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Abstract

Let ck,l(n) be the number of compositions (ordered partitions) of the
integer n whose Ferrers diagram fits inside a k× l rectangle. The purpose of
this note is to give a simple, algebraic proof of a conjecture of Vatter that
the sequence ck,l(0), ck,l(1), . . . , ck,l(kl) is unimodal. The problem of giving
a combinatorial proof of this fact is discussed, but is still open.

1 Introduction

Let N and P denote the nonnegative and positive integers, respectively. A partition
of n ∈ N is a weakly decreasing sequence λ = (λ1, . . . , λr) of positive integers called
parts such that

∑

i λi = n. We write λ ⊢ n or |λ| = n if λ partitions n. We will also
use the notation λ = (nmn , . . . , 1m1) where mi is the number of times i appears as
a part in λ. If mi = 1 then the exponent is suppressed and if mi = 0 then so is the
base. The Ferrers diagram of λ, also denoted λ, consists of left-justified rows of
squares with λi squares in row i. The Ferrers diagram of λ = (4, 3, 3, 1) = (4, 32, 1)
is shown in Figure 1.

Partitions can be ordered by letting λ ≤ µ if the Ferrers diagram for λ is
contained in the upper left corner of the one for µ. Equivalently, λi ≤ µi for all
i where we set λi = 0 if i is greater than the number of parts of λ and similarly
for µ. The set of partitions under this partial order is called Young’s lattice.
More information about partitions and this lattice can be found in the books of
Andrews [2], Sagan [12], or Stanley [18].
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λ = κ =

Figure 1: Ferrers diagrams for the partition λ = (4, 3, 3, 1) and the composition
κ = (3, 1, 4, 1)

We say that λ fits inside a k × l rectangle if λ ≤ (lk). In other words, λ has at
most k parts each of size at most l. Let pk,l(n) denote the number of such λ where
λ ⊢ n. A sequence a0, a1, . . . , ar of nonnegative integers is said to be unimodal if
there is an index m such that

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . ≥ ar. (1)

Unimodal sequences arise in many aspects of combinatorics, geometry, and algebra.
See the survey articles of Stanley [16] and Brenti [4] for details. Our interest is in
the following well-known theorem.

Theorem 1.1. Given k, l ∈ P the sequence

pk,l(0), pk,l(1), . . . , pk,l(kl)

is unimodal.

This result was first proved by Sylvester [20] using invariant theory. Since then,
there have been a number of other proofs. In particular, Stanley [15] derived this
and much more from the hard Lefschetz Theorem of algebraic geometry. Proc-
tor [11] was able to reduce Stanley’s proof to pure linear algebra. And finally,
Kathy O’Hara [10] gave a combinatorial proof of this theorem.

A composition κ of n, written κ |= n, is any sequence κ = (κ1, . . . , κr) of positive
integers summing to n. Note that a composition need not be weakly decreasing.
All of the definitions discussed so far have obvious analogues for compositions
so we will not bother restating them. For example, the Ferrers diagram of the
composition (3, 1, 4, 1) is displayed in Figure 1. Although there is a large literature
surrounding partitions, compositions have only recently aroused interest due to
their connection with quasi-symmetric functions [5, 6], the theory of patterns [7,
14], and the subword and factor partial orders [3, 9, 13].

2



Let ck,l(n) be the number of compositions of n fitting inside a k × l rectangle.
In this note we will give a simple, algebraic proof of the following conjecture of
Vatter [personal communication].

Theorem 1.2. Given k, l ∈ P the sequence

ck,l(0), ck,l(1), . . . , ck,l(kl)

is unimodal.

We should note that Andrews [1] proved the analogous result if one considers
compositions with exactly k parts. One can also consider the case where one has
k parts and zero is allowed as a part. But this is seen to be equivalent to what
Andrews did by adding 1 to each part.

In the next section, we will prove this result by passing to the generating
function of the sequence. The final section will include some comments and an
indication about how a combinatorial proof of Vatter’s conjecture might go.

2 Unimodality of the composition sequence

Let a0, a1, . . . , ar be a sequence of real numbers and let q be a variable. We consider
the corresponding generating function f(q) = a0 +a1q + · · ·+arq

r. By convention,
we let ai = 0 if i < 0 or i > r. We will say that f(q) has a given property if the
sequence itself does.

We will need the standard q-analogue of n, namely

[n] = 1 + q + q2 + · · · + qn−1.

It is well known that the generating function for the sequence pk,l(n), 0 ≤ n ≤ kl,
is the q-binomial coefficient

[

k + l
l

]

=
[k + l]!

