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Congruence Properties of g-Analogs 
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Using group actions and generating functions, we derive various arithmetic 
properties of the q-binomial coefficients and q-Stirling numbers. These include 
recurrence relations and computation of residues modulo a cyclotomic polynomial. 
We also obtain periodicity and non-periodicity results. 0 IWZ Academic PIS, II-S. 

1. INTRODUCTION AND DEFINITIONS 

Let N stand for the non-negative integers. If ncN then let 

li= {1,2, . ..) ?z>. 

We can define the q-binomial coefficients or Gaussian polynomials as 
follows. Given any word cu = 6, b, . . . b,, where the bi are integers, an inver- 
sion of w is a pair (bi, bj) which is out of order, i.e., i < j and bi > bj. The 
inversion statistic for words is 

inv o = the number of inversions in CO. 

For example, 

0=314525 

has inversions 

(3, l), (3, 21, (4, 21, and (53 2) 

so 

inv 0 = 4. 
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Now consider the set of all bit strings of length 
Then the corresponding q-binomial coefficient is 

n with k O’s, denoted (2). 
the generating function 

where q is an indeterminate. 
For the (signless) q-Stirling numbers of the ,first kind we look at the set 

c[ri, k] of all permutations of ri having exactly k disjoint cycles. If 
o E c[ri, k], say 

where the ci are the cycles of cr, then we always write o in standard form 
meaning that each ci is written with its minimal element first and 

1 =min c,<min c2< ... <min ck. 

Now define inversions exactly as for the Gaussian polynomials (the cycle 
parentheses are ignored and the elements of Q treated as a linear array). To 
illustrate, if 

C= (1, 6, 2)(3, 5)(4) 

then its inversions are 

and 

(6, 2), (6, 3), (6, 51, (6 4), and (5, 4) 

inv 0 = 5. 

Taking generating functions again we obtain the q-Stirling numbers of the 
first kind 

c[n, k] = 1 qinvo. 
aec[A,k] 

Similar considerations apply for the q-Stirling numbers of the second kind. 
This time the set is S[fi, k], all partitions of A into k subsets (also called 
blocks). The standardform for partitions is 

where the blocks Bi are arranged in increasing order of their minima. Here 
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an inversion is an element-block pair (b, Bj) such that b E B,, where i < j 
and b > min Bj. As an example, the partition 

n = 1, 2, 613, 514 = BJB, JB, 

has the inversions 

(6 41, (6, BA and (5, 4) 

thus 
inv n = 3. 

The generating function gives us the q-Stirling numbers of the second kind 

S[n, k-J = c qin” n. 
x E S[ii, k] 

As their name suggests, the Gaussian coefficients have a long and 
venerable history going back to Gauss. See the survey article of Blass [3] 
for more information. The q-Stirling numbers of the first kind were 
introduced in Gould’s paper [15] and given an interpretation in terms of 
inversions by Gessel [ 133. Versions of the q-Stirling numbers of the second 
kind were first studied by Carlitz [4, 51 and Gould [15]. Later, Milne 
[19] gave (essentially) the definition above. For other combinatorial 
descriptions of the Stirling polynomials see [ 11, 17, 18, 24, 281. 

In the next three sections we derive various congruences for these 
polynomials. Our principal tool will be the use of group actions. The 
results will include recurrence relations, computation of residues, and (for 
the q-binomial coefficients) the q-analog of Lucas’ theorem. Sections 5 
through 7 will consider the periodicity of certain sequences of Gaussian 
polynomials and q-Stirling numbers. Here generating functions will come 
into play. Our final section will contain some open questions. 

