proposition 3.5. Given a sequence R we have

S(R) =
1

|aν | − |aµ|

l∑
k=1

(
S+

k (R)− S−k (R)
)
.(16)

Proof. It suffices to show that for each k we have

S+
k (R)− S−k (R) = (|aρ(k) | − |aρ(k−1) |)S(R).

Formula (16) will then follow from the relation
l∑

k=1

(|aρ(k) | − |aρ(k−1) |) = |aν | − |aµ|.

For a given T ∈ Tk(θ, R) the factors in the formulas for S+
k (R) and S−k (R) are

identical except for the case where αk−1 < α < αk+1 and T (α) = rk. To see what
happens when we divide S+

k (R)− S−k (R) by

|aρ(k) | − |aρ(k−1) | = (aρ(k))rk
− (aρ(k−1))rk

,

fix T and consider its contribution to the quotient. We need the following easily
proved formula, where we are thinking of u = (aρ(k))rk

, v = (aρ(k−1))rk
and mi =

bT (α)+c(α) as α runs over all cells of T with αk−1 < α < αk+1 and T (α) = rk:∏s
i=1(u −mi)−

∏s
i=1(v −mi)

u− v
=

s∑
j=1

(u−m1) · · · ̂(u−mj)(v −mj+1) · · · (v −ms)
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(a hat indicates the factor is to be omitted). The right-hand side of this expression
can now be interpreted as the contribution to S(R) of all tableaux gotten from T
by barring one of the rk between αk−1 and αk+1 in column order.

We now prove (15) by induction on |ν/µ|. Equation (10) takes care of the case
|ν/µ| = 0. By the induction hypothesis,∑

µ→µ′
cν
θµ′(a, b) =

∑
R

S+
1 (R) and

∑
ν′→ν

cν′
θµ(a, b) =

∑
R

S−l (R).

So formulas (14), (16) and the following proposition complete the proof of (15) and
hence Theorem 3.1.

Proposition 3.6. We have∑
R

l−1∑
k=1

S−k (R) =
∑
R

l∑
k=2

S+
k (R).

Proof. We can rewrite this formula as follows:∑
R,k,T

wt−(R, k, T ) =
∑

R′,k′,T ′
wt+(R′, k′, T ′),(17)

where T ∈ Tk(θ, R), k = 1, . . . , l−1, and T ′ ∈ Tk′ (θ, R′), k′ = 2, . . . , l, with weights
defined by

wt−(R, k, T ) =
∏
α∈θ

T (α) unbarred

(
(aρ−(α))T (α) − bT (α)+c(α)

)
and similarly define wt+(R′, k′, T ′). To prove (17) we will construct a bijection
(R, k, T ) ←→ (R′, k′, T ′) preserving the weights in the sense that wt−(R, k, T ) =
wt+(R′, k′, T ′). There are three cases.

Case 1. Suppose that the skew diagram ρ(k+1)/ρ(k−1) consists of two cells in dif-
ferent rows and columns. Then R′ is the sequence obtained from R by replacing
ρ(k) by the other diagram ρ′(k) such that ρ(k−1) → ρ′(k) → ρ(k+1) while k′ = k + 1
and T ′ = T .

Case 2. Let ρ(k+1)/ρ(k−1) have two cells in the same row. Then R′ = R, k′ = k+1
and T ′ = T .

Case 3. Let ρ(k+1)/ρ(k−1) have two cells in the same column, say in rows r and
r + 1. Let (i + 1, j) = (i1, j1) be the cell of T containing the correponding r + 1. If
there is an r in cell (i, j) then it must be unbarred. In this case let T ′ be T with the
bar moved from the r + 1 to the r, R′ = R, and k′ = k + 1. Weights are preserved
since (aρ(k−1))r = (aρ(k+1))r+1 and T (α) + c(α) is invariant under the change.

Now suppose cell (i, j) of T contains an entry less than r or (i, j) 6∈ θ and let
j′ = j′1 be the column of the left-most r + 1 in row i + 1. Since this subcase is
more complicated than the others, the reader may wish to follow along with the
example given after the end of this proof. Let s be the maximum integer such that
for 1 ≤ t ≤ s we have

1. there is an r + t in cell (i + t, jt) for some jt corresponding to a cell in the
same column as those of ρ(k+1)/ρ(k−1),
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2. if (i + t, j′t) contains the left-most r + t in row i + t, then (i + t, jt) is between
(i + t − 1, jt−1) and (i + t − 1, j′t−1) in column order. (Assume this is true
vacuously when t = 1.)

Note that the condition on cell (i, j) implies that none of the r + t’s to the left of
the one in (i + t, jt) can be barred.