[k]![l]!

where [k]! = [k][k−1] · · · [1]. So a restatement of Theorem 1.1 is that the q-binomial
coefficients are unimodal.

To prove the analogous result about compositions, we will need a result about
products of polynomials. It is not true, in general, that the product of two uni-
modal polynomials is unimodal. For example, if f(q) = 1 + q + q2 + 2.3q3 + 2q4

then

f(q)2 = 1 + 2q + 3q2 + 6.6q3 + 9.6q4 + 8.6q5 + 9.29q6 + 9.2q7 + 4q8.
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But there is a situation in which unimodality is preserved. A sequence a0, a1, . . . , ar

is log concave if a2
i ≥ ai−1ai+1 for all i with 0 < i < r. Keilson and Gerber [8] gave

the following nice characterization of log concavity.

Proposition 2.1 (Keilson and Gerber). Let f(q) be a polynomial with positive
coefficients. Then f(q) is log concave if and only if f(q)g(q) is unimodal for any
unimodal polynomial g(q) with positive coefficients.

Now let
fk,l = fk,l(q) =

∑

n≥0

ck,l(n)qn.

Our main result is as follows.

Theorem 2.2. Let k, l ∈ P.

(a) If k ≥ 2 then
fk,l = 1 + q[l]fk−1,l.

(b) We have

fk,l =

k
∑

i=0

(q[l])i.

(c) The polynomial fk,l is unimodal.

Proof. (a) Let Kk,l be the set of compositions fitting inside a k × l rectangle,
and let Kk,l〈r〉 ⊆ Kk,l be those compositions with first part equal to r. So we have
the disjoint union

Kk,l = {ǫ} ⊎

(

l
⊎

r=1

Kk,l〈r〉

)

(2)

where ǫ denotes the empty composition. Removing the first part of any κ ∈ Kk,l

leaves a composition in Kk−1,l. So translating the union above into a generating
function gives the desired result.

(b) This is an easy induction on k using the recursion in part (a).

(c) We again induct on k. Clearly f 1,l = [l+1], so we are done in the base case.
If k ≥ 2 then using part (a) and the previous proposition finishes the proof.
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3 Comments and open questions

3.1 Log concavity and symmetry

Another relationship between unimodality and log concavity is the following well-
known result.

Proposition 3.1. Let a0, a1, . . . , ar be a sequence of positive real numbers. If the
sequence is log concave, then it is also unimodal.

Sometimes to prove a sequence is unimodal, it is actually easier to prove that it
satisfies the stronger log-concavity condition. This is because proving unimodality
directly may involve finding the index where the sequence is maximized, and that
can be highly nontrivial. However, the sequence pk,l(n), 0 ≤ n ≤ kl, is not
log concave in general. So it should come as no surprise that neither is ck,l(n),
0 ≤ n ≤ kl, and for much the same reason. In particular, if k, l ≥ 2 then both
sequences start 1, 1, 2 which already violates log concavity.

Another common property of sequences is symmetry. Say that a0, a1, . . . , ar is
symmetric if ai = ar−i for all i, 0 ≤ i ≤ r. By taking complements in the rectangle,
it is easy to see that pk,l(n), 0 ≤ n ≤ kl, is symmetric. In general, this property
is not shared by compositions in a rectangle. For example, if k = l = 2 then the
corresponding sequence is 1, 1, 2, 2, 1.

3.2 Lower order ideals

Let (P,≤) be a poset (partially ordered set). Definitions for terms from the theory
of posets which are not given here can be found in Stanley’s book [17, Chapter
3]. A lower order ideal is L ⊆ P such that x ∈ L and y ≤ x implies y ∈ L. The
principal lower order ideal generated by x is the order ideal

L(x) = {y ∈ P | y ≤ x}.

Let Y and K denote Young’s lattice and the poset of all compositions, respectively.
Then the set of partitions in a rectangle is the order ideal Y (lk) and similarly for
compositions.

If x, y ∈ P then x is covered by y, written x ⋖ y, if x < y and there is no
z with x < z < y. An x–y chain of length n in P is a subposet of the form
x = x0 < x1 < . . . < xn = y. This chain is saturated if each inequality is actually
a cover. A poset is graded if it has a unique minimal element denoted 0̂, a unique
maximal element denoted 1̂, and every saturated 0̂–1̂ chain has the same length. If
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P is graded and x ∈ P then all saturated 0̂–x chains have the same length, called
the rank of x and denoted rkx. In this case, the nth rank of P is the subposet

Pn = {x ∈ P | rk x = n}.

