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Abstract

We bound several quantities related te tfracking densityf the patterns @ + 1)¢---2. These
bounds sharpen results of Béna, Sagan, and Vatter and give a new proof of the packing density of
these patterns, originally computed by Stromquist in the éas@ and by Price for largef. We end
with comments and conjectures.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

We say two sequences g of lengthn are of the samgypeif p(i) < p(j) if and only if
q(@) <q(j)foralli, j € [n], thatis, if p andg have the same pairwise comparisons. For an
n-permutatiorp and ang-permutatiory we letc, (p) denote the number éfsubsequences
of typeq in p, and we say thap containsc,(p) copies of thepatterng. For example,
41523 contains exactly two 132-patterns, namely 152 and 15335@1523 = 2.
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We say that am-permutationp is g-optimalif there is non-permutation with more
copies ofg thanp, and let

M, 4 =cq(p) forag-optimalp.

Since there are a total ((fz) ¢-subsequences in any-permutation, we always have
0< M, 4 < (‘Z‘). The packing densitpf a permutatiory is defined as

. Ml‘t,q
lq1

This limit exists because dhe following theorem. An unpublished proof was given by
Galvin and reproduced in Pricethesis. One can also find the demonstration in a paper of
Albert, Atkinson, Handley, Holton, and Stromquist [1].

Theorem 1.1[1,5]. The ratioM,i,q/(lgl) is weakly decreasing.

Stromquist [6] computed the packing density of 132. Using similar techniques, Price
computed the packing density of the pattejns- 1(¢ + 1)¢ - - -2 for all £ > 2. Information
about the packing densities of other pattegan be found in Burstein et al. [3] and
Hasto [4].

Theorem 1.2 [5]. The packing density af; is
B=ta(l—a)* (1)
whereq is the unigue root of
fe)=ext— @+ Dx+1 2)
in the interval(0, 1).

Sincefy(1/(¢ + 1)) > 0andf,(1/¢) < 0, we have

1

I )

o< -—.
£

The chart below shows approximate values@ndg for small .

0.366 Q464
0.253 Q424
0.200 Q410

0167 Q402

a b wWwN|S
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For the rest of the paper, we abbreviatg ,, to M,. Price proved Theorem 1.2 by
showing that

M I
M _pio <%>,
(1) n
We will reprove Theorem 1.2 by giving precise boundsign

Theorem1.3. Foralln > ¢ > 2,

’B(n — )+t < ﬁ(n+82,e)e+l
e+ "0 w41

bl

where 820 is the Kronecker deltgand not to be confused with the packing density
B =3d(q0).

Note that Theorem 1.2 follows immediately from the theorem just stated by merely
dividing all sides by(,; ;) and taking: — occ. Also note that the lower bound follows from
Price’s calculation oftie packing density of, and the fact thaM,,/(efrl) is decreasing,
but we will provide another demonstration in order to give a new proof of Theorem 1.2.
We will also have other uses for the intermediate results needed to prove both bounds.

The rest of this paper is structured as follows. In the next section we give some
preliminary definitions and previous results which will be needed for our bounds. Section 3
is devoted to proofs of bounds involving,,. In the section following that, we provide
bounds for a related quantity. Often our uppeund proofs from these sections will not
work when¢ = 2, so Section 5 is devoted to a discussion of that case. Finally, we end with
a section of comments and conjectures.

2. Definitionsand previousresults

We say that a permutation liasyeredif it is the concatenation of subwords (tleyer9
where the entries decrease witlkizch layer, and increase between the layers. For example,
321548769 is a layered permutation with layers, 321876, and 9. The only permutations
for which the packing density has been conguliire layered or equivalent to layered
permutations under one of the routine symmetries. The following theorem of Stromquist
is crucial for computing these densities. Its proof may also be found in Price’s thesis [5],
and a generalization is proved in [1]. Béna, Sagan, and Vatter [2] proved a similar result
for n-permutations with\f,, — 1 copies ofy,, for anyl > 2.

Theorem 2.1[6]. For all layered permutationg and positive integers, there is a layered
g-optimaln-permutation.

Layered g,-optimal permutations have the following easily established recursive
structure.
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Proposition 2.2 [2]. Let p be a layered;,-optimal n-permutation whose last layer is of
lengthm. Then the leftmogt = n — m elements op form ag,-optimalk-permutation.