2. CONGRUENCES: GAUSSIAN COEFFICIENTS 

Combinatorial proofs of congruences using group actions have been 
extensively studied in [12, 14, 22, 231. The basic idea is as follows. Let a 
group G act on a finite set S. Then the orbits 0 of the action partition S. 
Now suppose d is an integer such that d 1 #O for every orbit with #O > 1, 
where the pound sign denotes cardinality. Then 

#SE #SG (mod 4, 

where SG is the fixed-point set of the action. 
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To use the same technique for q-analogs, consider a weighting 
wt S + N[q] of S. If Tc S then we let the weight of T be 

[T]= 1 wtr. 
fET 

Now if p(q) is a polynomial such that p(q) divides [Co] for every orbit with 
at least two elements, then 

[S] = [S”] (mod p(q)). (1) 

All the congruences in this and the next two sections will be obtained by 
specializing Eq. (1) to various sets and groups. 

Let G = Cd be the cyclic group of order d and pick a generator g of G. 
If o = b, 6,. . . b, is a word of length n 2 d then we can let g act by right 
rotation of the first d digits 

This action will provide us with a recurrence for the q-binomial coefficients. 
In what follows, Qd= Qd(q) is the dth cyclotomic polynomial. All con- 
gruences will be modulo Gd unless stated otherwise. It is interesting to note 
that the q-recursion holds for all d and not just primes. 

THEOREM 2.1. For all n 2 d we have 

Proof: Let S= (t) with the action above. If w E (t) then write 

where oi is the first d bits of w and o2 is the remaining suffix. 
First we must show that [S”] is given by the right side of the 

recurrence. Pick o E SC. Then oi is either all O’s or all 1’s. In the former 
case 

inv w = inv o2 

and in the latter 

inv o = inv w2 + kd. 

Thus we always have 
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since working mod Gd sets q to be a primitive dth root of unity. Further- 
more, 

n 
n-d 

W2E k-d ( > 

in the first case and n 
n- 

02E 
( “) k 

in the second. Hence [sG] does give the right generating function. 
Finally we show that any other orbit 0 has weight divisible by Gd. Take 

o E 0 and suppose w1 contains I zeros. Then for the generator g of Cd we 
have 

inv go=invo+I (mod d) (2) 

since the number of inversions either goes up by I or goes down by d- 1. 
Now if m= #O then 

[(I] = qin” yq’+ q2’+ . . . + 4”‘). (3) 

But o = g”w forces d 1 ml by repeated application of Eq. (2). Thus the right 
side of (3) is divisible by Qd. 1 

The q-Lucas theorem may have been known to Gauss himself, but the 
first published proof that we are aware of occurs in [21]. The result was 
subsequently rediscovered [8, 33 and a different q-analog is given in [lo]. 
All of these proofs are algebraic in nature. The combinatorial demonstra- 
tion that we give below was found earlier by Strehl and alluded to in [26]. 
We thank him for letting us reproduce it here. We also thank Ira Gessel 
for bringing some of these references to our attention. 

THEOREM 2.2. Divide n and k by d to obtain 

n=n,d+n,, 

k=k,d+k,, 

where 0 < n,, k, < d. Then 

[;]-(a:)[;:] (mod @A. 

Proof It is easy to give an inductive proof of this result using the 
previous theorem. Alternatively, one can come up with a new group action. 

607/95/l-9 



132 BRUCE E. SAGAN 

Break w=b,b, . . .b, E (2) into subwords of length d, 

w=wlw*“‘w,,wo, (4) 

where o, = 6, . . . b,, w2 = bd+ , . . . b,,, . . . and oO = bnld+ , . . ’ b,. Now find 
the first oi with i> 1 where not all the digits are equal (if any). Let 

gw=w, . ..wi~.w:wi+, “‘WO, 

where w; is the rightward rotation of wi. If no such wi exists, then w is a 
fixed point. For example, taking d = 3 and 

0=111,000,000,110,100,1 

we have 
g0=111,000,000,011,100,1 

(commas have been inserted to distinguish the wi). 
Now consider a fixed point w. Because the ones in w, . .. w,, occur in 

blocks of size dividible by d, 

4 
inv w _ inv wg 

-4 . 