We now form T ′ by moving the bar in cell (i+t, jt) to cell (i+t, j′t) and replacing
the r + t’s in cells (i+ t, j′t), (i+ t, j′t +1), . . . , (i+ t, jt) by r + t− 1’s. Note that the
result will still be a semistandard tableau because of the assumption about (i, j)
and the choice of elements to decrease. Since the elements from the given column
of ρ(k+1)/ρ(k−1) are still added in the correct order in T ′, it determines a valid R′,
complete except for the step where a cell is added in row r+s of that column which
should be done immediately following the addition of r + s − 1. Then k′ is the
position of this r + s. Invariance of weights follows from considerations like those
in the first subcase, noting that the contribution to wt− of each entry decreased in
T is the same as that of the element on its right to wt+ in T ′.

The inverse of this construction is similar and left to the reader. This completes
the proof of the Theorem 3.1.

As an example of the last subcase, suppose we have the R sequence

(3, 2, 2, 2)→ (3, 3, 2, 2)→ (3, 3, 3, 2)→ (4, 3, 3, 2)→ (4, 3, 3, 2, 1)→ (4, 3, 3, 3, 1)

with Yamanouchi symbol r1 . . . r5 = 23154. Let k = 1 so r = 2 and consider

T =
1 1 1 1 1 1
2 3 3 3 3 3
4 4 4 4 5

.

Then (i + 1, j) = (2, 6) and s = 2 with r + 1, r + 2 = 3, 4 so

T ′ =
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 4 5

.

Column reading the barred elements of T ′ and inserting r + 2 = 4 after r + 1 = 3
gives the Yamanouchi symbol 15234 corresponding to the R′ sequence

(3, 2, 2, 2)→(4, 2, 2, 2)→(4, 2, 2, 2, 1)→(4, 3, 2, 2, 1)→(4, 3, 3, 2, 1)→(4, 3, 3, 3, 1)

and k′ = 5.

4. Multiplication rules for Capelli operators
and quantum immanants

Let Eij , i, j = 1, . . . , n, denote the standard basis of the general linear Lie algebra
gl(n). Denote by Z(gl(n)) the center of the universal enveloping algebra U(gl(n)).
Given κ = (κ1, . . . , κn) ∈ Cn consider a gl(n)-module L(κ) of highest weight κ.
That is, L(κ) is generated by a nonzero vector v such that

Eii · v = κi v, for i = 1, . . . , n;
Eij · v = 0 for 1 ≤ i < j ≤ n.

Any element z ∈ Z(gl(n)) acts as a scalar ω(z) = ωκ(z) in L(κ) and this scalar is
independent of the choice of the highest weight module L(κ). Moreover, ω(z) is
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a symmetric polynomial in the shifted variables x1, . . . , xn where xi = κi + n − i.
The mapping z 7→ ω(z) defines an algebra isomorphism

ω : Z(gl(n))→ C[x]Sn

called the Harish-Chandra isomorphism; see e.g. Dixmier [D, Section 7.4].
For any positive integer m consider the natural action of the complex Lie group

GL(n) in the algebra P of polynomials on the vector space Cn ⊗ Cm. The corre-
sponding Lie algebra gl(n) then acts by differential operators

π(Eij) =
m∑

a=1

xia∂ja,

where the xia are the coordinates on Cn ⊗ Cm and the ∂ia are the corresponding
partial derivatives. This representation is uniquely extended to an algebra homo-
morphism

π : U(gl(n))→ PD

where PD is the algebra of polynomial coefficient differential operators in the xia.
The image of Z(gl(n)) under π is contained in the subalgebra PDG of differential
operators invariant with respect to the action of the group G = GL(n) × GL(m).
Moreover, if m ≥ n, then this restriction is an algebra isomorphism which can be
called the Capelli isomorphism; see [H, HU] for further details. So if m ≥ n, we
have the triple isomorphism

C[x]Sn
ω←− Z(gl(n)) π−→ PDG.

Distinguished bases in the three algebras which correspond to each other under
these isomorphisms were constructed in [O1] (see also [N, O2, M3]).

In the algebra C[x]Sn the basis is formed by the polynomials sλ(x|a) with l(λ) ≤
n and the sequence a specialized to ai = i− 1 for all i ∈ Z. We shall denote these
polynomials by s∗λ(x). Explicitly [BL],

s∗λ(x) =
∑
T

∏
α∈λ

(xT (α) − T (α)− c(α) + 1),

where T runs over all semistandard tableaux of shape λ with entries in {1, . . . , n}.
We shall denote by fν

λµ the coefficient cν
λµ(a) in this specialization of a. In other

words, the fν
λµ can be defined by the formula

s∗λ(x)s∗µ(x) =
∑

ν

fν
λµ s∗ν(x).

To describe the basis in Z(gl(n)) we introduce some more notation. Given k
matrices A, B, . . . , C of size p× q with entries from an algebra A we regard their
tensor product A⊗B ⊗ · · · ⊗ C as an element∑

Aa1i1Ba2i2 · · ·Cakik
⊗ ea1i1 ⊗ ea2i2 ⊗ · · · ⊗ eakik

∈ A⊗ (Matpq)⊗k,

where Matpq denotes the space of complex p × q-matrices and the eai are the
standard matrix units. The symmetric group Sk acts in a natural way in the tensor
space (Cn)⊗k, so that we can identify permutations from Sk with elements of the
algebra (Matnn)⊗k.