The previous proposition implies that

m
M, = max | M;+k . 4
1gk<n( ke (Z)) @

The value ofk that maximizes the right-hand side of (4) will be very important
throughout this paper, so we give it a notation as follows.

Definition 2.3. For any positive integet > ¢, let k, denote the positive integer for which
M + k(’z') is maximal. If there are several integers with this property,Jdie the largest
among them.

Once we have found the packing densityef(Theorem 1.2), it is not hard to find the
asymptotic behavior of;,.

Corollary 2.4 [5]. The limit ofk,,/n is «.

We will sharpen this result considerably in Section 4. We will also need some
information aboup. First are a couple of extremal expressionsdor

Lemma 2.5. The quantitys satisfies

L+ 1y@d—yp)-t _
= ( )y; 2 ;= _min By +1—-p)".
oy<il+y+yo+--+y° 0<y<e

In fact 8 = Bat + (1 — a)*.

Proof. The maximum expression f@grwas given by Price [5] in his proof of Theorem 1.2.
After rearranging terms an@lugging in the definition of, proving the last equation is
equivalent to showing that

Lo(1l— a)efl(ae — 1) +1-a)f=0.

Cancelling out(1 — o)¢~1 leaves the defining equation farand thus proves the result.
Now to obtain the minimum expression, it suffices to show ghat + (1 — )¢ is an
decreasing function of on the intervalO, «]. It is an easy exercise in calculus to show

that, in fact, it is decreasing df, 1/¢]. So by (3) we are done.O

In addition, we will need some upper bounds for
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Lemma 2.6. For all £ > 2 we have

Nt 1
<(1-: <z,
p(1-3) <3

Proof. For the first inequality, consider the function
f)=tx1—x)"h (5)

Clearly f(a) = B. Furthermore, elementary calculus shows tliat) is an increasing
function on the interval0, 1/¢], which containsx by (3). So f(«) < f(1/¢) and we are

done with the first bound. For the second inequality we use the usual bounds for alternating
series to give

-1
< 1) g1_5—1+(e—1)(e—2):1 1

1- =
14 L 2¢2 2 20 ¢?

whent¢ >2. O
Bona et al. gave crude boundsign

Proposition 2.7 [2]. For n > £ we have

n—Z<k n
— < < —.
e+1 " T

They also found that the sequerigeis “continuous” in the following sense.

Theorem 2.8 (Continuity Theorem [2]).The sequencék,),-¢ diverges to infinity and
satisfies

kn—l < kn < kn—l +1
foralln>1+1.

The Continuity Theorem will be very useffdr us because it shows that there are only
two possibilities fork,_1: eitherk, ork, — 1.

Let ¢,; denote the number of copies gf in an n-permutation whose last layer is
of lengthn — i and whose leftmost elements form a,-optimal i-permutation. So for
1<i<n,

Cn,iZMi—i-i(n;l). (6)
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Fig. 1. A plot of the sequencecsg;)?, when ¢ = 2. The sequence begins ajo1 = 406 and rises to

i=

30,11 = M3p = 1968, sokzg = 11. It then falls untilczp 24 = 1350 before changing direction one last time.
As in [2], the sequence@/,),>1 and(c,l_,i):?:‘l1 will arise repeatedly, so we need to recall

some results about them. We will frequently consider the differepge- ¢, ;—1, S0 let us
simplify it now

Cnji—Cni—1=M; —M;_1+ 7 -1 (7)

n—(Z—I—l)i—i—l(n—i)
We will also need the following result about differences of Mg

Lemma 2.9 [2]. For all n > 0 we have

n
0 < (M11+2 - Mn+l) - (Mn-‘rl - Mn) < (Z _ 1)~

To conclude our recap of results from [2], we state the Bimodal Theorem. It plays a
crucial role in the arguments both in that paper and in this one.

Theorem 2.10 (Bimodal Theorem [2])For each positive integern > ¢ there is some
integerj > n/¢ (depending, of course, or) so that

(') Cn,i—1 < i if i < kn,
(i) cni—1>cniifk, <i<j,

(i) cni—1<cniif j<i<n.