Also, there must be k, zeros among the n, bits in wO and k, zeros among 
the the remaining n, bits. Hence 

[S”]=(# OfWi..‘W,,) c qin- 
W”E (2, 

The fact that Qd 1 [S] for larger orbits is the same as in Theorem 2.1. 1 

Everyting we have done can be extended to q-multinomial coefficients. 
Suppose k, + k, + ... + k,= n; then (k,: kz _,,, k,) denotes the set of all 
w=b,b, . . . b, containing ki copies of the integer i, 1 6 i < 1. With the inver- 
sion number defined as before, let 

It is convenient also to detine 

[k,,k~...,k~=O if k,+k,+ . ..+k.#n. 
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As in the q = 1 case, the multinomials factor in terms of q-binomial 
coefficients : 

THEOREM 2.3. For all n 2 d we have 

[k,,k:, . ..) k/l+, [k, )...) nk;t! ),,.) k,l (mod@d). 
Proof. This result follows from Theorem 2.1 and Eq. (5). The proof can 

be given a combinatorial interpretation in terms of group actions. 
As usual, write w = or w2, where w, is the first d digits. Let m be the 

smallest integer in w 1. Define 

go = w; w2, (6) 

where w; is obtained from w1 by the following sequence of steps. 
1. Replace each element > m in w 1 by the symbol co. 
2. Rotate the resulting word to the right one place. 
3. Replace the co’s with the elements removed in the same order in 

which they occur in 0,. 

For example, if 
0,=223524 

then rotate 
22coco2cc 

to 
co22coao2 

and finally 

w;=322542. 

Now the proof follows that of Theorem 2.1. 1 

The multinomial q-Lucas theorem is 

THEOREM 2.4. Write 

n=n,d+n,, 

ki=ki,d+k,, 
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where O<n,, k,<dfor 1 <i<l. Then 

[k,, k:, . . . . k,l=(k,,, k,:: . . . . k,,)[k,,, k:,ll . . . . k,,l (mod @“I’ 

Proof. Three proofs are possible with the results at hand. One is as a 
corollary to Theorem 2.2 and Eq. (5). Another is by induction using 
Theorem 2.3. Finally, the group action used in Eq. (6) could be modified to 
act on the decomposition of o in (4). Details are left to the reader. 1 

3. CONGRUENCES: q-STIRLING NUMBERS OF THE SECOND KIND 

The usual q-analog of n E N is the polynomial 

[n]=l+q+qZ+ ... +q”-1. 

For n 2 1, the q-Stirling numbers of the second kind satisfy the recursion 

S[n, k] = S[n - 1, k - l] + [k] S[n - 1, k]. (7) 

Reducing this equation modulo [d] we get 

PROPOSITION 3.1. If 

k=k, (mod d) 

then 

S[n, k]-S[n-1, k-l]+[k,,] S[n-1, k] (mod Cdl). I 
We can also give a group action proof of Proposition 3.1, based on the 

usual combinatorial demonstration of Eq. (7), by letting the group C, 
rotate the element n through the blocks of 7c E S[ri, k]. This motivates the 
method used to derive the following somewhat more complicated 
recurrence. 

THEOREM 3.2. For all n 2 d we have 

S[n, k] - i S[m- 1, d-l] S[n-m, k-d] (mod Cdl). 
m=d 

Proof Let g generate Cd. Given 7~ = B,IB,/ . . ./Bk E S[ri, k], let m be 
the maximum element among blocks B,, . . . . B,. If m is in block Bi then 
define 

g7C=BIl...lBi-{m}lBi+,~ {m}/.../B,, 
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where i + 1 is taken mod d. As an example, take d= 3 and 

R = 1, 2, 513, a/4, 617, 9 

so that m=8 with 
gn = 1, 2, 5/3/4, 6, 8/l, 9 

and 
g=n= 1, 2, 5, 81314, 617, 9. 

The only time when the action is not well-defined is when B,= (m), for 
then grr will not have k blocks. In this case, make A a fixed point. 

