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ABSTRACT 

We prove, by means of explicit bijections, theorems of Whitney and 
Stanley that express the coefficients of the chromatic polynomial of a 
graph G and the number of acyclic orientations of G in terms of numbers 
of sets of edges that contain no broken circuits of G. 

Let G be a graph, and let a total ordering of its edge set E ( G )  be fixed. Words 
like “first” or “later,” when applied to edges, will always refer to this ordering. 
We adopt, unless the contrary is explicitly stated, the graph-theoretic notation and 
terminology of [l]; in particular, G is undirected and has no loops or multiple 
edges, p is the cardinality of the vertex set V(G) ,  andf(G, A )  is the chromatic 
polynomial. Following Whitney [3], we define a broken circuit to be a set of 
edges obtained by removing from some circuit in G its last edge. We shall give 
bijective proofs of the following two results. 

Whitney’s Theorem [3]. Let d , ( G )  be the collection of all sets A that consist 
of exactly i edges of G and contain no broken circuit; then 

f(G, A)  = 2 (- l)ildi(G)lAp-’ 
i=O 

Stanley’s Theorem [2]. The number of acyclic orientations of G equals the 
number of sets A E(G)  that contain no broken circuit. 

(Actually, Stanley expressed the number of acyclic orientations as (- 
f(G, - 1). This result is equivalent to what we have called Stanley’s theorem, by 
virtue of Whitney ’s theorem.) 

Some comments about the notion of a “bijective proof’ seem to be in order 
here. In the case of Stanley’s theorem, it is fairly clear that what is required is 
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an explicit bijection between the family of all acyclic orientations and the family 
of sets A containing no broken circuit. The case of Whitney's theorem is less 
clear, for two reasons. The minor reason is the presence of negative terms in the 
equation to be proved. This difficulty is easily solved by transposing the trou- 
blesome terms; we shall give a bijective proof of 

f(G,A) + c Id,(G)( - Ap-' = c ld,(G)I * Ap- ' .  

The second, more serious, difficulty is that not all constituents of this equation 
have natural interpretations as cardinalities. Of course, once we fix a set of A 
colors, f(G, A) is the cardinality of the set 9 of all proper colorings of G ,  and 
\d,(G)I is explicitly given as a cardinality, but what about AP-'? It is the number 
of functions, into our set of A colors, from a set of size p - i, but there is no 
natural set of size p - i in sight. We shall circumvent this difficulty by not 
interpreting (d, (G )( and Ap-' individually as cardinalities but rather interpreting 
the products (d,(G)( Ap-' that occur in the equation to be proved. 

Each A E d , ( G )  can be viewed as a graph, with the same vertices as G but 
only the edges in A. Since A contains no broken circuit, and therefore certainly 
no cucuit, and since it hasp vertices and i edges, it hasp - i components. Thus, 
for each fixed A E d , ( G ) ,  we can interpret AP-' as the number of functions from 
the components of A to our set of A colors. Equivalently, AP-l is the number of 
ways of coloring the vertices of G so that each edge of A joins two vertices of 
the same color; let us call such colorings A-improper (because a proper coloring 
is then one that is not A-improper for any nonempty A ) .  The preceding discussion 
can be summarized by the statement that (d,(G)I - AP-' is the cardinality of 

I odd I even 

%i = {(A, C) [ A  E d i (G) ,  C is an A-improper coloring}. 

Recalling that 9 is the set of proper colorings of G ,  we can finally state Whitney's 
theorem in a form amenable to bijective proof The sets 

9 U UVii and u %i 
i odd i even 

have the same cardinality. (Note that all these unions are disjoint ones.) 

Proof of Whitney 's Theorem. We construct an explicit bijection between the 
sets indicated above. We begin by sending each proper coloring C E 8 to 
@,C) € %o. This is clearly a bijection between the elements of 9 and those 
elements of V0 whose second component is a proper coloring. Note that there are 
no such elements in (4' for i > 0, by definition of %,, so from now on we may 
confine our attention to pairs (A, C) with C improper. For each fixed improper 
coloring, we shall give an explicit bijection between {A I (A, C) E u, odd%!} and 
{A I (A, C )  E u, 

Since C is improper, there are edges joining two vertices of the same color. Let 
e be the last such edge, and define a map c$ from sets of edges to sets of edges by 

this will clearly suffice to complete the proof. 
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i f e  € A  
+(A)  = 1 - 

U {e}  if e A .  