Figure 1 illustrates the phenomenon described by the Bimodal Theorem.
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3. Boundson M,

For allk > 1, letn; denote the least integar> ¢ + 1 such that, = k. As a trivial
examplen; = £ + 1. In general, we always have the following upper bound an

Proposition 3.1. For all k£ > 2, we have
ng <€+ Dk -1

Proof. Substitutingn = (¢ + 1)k — 1 andi = k reduces (7) ta, x — chk—1 = My —
M;._1 > 0. By the Continuity Theorem, it suffices to show that> k. Let j be as in the

Bimodal Theorem. By that theorem we know tr{le,;,i}:.l:‘ll is bimodal with three sections

{C”J}i'(il’ {cn.i }{:k", and{c,,,,»};’:‘jl, where the first and last sections are weakly increasing,
while the second section is strictly decreasing. Therefore we must have kithéy,,
as desired, ok > j. However,j > n/¢ = ((¢{ + Dk — 1)/¢ > k for k > 2, so the latter

possibility cannobccur, finishing the proof. O
In the next lemma we computg for all sufficiently smallk.
Lemma3.2. Forall 2< k < ¢+ 1 we have
ng =+ 1k —1.

Proof. Fix k between 2 and + 1. Consider first the case whenk < £. ThenM;, =
Mi—1 = 0 and, by the Continuity Theorem, we have— k > ¢ — 1 so (’ﬂ}_*l") > 0. We
use (7) to get

ng—L+Dk+1/ny—k
0< Cnpk — Cnp k—1= ———— s

£ -1

which yieldsn; > (¢ + 1)k — 1. The inequality in the other direction is given to us by
Proposition 3.1, finishing this case.

Now considerk = ¢ + 1. By Proposition 3.1 again, it suffices to show that1 >
(¢ +1)% — 1. Using (7) again we get

1/e+1) -2
Cle4+1)2-2,041 ~ C(e412-2,¢ = 1= ] -1 <0,

since

1 ¢+1)-2
Z-7>1

-1

and the rest of the pairwise quotients in the binomial coefficient only make this term larger.
Thus, by the Bimodal Theorem, the desired inequality:far; also holds. O
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The next lemma will permit us to get preliminary boundskgrwhich will be needed to
get theM,, bounds later in this section.

Lemma 3.3. For eachk > 1, the number of values af> ¢ for whichk, =k is at least¢
and at most + 1.

Proof. We may assumk > ¢ + 1 since smaller values havieady been examined in the
previous lemma.

We begin by showing that there are at ledssuch values ofi. Let n = ng. So
Cn—1k — cn—1k—1 < 0. Sincek, < k,+1, we need only to establish thafi,—1r+1—
cnt+e—1.k < 0. Hence it suffices to show that

Cntf—1k+1 — Cntl—1k S Cn—1k — Cp—1 k-1

Using (7) and Lemma 2.9 with = k — 1, we see that the previous inequality will follow
if we can show that

k—1 1/n+t—k—-2
-1 12 -1

- +Dk—1—(n-1) |:<n+€—k+2)_<n—k—1):|
= ¢ -1 -1 '

The case = 2 follows from straightforward computation, so we may asséme3 for
the rest of this part of the proof. From Proposition 3.1,

C+Dk-1-(-D 1

>->0.
£ 14

Because of this and the fact that ¢ — k +2 > n —k — 1, the last inequality in the previous
paragraph will follow if we can show

k—1 <1 n+0—k—2
e—1) "¢ -1 ’

(k=1 (k—L+D<(+L—k—2)--(n—k).

This simplifies to

For ¢ > 3 there are sufficiently many factors on both sides of this inequality so that it will
be proved if both

k—L+1<n—k (8)
and

(k—Dhk—-2<(n+EL—k—2(n+L—k—3). Q)
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Both inequalities follow from the upper bourinl Proposition 2.7 as follows. For (8) we
have Z — ¢ + 1 < 2k < ¢k < n. For (9), notel(k — 1) (k — 2) < n(k — 2) while

m+l—k—-2n+L—k—-3)>Uk+L—k—2)(n+L—k—3)
=(k+D-D—-1n+t—k—23)