If rt is not fixed then clearly 

invga-inv z-1 (mod d). 

So [d] divides [Co], where 0 is n’s orbit. If K is fixed, then the fact that 
BQ= {m} with rc in standard form implies that the elements in B,, . . . . B,- 1 
are precisely 1, . . . . m - 1. These fixed points yield the right side of the 
desired congruence. 1 

Equation (7) can be used to prove that the S[n, k] have the generating 
function 

Xk 
’ SEn7k’n”=(l-x)(l-[2]x)...(1-[k]x)’ 

PCS0 
(8) 

Theorem 3.2 can also be proved by partially reducing the last k - d factors 
in this product. Full reduction results in the following theorem which also 
has a combinatorial proof. 

THEOREM 3.3. If 

k=k,d+k,, 

where 0 <k, < d, then 

1 S[n, k] xn - 
fl>O ((~-~)..-(l-Cd-l,~;kl(~-~)...(~-~ko,~) 

(mod [dl). 

Proof Take rc = B,/B,/ . . ./Bk E S[& k] and consider intervals of 
blocks 

BJ.0-IB,, Bci+J...l&ci, . . . . Bic,ci+ll-..lBn. 
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Find the first interval with d blocks (if any) that is not fixed by the action 
of ge C, as defined in the previous proof. Redefine gn by letting g act on 
this interval or by fixing rr if no such interval exists. The verification of the 
above identity should now be routine. u 

In the case d = 2 we can actually extract the coefficient of x” on both 
sides of Theorem 3.3. This is an exercise in Stanley’s text [25, p. 46, 
Problem 171 where he asks for a combinatorial demonstration. We provide 
such a proof next. A different combinatorial approach has been given by 
Collins and Hovey [6]. 

THEOREM 3.4. For r real, let Lrl denote the largest integer less than or 
equal to r. Then 

S[n, k] = 
n-Lk/2]- 1 

n-k > 
(mod PI). 

Proof Let C2 act on S[ri, k] as in Theorem 3.3. If rc is a fixed point, 
then it must have the form 

where BIi + 1 consists of all elements between rnli and rn2;+*. Thus the 
number of 7c is just the number of compositions (ordered partitions) 

n, + 1 +n,+ 1+ ... =n, 

where nzi+ , = # Bzi+ , . But then 

rw1 

n,+n,+ ... =n-Lk/2J 

and the number of such compositions is well known to be 

n-Lk/2j- 1 
n-k ’ ’ 

4. CONGRUENCES: q-STIRLING NUMBERS OF THE FIRST KIND 

The q-Stirling numbers of the first kind satisfy 

c[n, k]=c[n-1, k-l]+[n-1] c[n-1, k]. (9) 

This is proved by inserting n in every possible place in a permutation on 
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n - 1 elements (while preserving standardness) and counting inversions. 
Modulo [d] this recurrence becomes 

PROPOSITION 4.1. Zf 

then 

n-l=m (mod d) 

c[n, k] =c[n- 1, k- 1] + [m] c[n- 1, k] (mod Cdl). I 

Proposition 4.1 can be proved by group actions in a manner similar to 
that for Proposition 3.1. However, we can only get an analog of the 
recurrence in Theorem 2.1 for d = 2 (even though an analog exists for any 
prime d in the case q = 1, see [ 231). 

THEOREM 4.2. We have 

c[n, k]=c[n-2, k-2]+c[n-2, k-l] (mod PI). 

Proof Consider cr E c[fi, k], g the generator of CL, and the trans- 
position z = t, = (n, n - 1). Define 

go = TOT. 

If 0 is not fixed by g then 

inv ga=inv af 1 

giving an orbit with weight divisible by [2]. 
If Q is fixed by this action, then it must end with the cycles (n - l)(n) or 

with (n - 1, n) (since r~ is in standard form). These two choices give the two 
terms in the above recursion. 1 

The c[n, k] also satisfy the generating function 

kFo c[n, k] xk=x(x+ [11)(x+ [2])-..(x+ [n-l]). 