We will say that a graded poset P has a property if the sequence of cardinalities

|P0|, |P1|, . . . , |Pr| (3)

has that property, where r = rk 1̂. We will sometimes preface the property by
“rank-” if clarification is needed. So Theorem 1.1 can be restated as saying that
the poset Y (lk) is unimodal. It is natural to ask whether Y (λ) is unimodal for all
partitions λ. But this is too much to ask for, as demonstrated by the following
theorem of Stanton [19].

Theorem 3.2 (Stanton). The lower order ideal Y (8, 8, 4, 4) is not unimodal.

In view of Stanton’s result, it is perhaps surprising that all principal lower order
ideals in the composition poset K are unimodal. Given a graded poset P , we let
fP = fP (q) be the generating polynomial for the sequence (3). The proof of the
following theorem is so much like that of Theorem 2.2 that we omit it.

Theorem 3.3. Consider a composition κ ∈ K.

(a) Suppose κ = (κ1, . . . , κs) 6= ǫ, letting l = κ1 and γ = (κ2, . . . , κs). Then

fK(κ) = 1 + q[l]fK(γ).

(b) The polynomial fK(κ) is unimodal.

3.3 A combinatorial proof?

Theorem 2.2 is so easy to prove algebraically, one would think that there is also
an easy combinatorial proof. But so far one has not been found. Here we present
a possible approach in the hopes that someone may be able to push it through.

Let P be poset. A chain decomposition of P is a family of saturated chains
C1, . . . , Ca such that P = ⊎iCi. If P is graded then we say an x–y chain in P is
symmetric if rk y = rk 1̂ − rk x. A symmetric chain decomposition or SCD is a
chain decomposition where all the chains are symmetric. It is easy to see that if
P has a SCD then its rank sequence is symmetric and unimodal.

O’Hara [10] constructed her ground-breaking combinatorial proof of Theo-
rem 1.1 as follows. Let Z(λ) be the poset of all partitions in Y (λ) ordered by
µ < ν if and only if |µ| < |ν|. So for any partition λ, Z(λ) has the same set of
ranks as does Y (λ), but many more covering relations in general.
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Theorem 3.4 (O’Hara). Given k, l ∈ P, the poset Z(lk) has a SCD.

We note that it is still an open problem to give a SCD for Y (lk).
As mentioned above, K(lk) is not always rank-symmetric. But we can replace

symmetry by another condition. If P is graded then we say that a chain decom-
position is modal (a MCD) if there is some rank Pm such that every Ci contains
an element of Pm. We call Pm a modal rank . Note that a MCD may have more
than one modal rank, but all modal ranks have the same number of elements.

It is not hard to see that if a poset P has a MCD then it is rank-unimodal. It
would be very interesting to find a MCD for K(lk) or even for some related poset
that has the same ranks. Note that a modal rank Pm for P = K(lk) seems to occur
when

m = ⌈k(l + 1)/2⌉ − 1

where ⌈·⌉ is the ceiling function. Also note that there are other partial orders on
the set of compositions [3, 9, 13] and they have the same set of ranks as K(lk).
Of these, the partial order we are considering has the fewest covers. So in may be
useful to consider one of the other orders instead.

Acknowledgement. I would like to thank Adam Goyt and Vince Vatter for
interesting discussions.
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[13] Sagan, B. E., and Vatter, V. The Möbius function of a composition poset. J.
Algebraic Combin. 24, 2 (2006), 117–136.

[14] Savage, C. D., and Wilf, H. S. Pattern avoidance in compositions and multiset
permutations. Adv. in Appl. Math. 36, 2 (2006), 194–201.

[15] Stanley, R. P. Weyl groups, the hard Lefschetz theorem, and the Sperner prop-
erty. SIAM J. Algebraic Discrete Methods 1, 2 (1980), 168–184.

[16] Stanley, R. P. Log-concave and unimodal sequences in algebra, combinatorics,
and geometry. In Graph theory and its applications: East and West (Jinan, 1986),
vol. 576 of Ann. New York Acad. Sci. New York Acad. Sci., New York, 1989, pp. 500–
535.

[17] Stanley, R. P. Enumerative Combinatorics. Vol. 1, vol. 49 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. With a
foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.

[18] Stanley, R. P. Enumerative Combinatorics. Vol. 2, vol. 62 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a
foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

[19] Stanton, D. Unimodality and Young’s lattice. J. Combin. Theory Ser. A 54, 1
(1990), 41–53.

[20] Sylvester, J. J. Proof of the hitherto undemonstrated fundamental theorem of
invariants. In The collected mathematical papers of James Joseph Sylvester, vol. 3.
Cambridge University Press, Chelsea, NY, 1973, pp. 117–126.

8