> (2k —4)(n —k) > 2(k—2)%,

sincek < n/¢ <n/2. This completes the proof that for @lkhere are at leagtvalues ofn
for whichk,, = k.
We would now like to show that for all there are at mogt+ 1 values ofz for which
» = k. We do this by induction ok. Lemma 3.2 gives the result far< ¢, so we may
assume thakt > ¢ and that the result is true for all values less tharLet n = ny, so
¢n.k — cnk—1 = 0. Then by the Continuity Theorem it suffices to show

Cntt41,k+1 — Cnye41k =0

since that will imply that, 1¢+1 > k + 1. So it will be sufficient to show

Cntl+1,k+1 — Cnte+1,k 2 Cnk — Cnk—1-

Using (7) and rearranging terms gives the equivalent inequality

—(+Dk+1[(n+C—k —k
(Mk+l—Mk)_(Mk—Mk—1)>%[(ng_l >+(Z_1>i|'

So by Lemma 2.9, it suffices to show
n—€+Dk+1=n—-+Dk+1<0

and this is true by Proposition 3.10

Combining this result and Proposition13immediately gies an upper bound for,
which is defined as thiargestvalue ofn such that,, = k. This will be important for our
lower bound ork,, in the next section.
Corollary 3.4. For all kK > 1 we have

n <@+Dk+¢-1.
We will obtain better bounds ok, in the next section by using our upcoming bounds

on the differencé/,, — M, _. But for the proof of the latter result we need a weaker upper
bound which comes from Lemma 3.3.
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Lemma3.5. For all n > (¢ + 1)¢ we have

n—=~¢
kn< I .

Proof. Using Lemma 3.2, it is easy to see that this result holds(fot 1)¢ < n <
(¢ + 1)2 — 1. To finish the demonstration, it suffices to prove the result for eaakhere
k > ¢+ 1. We may assume, by induction dn thatk — 1 < (nx—1 — £)/£. Now, by
Lemma 3.3p > ng—1 + £ which combines with the previous inequality to complete the
proof. O

We will also need a technical corollary of the previous lemma.

Corollary 3.6. For all n > (£ 4+ 1)¢ we have, withk = k,,,

B

k—¢+1¢ (n—k-1 K n—k—0)t
~ - >f— 4+ —.
0! + 1 ﬂzz+ 0!

Proof. Rearranging terms and multiplying 8y, it suffices to show
n—k—Dn—k—-2--(n—k—0—n—k—0">p[k" — (k—¢+D*]. (10)

Now using terminating approximations for positive and alternating series we have
£
n—k—Dn—k—2)---(n—k—0=>mn—k—-0"+ <2)(n—k—z)“,

and
k—t+D=>k" —e— Dk,
respectively. Comparing these with (10) reduces us to proving
n—k—02> k1

Lemma 2.6 gives ug < 1/2 so we will be done ifs — k — ¢ > k. But by the previous
lemmak < (n —£)/¢ < (n — £)/2 which is equivalent. O

We are now ready to prove one of our most useful results which gives bounds on the
differencesM,, — M,,_1. This will be used to get both our bounds &f), in this section
and our bounds ok, in the next.

Theorem 3.7. If £ > 3 andn > 1, then we have

(n—1°

M, —M,_1< :8 0
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Furthermore, for all¢ > 2 andn > ¢,

(n—10)*

Mn - Mnfl > :3 )

Proof. We begin by proving the upper bound by inductionmorfForn < ¢ this bound is
trivial, so we may assume that> ¢ + 1. Sok = k, is well defined. Directly from the
definitions

n—k-—1
My 12chp_160=M;+k ¢ .
Combining this with (4) yields

(11)

n—k—1\ k(n—k—-1*¢1
M, —M,-1<k <——————

-1 -1

Similarly,
n—k
My_12chp1p-1=M_1+ (k— 1)( ¢ )

Also (n —k)(n —k — 2) < (n — k — 1)2, and becausé > 3 there are enough factors in the
binomial coefficient so that

(n—k—1)¢

My — M, 1 < My — My_1+ (n ) <My — Mi—1+ 7 (12)
Combining (11) and (12) we get
(n—k—1¢ k(n—k—1)t1
M, — M,_1 < My — Mj.— _ l1-y)— 13
1 )/( k — Mg—1+ i + @1 -y) D (13)

for all y € [0, 1]. By induction M; — M;_1 < B(k — 1)*/¢! < Bk/¢!. Making this
substitution and setting = k/(n — 1) gives