Reducing this equation modulo [2] and taking coefficients of xk (as is 
done in Wilf’s text [29]) yields another identity that we can prove 
combinatorially. 

THEOREM 4.3. We have 

(mod PI). 
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Proof: Let c and g be as in the proof of the previous theorem. Among 
the transpositions 

Tn=(n, n-l), t+?=(n-2, n-3),... 

find the ti with largest index (if any) that does not fix cr and define 

gfJ=t,az,. 

If (T is a fixed point, then each pair of elements n - 2i, n - 2i - 1 for i L 0 
must appear in a 2-cycle or two l-cycles. Thus there are Ln/2 j pairs and 
of these we must choose n -k to be 2-cycles so that the total number of 
cycles is k. [ 

5. PERIODS: GAUSSIAN COEFFICIENTS 

A sequence (a,), a,, = a,, a,, a,, . . . has period P if a, + P = a, for all suf- 
ficiently large n. The period is minimum if P is the smallest positive integer 
with this property. We allow the elements a, to come from any ring. 

There is a simple technique using generating functions to investigate 
periodicity which has been used in [16, 201. Consider f(x)=Cn a,~“. 
Then (u~),,~~ has period P if and only if (1 -xp) j(x) is a polynomial. 
Furthermore, P is minimum precisely when the factor 1 - xp has minimum 
degree. 

The following proposition is not hard to prove using generating func- 
tions, or by other means. 

PROPOSITION 5.1 (Trench [27], Zabek [30]). Let p be prime. Then the 
sequence 

(mod P) 
PISO 

has minimum period 

P=p”, 

where m is the least integer such that pm > k. 1 

It is perhaps not surprising that the corresponding sequence of Gaussian 
coefficients is not periodic modulo [p] (except in special cases). 
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THEOREM 5.2. Zf d is an arbitrary positive integer, then the sequence 

(mod Qd) 
n,O 

is not periodic unless k -C d. In this case the minimum period is 

1 
P= 

if k=O 
d if 1 < k < d. 

Proof. We have the generating function 

f(x)=nFo [;I xn= 
Xk 

(1-X)(1-qx)(l-q*X)...(1-qkX)’ (10) 

If k 2 d then the denominator has multiple roots modulo Qd. But all the 
roots of 1 -xp (mod Qd) are distinct since it is relatively prime to its 
derivative. Thus (1 - x’) f(x) cannot possibly be a polynomial in this case. 

If k = 0 then clearly P = 1. For the remaining values of k, note that 

(l-x)(l-qx)...(l-q~-lX)~l-x~ (mod @d) 

so (1 - xd) f(x) is certainly a polynomial if 1 <k < d. The degree is mini- 
mal because we always have a factor of 1 - qx in the denominator and q 
has multiplicative order d. 1 

To obtain a proper q-analog of Proposition 5.1, we work in the quotient 
ring N[q]/(p, [p] ), where p is a prime integer. Congruences in this ring 
will be written as (mod p, [p] ). 

THEOREM 5.3. Let p be prime; then the sequence 

(mod P, [PI) 
a>0 

has minimum period 

P=p”, 

where m is the least integer such that pm > k. 

Proof. Reducing Eq. (10) modulo [p] we see that each factor in the 
denominator is repeated at most [(k + l)/pl <pm- ’ times. Thus it will 
factor into 

l-XPm+l-xP)Pm-’ (mod P). 
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To verify that this period is minimum, set q = 1. Hence the mod p period 
of the binomial coefficients must divide P. So from Proposition 5.1 and the 
previous paragraph they must be the same. 1 

6. PERIODS: q-STIRLING NUMBERS OF THE SECOND KIND 

The minimum period of the S[n, k] is computed in [20]. In what 
follows, o(i) denotes the multiplicative order of i in the integers mod p, and 
lcm is least common multiple. 