For a diagram λ with l(λ) ≤ n denote by T0 the λ-tableau obtained by filling in
the cells by the numbers 1, . . . , k = |λ| from left to right in successive rows starting
from the first row. We let Rλ and Cλ denote the row symmetrizer and column
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antisymmetrizer of T0 respectively. By cλ(r) we denote the content of the cell
occupied by r. Introduce the matrix E = (Eij) whose ij-th entry is the generator
Eij and set

Sλ =
1

h(λ)
tr(E − cλ(1))⊗ · · · ⊗ (E − cλ(k)) ·RλCλ,

where the trace is taken over all the tensor factors Matnn, and h(λ) is the product
of the hook-lengths of the cells of λ:

h(λ) =
∏
α∈λ

hα.

The elements Sλ with l(λ) ≤ n form a basis in the algebra Z(gl(n)). In [O1] they
were called the quantum immanants .

Let us now describe the basis in the algebra PDG. The representation π can be
written in a matrix form as follows:

π : E 7→ XDt,

where X and D are the n × m matrices formed by the coordinates xia and the
derivatives ∂ia, respectively, while Dt is the matrix transposed to D. We introduce
the following differential operators:

∆λ =
1
k!

trX⊗k · (Dt)⊗k · χλ,

where χλ is the irreducible character of Sk corresponding to λ. Explicitly,

∆λ =
1
k!

∑
i1,...,ik

∑
a1,...,ak

∑
s∈Sk

χλ(s)xi1a1 · · ·xikak
∂is(1)a1 · · · ∂is(k)ak

.

The operators ∆λ with l(λ) ≤ n form a basis in PDG. They are called the higher
Capelli operators.

The following identities were proved in [O1] (for other proofs see [N, O2, M3]):

ω(Sλ) = s∗λ(x) and π(Sλ) = ∆λ.

Using Theorem 3.1 we obtain the following multiplication rules for the elements
Sλ and the operators ∆λ.

Theorem 4.1. We have

SλSµ =
∑

ν

fν
λµ Sν

and

∆λ∆µ =
∑

ν

fν
λµ ∆ν

where the coefficients fν
λµ are given by

fν
λµ =

∑
T∈T (λ,ν/µ)

∏
α∈θ

T (α) unbarred

(
ρ(α)T (α) + n− 2 T (α)− c(α) + 1

)
(18)

with R, T (λ, ν/µ), and ρ(α) defined in Theorem 3.1.
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Proposition 3.3 enables us to obtain another formula for fν
λµ. For a skew diagram

ν/µ let

h(ν/µ) =
|ν/µ|!

dim ν/µ
,

where dim ν/µ is the number of standard ν/µ-tableaux. In particular, if µ is empty;
h(ν) is the product of the hook-lengths of the cells of ν.

In the specialization of the sequence a under consideration we obtain from (12)
and (13) that

H(µ, ρ) =
1

h(ρ/µ)
and H ′(ρ, ν) =

(−1)|ν/ρ|

h(ν/ρ)
.

Moreover, by Proposition 3.2,

sλ(aρ|a)
sρ(aρ|a)

=
1

h(ρ/λ)

and by the Vanishing Theorem

sρ(aρ|a) = h(ρ).

Thus Proposition 3.3 becomes the following:

Proposition 4.2. One has the formula

fν
λµ =

∑
λ,µ⊆ρ⊆ν

(−1)|ν/ρ| h(ρ)
h(ν/ρ)h(ρ/λ)h(ρ/µ)

.(19)

Formula (19) implies the following symmetry property of the coefficients fν
λµ.

Corollary 4.3. If l(λt), l(µt), l(νt) ≤ n, then

fνt

λtµt = fν
λµ.

Proof. This follows immediately from the relation h(νt/µt) = h(ν/µ).

Remarks. 1. It follows from (18) that the coefficients fν
λµ are integers while the

summands on the right hand side of (19) need not be. In fact the numbers h(ν/µ)
need not be integers either, e.g., h((3, 2)/(1)) = 24/5.

2. Note that since in the case of |ν| = |λ|+ |µ| the fν
λµ coincide with the classical

Littlewood-Richardson coefficients cν
λµ, the latter can be computed using (19) as

well, but this does not appear to be very useful for practical purposes. For example,
consider λ = µ = (1n) and ν = (2r1n−r), then (19) gives

fν
λµ =

r∑
k=0

(−1)r−k (n + 1)!
k!(r − k)!(n− k + 1)

while, directly from (18), we get

fν
λµ = (n− r)!.(20)

As a final example, take m = n in the definition of ∆λ. Then for λ = (1n) we
get the classical Capelli operator [C]:

∆(1n) = detX det D.
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We find from (18) that the coefficients fν
(1n)(1n) are zero except for ν = (2r1n−r),

r = 0, 1, . . . , n . So by (20) the square of the Capelli operator is given by

(detX det D)2 =
n∑

r=0

(n− r)! ∆(2r1n−r).
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