Bytm -1  A—-y)'n -1 yA—p)ln -1t
M"_Mnlg’/( T ¢! )Hl_y) € —1)!
— 1
= Byt et ya- )t

By Lemma 2.5, we know that for ajt € [0, 1],

(+Dya—pyt
1+y+y2+-+y

L <8,
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SO

C+Dyd—pt<pL—y.
It follows that

By T+ +Dy@—y)' <B.

completing the proof of the upper bound.

We will have to break the proof of the lower bound into two cases depending on the size
of n.

First suppose that < (¢ 4+ 1)¢. By the Continuity Theorem we have two subcases
depending upon whethéy,_1 =k — 1 or k. Suppose that the former is true so that we
have, by Lemma 3.% < £. Then usingM; = M;_1 =0 and (4) gives

", M — n—k L—1 n—k _ n—k
no T ( ¢ >_( - )< ¢ )‘( ¢ )

We would like to show that the right-hand side of this inequality is at |g@ast— ¢)¢/¢!.
So by Lemma 2.6, it suffices to show that

(1_Z) mn—0'<m—kn—-k—1-(n—k—1+1).
Note that sincé& < ¢ we haven — ¢ < n — k so we are reduced to proving
<1_Z> n—0"1T<tm—k-1--(n—k—1+1).
This last inequality will follow if we can show
1
(1—Z)(n—ﬁ)<n—k—l+l. (14)

But multiplying out the left-hand side and cancelling shows that this is true because of
Proposition 2.7.

Now suppose that, 1 = k. Then Lemma 3.2 implies that< ¢ because of the bounds
onn in this case. As before, we can compute

M,,—Mn1=k<nzk>—k(n_lg_l>=k(n;fll>. (15)

Using Lemma 2.6 again, we see that we need to prove

-1
<1—%> n—0'<tkn—k—Dn—k—-2)---(n—k—1+1).



M. Hildebrand et al. / Advances in Applied Mathematics 33 (2004) 633-653 645

But by Proposition 2.7 again

z%>(ﬂ—nk=@—nw+nk>@—Dm—@=z@—%)m—@.

Furthermorek < ¢ impliesn — k — 1 > n — £ and (14) takes care of the remaining factors.
We may now assume that> (¢ + 1)¢. Again we have two subcasesklf_; =k, then
k > ¢. Also (15) still holds and so

k(n —k — €)t1 1 (n—0°
M,—M, 1>— """ - =
n n—1 €—1)! v ( V) 0

(16)
wherey is defined byk = y(n — ¢£). Note thaty < 1/¢ by Lemma 3.5. Also, by our
remarks about the functiofi(x) of Eq. (5) in the proof of Lemma 2.6, we have the lower
bound in the theorem as long as= [«, 1/¢).

To see what happens jf < «, we use the fact tha¥,, > ¢, x+1, Corollary 3.6, and
induction to get

(k—e+nf+<n—k—1)

My~ M, 1>M e+ (P S
n— Mp-1= k+1 — rk+ ) /,3 o )

k* —k—0*
K k=t
e! [

(n—10"
=(Br' +A=1)) =5
But sincey € [0, @), we can use Lemma 2.5 to conclude that our desired lower bound
holds. So we are now done with the case whigrg = k.
Now assume that,_1 = k — 1 so thatk > ¢ because of the bound an Then from (4)
we get that

n—k
My — M, 1=Mp — Mp_1+ ¢ )

Thus the first bound in the previostring of inequalities holds with replaced by — 1.

But k — 1 > ¢ so the same arguments used there apply to give the lower bound we seek.
Similarly, sinceM,, > ¢, x—1 we can use (6) to get

n—k
Mn_Mnl>(k_l)(£_1):

which can be compared with (16) to complete the proof of this case and of the theorem
itself. O

We are now in a position to take care of most of the cases in Theorem 1.3.
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Theorem 3.8. Suppose: > ¢. If £ > 3, then we have

nttl

M By

Furthermore, for all¢ > 2,

(n— Z)ZJrl

M, > .
Ty
Proof. Both bounds are trivial if: = £ sinceM; = 0. So suppose > ¢.