PROPOSITION 6.1. Let p be prime. Then the sequence 

has minimum period 

where m is the greatest integer such that p” c k. 1 

First we have the “non q-analog.” 

THEOREM 6.2. Let d be an arbitrary positive integer. Then the sequence 

(SCn, klLao (mod Cdl) 

is not periodic unless k = 0, 1 or d = 2, 3 and k < d. In these cases the 
minimum period is 

P= 
1 if k=O, 1 or k=d=2 
6 if k=2,3and d=3. 

ProoJ The generating function of interest is Eq. (8). Its denominator 
has repeated roots if k > d, scuttling periodicity in that case. If k = 0, 1 then 
the period is obviously one. 

If k 2 2 then the factor 1 - [21x appears. In order for this to cancel into 
1 - xp, we must have 1 + q equal to zero or a root of unity whenever q 
itself is a dth root of one. This forces d= 2 or 3. Verification of the 
minimum periods is now a routine matter. 1 

Things are more interesting when we also mod out by p. 
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THEOREM 6.3. Let p be prime. Then the sequence 

(SCn, Wnao (mod P, CPIJ 

has minimum period 

if k= 0, 1 
if l<k<p 

if kap, 

where m is the least integer such that p” > k. 

Proof. For any non-zero [i] we have 

[i]P’“Ci) c (1 + qP + q2P + . . . + q(i--l)p)W) (mod P, [PI) 
= p(i) - (mod P, [PI) 
E 1 (mod P, [PI). 

Also lcml.iCp-l o(i) = p - 1, so 1 - xp certainly has each 1 - [i] x as a 
factor for 1 < i < k. It also contains enough copies for the maximum multi- 
plicity of such a factor by the same sort of argument as used in 
Theorem 5.3. 

For minimality, first let q = 1 to see that P is divisible by the period of 
Proposition 6.1. This shows that the p-free part is correct. Now set q = 0 
(before modding out). Thus the right side of Eq. (8) becomes xk/(l - x)~ 
which is the generating function for the sequence 

n-l 

(( >> k-1 nao’ 

By Proposition 5.1, this sequence has period p” and so the power on p is 
also as small as possible. 1 

7. PERIODS: q-STIRLING NUMBERS OF THE FIRST KIND 

The c[n, k] are periodic in a trivial sort of way. 

THEOREM 7.1. Let [d] be an arbitrary integer. Then 

c[n, k] ~0 (mod Cdl) 

for n>kd+ 1. 
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Proof: Induct on k. The case k= 0 is trivial. By the recursion (9) and 
induction, 

c[kd+ 1, k] = c[kd, k- l] + [kd] c[kd, k] 

= -0 (mod Cdl). 

Induction on n now shows that c[n, k] = 0 whenever n > kd+ 1. i 

8. COMMENTS AND OPEN QUESTIONS 

Various questions are raised by the above work. 
It is a pity that most of the congruences of Section 4 only hold modulo 

[2]. Unfortunately, rotating the d largest elements of 71 does not necessarily 
produce an orbit whose weight is divisible by [d] (or even Dd). Thus it will 
be necessary to find a better group action for improved results. 

Davis and Webb [7] have found a version of Lucas’ Theorem that holds 
for arbitrary prime powers. Their proof is rather complicated and might be 
simplified and made more combinatorial by the use of group actions. Also, 
a q-analog needs to be found. 

Various authors [l, 8, 93 have found congruences for the q-Eulerian 
numbers. Furthermore, Andrews and Foata [2] give a combinatorial proof 
of one of these identities using group actions. This suggests that other 
results from these papers could be attacked in the same manner. 

We can also ask periodicity questions about the coefficients of these 
polynomials. For example, one can show that (for fixed i) the sequence 
obtained by extracting the coefficient of qi in (S[n, k]), ao (mod d) is 
periodic. Specifically, this follows easily from the recurrence (7) and the fact 
that there are only a finite number of residues modulo d. However, the 
proof gives no indication of what the period is. Maybe generating functions 
can be brought to bear. 
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