For the upper bound, we use the previous theorem and the standard way in which sums
are used to bound integrals to get

d B B[ 8
— M. ~ P BY4 L 0 _ +1
Mn_'Z(M, M,,l)ga'Z(z i<y [ x dx—(e+1)!n .
i=0+1 i=0+1 0

There are two possible proofs of the lower bound at this point. Either one can mimic the
demonstration of the upper bound or appeal to Theorems 1.1 and 1.2 to get

M>ﬂ<”)>5w
"TP\e+1) 7" w4+

Using either technique, we are donex

4. Boundson k,

We can now use the results of the previous section to supply bounés famich will
be a considerable improvement over those obtainable from Price’s work. The best that can
be gotten from Corollary 2.4 i, = an + o(n). We will prove that in fack,, = an + O (1)
with a constant inside the big oh that is less than 2.

Theorem 4.1. For ¢ > 3 andn > ¢ we have
ky <oa(m—40)+ 1.

Proof. Letk =k,. Note that it suffices to prove the bound whes ny.

Clearly the result is true fok = 1 andn1 = ¢ + 1. Next suppose thatZ k < ¢ + 1.
Then by Lemma 3.2, our desired inequality is equivalet+ol < (¢ + 1)« (k — 1) which
is true by (3).

Fork > £ 4+ 1 we still have Proposition 3.1 which givas— (¢ + 1)k + 1 < 0. So by
Theorem 3.7 and the fact that> 3,
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n—U+DLDk+1/n—k
Oécn,k—Cn,k—1=Mk—Mk—1+—( )

L -1
k—1¢ m——C+DE—-DIn—€—(k—1]1
yal + yal ’

<B

Definey by k — 1=y (n — ¢). So it suffices to show < «. Clearlyy > 0 and since
k > ¢£+1we canapply Lemma3.5to getn —¢) <k < (n—1¢)/¢,soy < 1/¢. Rewriting
the last expression in the previous paragraph in termsarid cancelling! gives

0< By -0 +(1-+Dy)d—ytn-0"
Sincen > ¢ we have
0<BY +(1—(t+Dy)a—pyt L
Now define
g =Bx' + (1— (¢ +Dx)1 -0,
so we haveg(y) > 0. Using the defining equations ferandg gives
g@) =t 1-)t+ (1- €+ Da)l-a) =0
This implies that

4 4

0<g(y)=g(a)+/g/(x)dx=/g’(x)dx.

« «
Since 0< «, y < 1/4, we can prover < o by showing thag’(x) <0 on[0, 1/£]. Now
g =B -+ DA-0"T = (L- €+ Dx) - HAL-0"2
So we want, after transposing terms,
Bex <+ DA-0" T+ (1- e+ Dx) - -0

Taking the maximum of the left-hand side and the minimum of the right-hand side on the
interval[0, 1/¢], it suffices to show that

Cal—o)t e+ -1"t -1t -t
-1 < -1 - -1 - -1

But f2a(1 — a)t~1 < £(¢ — 1)*~1 since by Eq. (3) we have both théfa < ¢ and that
Ql-a)f1l<w-11 o

We also have a lower bound with only a slightly larger constant.



648 M. Hildebrand et al. / Advances in Applied Mathematics 33 (2004) 633-653

Theorem 4.2. For ¢ > 2 andn sufficiently large,
kn>2oam—20)—1.

Proof. Letk = k,. Note that it suffices to prove the bound whes: n; . Note also that by
Corollary 3.4 we have — (£ + 1)k — £ < 0. Using this fact, the Bimodal Theorem, Eq. (7),
and Theorem 3.7, we have

n—l+LDk—€/m—k—-1
0> Cn,k+1—cn,k=Mk+1—Mk+—( >

¢ -1
- Bk—t+D +[n—U+Dk—0l(n—k—1)¢1
- 2 ’

Now definey by k —¢+1 =y (n—¢). By takingr sufficiently large we can assume that
k+1> ¢ andsoy > 0. Also, Theorem 4.1 implies that(n — £) < a(n — ¢) — ¢ + 2 and
soy < «. Substituting fory to replacek in the last inequality of the previous paragraph
we get, after multiplying by!/(n — £)¢,

2_

By'+ [1— ¢ —zl — (E+1)yi|(1—y)£_1 <0.

Let e = (¢2 — 1)/(n — ¢£) and note that we can makeas small a positive number as we
wish by takingn large. Define a function

h(x)=pBx"+[1—e—(E+Dx]1-x)?
so thatkz(y) < 0. Using the defining equations farandg, one can also compute that
h(a) = —e(1—a)t L, (17)

We want to mimic the integration trick used in the proof of the upper bound,foso
we need some information abaf(x). First note that
W) =x" [ +DA-0)+(U-DA—e—+Dn)]A-x"?
=B [+ DA - )+ (¢ - DA -e)]A-0)"2
Taking one more derivative, one can see thiatc) > 0 on [0, 1/¢] as long as the factor

in the final set of square brackets above is nonnegative. And this can be ensured by taking
1— &> 0. Sokh/(x) is increasing on thisiterval, and since < a < 1/¢ we can write

o

0> h(y) = hia) —/h/(x>dx>h(a> @ — H @). (18)
Y
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Next we claim that
B(@) < —(¢ =D)L —a) 2

Using the second expression fgx) and the definition o8, we see that it is sufficient to
prove, after cancellingl — «)¢~2, that

Poll—a)— (L +1DA—ta)— (U —D(L—e)< —(£—1).

Expanding the left-hand side and usifagf ** = (¢ + 1)a — 1 on the—¢2*** term reduces
this inequality, after massive cancellation, to

o + (€ —1e < 1. (19)
But this last equation is true for sufficiently smalsince, by (3),
02t < 0202 < 1.
So we have proved the claim.

Now divide (18) byi(«) (which is negative by (17)) and use the claim as well as (3)
again to get

h (a) n—4¢ n—4¢
@) <1—(05—V)7<1—(0l—)/)7~

O<l-(@=v) C+D(1—a)

Solving fory in this last inequality and pluggg into its defining equation gives
14
k=ymn—0+£¢—-1> (a— —Z>(n—ﬂ)+ﬂ—1=o{(n—€)—l
n—

as desired. O
To give a feel for how good these bounds are, we prove the following corollary.
Corollary 4.3. For £ > 3andn > ¢ we have
kn —an < 1/4.
For ¢ > 2 and sufficiently large: we have
ky —an > —2.

Proof. The lower bound follows immediately from the previous theorem and (3). For the
upper bound, it is easy to show by taking second derivativesfthaix) > f;(x) on the
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interval [0, 1/¢]. It follows that« is a decreasing function df. Furthermore, using (3)
again shows thatl — ¢a| < «. Combining these observations with Theorem 4.1 gives

ky—an<1l—Lla <a.

But now we are done since-1¢a <1/4whenf =3 anda <1/4foré>4. O

5. The upper boundsfor £ =2

To complete the proof of Theorem 1.3 we must address the upper boundéwhen
This result, as well as the upper bound kn in the previous section, depends on
Theorem 3.7 where the restrictign> 3 first appeared. This is not an accident as that
theorem is false fof = 2. For example, whef= 2 we haveM;7 — M1 = 60, but316%/2
is approximately 52105. Worse yet, our computer experiments have shown that this is not
an isolated counterexample. However, a weaker upper bound is true.

Theorem 5.1. For £ =2 andn > ¢ we have

n2
My, — My—1 < ,37

Proof. The proof is very similar to the demonstration of Theorem 3.7. There are only
two changes. The first is that when bounding binomial coefficients one uses powers of
n — k rather tham — k — 1. Note that this removes the necessity to h&ge3. The other
modification is that one substitutes= k/n. The rest of the proof proceeds as beforel

We can now obtain thé = 2 upper bound in Theorem 1.3. One uses the same proof as
Theorem 3.8 but with the previous result tagithe place of Theorem 3.7. Because of the
similarity, we omit the details.

Theorem 5.2. For £ =2 andn > ¢ we have

(n+1)3
n <x 3' .

To obtain the bounds ok, in this case, note thaf,(x) always hasc =1 as a root. So
dividing f>(x) by x — 1, we see that must satisfy

—2u+1
w2 2T

5 (20)

We can now plug this into the defining equation foto get

B=4a—1. (21)
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Theorem 5.3. For £ =2 and alln > 3 we have
kp <an+1/2.

Proof. Letk =k, as usual. Using Theorem 5.1, as well as Eqgs. (7) and (21) gives
n—3k+1/n—k
Ogcn,k_cn,kl:Mk_Mkl'i‘f( 1 )

2 = Dk —
<(4a_1)k?+(3k n 21)(1< n

Let
f(x)=(4a — 1)x2+(3x —n—1((x—n) =(4ot+2)x2— (4n+1)x+(n2+n).
The vertex of this parabola is ay = (4n + 1)/ (8« + 4) and from Proposition 2.7 we

havek < n/2 < xg. Combining this with the fact that (k) > 0 shows thak is at most the
smaller of the two roots of (x) which is

41—+ 12— A4n2+n) (4o + 2)
r= 8a 1 4 .

To complete the proof we need to show that an + 1/2. Rearranging terms in this last
inequality and using (20) shows that we need to prove

Vdn +1)2 — 4n2 + n)(4a + 2) > dan — da — 1.

Sincen > 3, the right-hand side of this last inequality is positive. So we can square it and
use (20) again to reduce our task to proviig — 40x)n + (8« — 8) > 0. But this is true
sincen > 3 and the theorem is provedO

6. Commentsand conjectures

There are several ways in which this work could be continued. We list some of them
here in the hopes that the reader will be interested.

1. We have already noted that the upper bound in Theorem 3.7 is not trde=f@r.
However, numerical evidence indicates that the succeeding results are still valid, even
though the proofs we have given will not work. In particular, we make the following
conjecture.

Conjecture6.1. For £ =2 andn > ¢ we have

nttl

€+ 1!

M, <B and k, <a(n—40)+1
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2. The lower bound given fok, in Theorem 4.2 suffers from the fact that our
demonstration only works for sufficiently large The most restrictive place where this
is used is in the proof that inequality (19) holds and there we netede at least on the
order of¢3. But numerical calculations suggest that an even better bound holds #or all

Conjecture6.2. For all £ > 2 andn > ¢ we have
kn > a(n —1).

We should note that there are examples whigrés not the closest integer . So,
given the upper bound we have already proven, one can not hope to substantially improve
upon this conjecture.

3. The reader will have noticed that the Continuity Theorem has been of fundamental
importance in proving the results in this paper. This leads us to wonder if something can be
said for a larger class of layered pattegn®8By Theorem 2.1, one can still defikg as the
maximum length of the word remaining after removing the last layerebatimal layered
n-permutation. So we would like to be able to say something about the seqyefidere
are some results in this regard in Price’s thesis [5] for patterns with at most two layers and
certain patterns with all layer lengths two.

Another of our main tools which might be amenable to generalization to other layered
permutations is the Bimodal Theorem. One can still defing, to be the maximum
number of copies of in a layeredz-permutation where the last layer has length i.
Knowing the shape of the sequen@g,; ;,)o<i<» could be useful in getting information
about the packing density gf

4. Because of Theorem 1.1, it is easy to generalize the lower bound of Theorem 1.3 to
all patterns. The proof is the same as the second proof of the lower bound in Theorem 3.8
and so is left to the reader.

Theorem 6.3. If ¢ is a pattern of lengttL andn > L then

(n—L+DE

My, q 2 68(q) I

We conjecture that the corresponding upper bound holds as well.

Conjecture6.4. If g is a pattern of length. andn > L then

I’lL
Mn,l] < 8(‘1)?

5. Finally, we should point out that since Hewilf first defined @acking densities in
1992 at the SIAM meeting on Discrete Mathatics, only packing densities of layered
permutations (or permutations equivai€o layered permutations under one of the 8
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routine symmetries) have been computed. The first open cases are of length four, where
Albert, Atkinson, Handley, Holton, and Stromquist [1] gave the bounds

0.19657< 6(1342 < 2/9
and
51/511<68(2413 < 2/9.

While we are hopeful that the approach presented in this paper (and in particular,
generalizations of the Continuity and Baaal Theorems) may prove fruitful in other
layered cases, our approach seems to offer no additional hope in the nonlayered cases.
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