Clearly, is a bijection (it is its own inverse) and (+ (A) (  is even if and only if 
1 is odd. Also, the fact that e joins two vertices of the same color implies that 

C is +(A)-improper if and only if C is A-improper. All that remains is to check 
that, if A contains no broken circuit, then the same is true of + ( A ) .  

Suppose, for a contradiction, that + ( A )  contains a broken circuit B but A does 
not. Then of course + ( A )  = A U {e} and B contains e .  Let B U {I} be the circuit 
from which B is obtained by deletion of the last edge 1. So I is later than e ,  and, 
by our choice of e ,  the endpoints of 1 have different colors in the coloring C .  But 
this is impossible because these endpoints are joined in A U {e} by the path B and 
C is A U {e}-improper. This contradiction completes the verification that + is, 
for each fixed C, a bijection; it thus also completes the proof of Whitney’s 
theorem. I 

Remark. Whitney’s original proof of his theorem [3] involves an operation 
similar to the + in our proof in that it adds or deletes a single edge. Unlike us, 
Whitney applies this operation to sets A that contain broken circuits, the edge to 
be added Oi deleted being the one that completes, to a circuit, the first (in a fixed 
ordering) broken circuit in A. He uses this pairing to show that the contributions 
of such A’s cancel in a formula for the chromatic polynomial that he obtains by 
an inclusion-exclusion argument; thus only the sets that do not contain broken 
circuits contribute to the chromatic polynomial. Since inclusion-exclusion argu- 
ments can be presented in bijective form, it is conceivable that a combination of 
such a presentation with Whitney’s bijection could be made to yield our bijective 
proof. This seems unlikely, however, because of the dependence of Whitney’s 
bijection on a somewhat arbitrary ordering of the broken circuits. * 

We shall present an algorithm which, given an 
acyclic orientation of G ,  examines each edge in turn, in the fixed order, and either 
“un-orients” it or deletes it. After each edge has been considered, what remains 
is a certain set of (unoriented) edges. We shall show that this set contains no 
broken circuit, and we shall show that every set that contains no broken circuit 
arises from a unique acyclic orientation of G .  

Since we shall have to deal, during the algorithm, with graphs in which some 
but not all edges are oriented, it will be convenient to adopt the convention that 
an unoriented edge is to be viewed as a pair of oppositely directed arcs. Thus, to 
“un-orient” an arc in a digraph is simply to adjoin the reverse arc. 

It will also be convenient to adopt the unorthodox convention that a digraph is 
acyclic if it has no cycles of length 23. Thus, a symmetric pair of arcs, (u ,  v) and 
(v,u), is permissible in an acyclic digraph; in particular, an unoriented forest, 

Proof of Stunley’s Theorem. 

“Added in proof: D. Stanton and D. White have shown that our proof of 
Whitney‘s Theorem can be obtained from Whitney’s proof by applying the gen- 
eral involution principle of A. Garsia and s. Milne (froc. Nat. Acad. Sci. U.S.A. 78 
(1981) 2026-2028). 



18 JOURNAL OF GRAPH THEORY 

when viewed as a digraph, is acyclic. It is important to note that a digraph without 
symmetric pairs, i.e., an orientation of a graph, is acyclic in our sense if and only 
if it is acyclic in the usual sense, so we have not tampered with the meaning of 
“acyclic orientation” in the statement of the theorem. 

Let us fix, once and for all, some orientation (not necessarily acyclic) of G. 
The orientation thus assigned to an edge will be called its normal orientation, and 
the other orientation will be called abnormal. 

With these conventions, our algorithm can be simply described. As indicated 
at the beginning of the proof, the algorithm accepts as input an arbitrary acyclic 
orientation of G. It treats each arc in turn, in the fixed order used to define broken 
circuits. At the stage where an arc (u ,  v) of the given acyclic digraph is being 
examined, un-orient it by adding the arc (v, u )  if and only if both of the following 
conditions are met: (u ,  v )  is normally oriented, and the addition of (v, u )  yields an 
acyclic digraph. Otherwise, delete ( u ,  v). 

The figure below shows how the algorithm operates when G is a triangle, with 
the edges ordered so that a < b < c and with the normal orientation shown. The 
labels 2hi and Ai in the figure will be explained shortly. Each row of the figure 
shows the three steps in the algorithm, applied to the acyclic orientation on the 
left, producing the set of edges on the right, a set that does not include the 
(unique) broken circuit {a, b}. The letters a, c, u in the figure indicate steps of 
the algorithm where an edge was (respectively) deleted because of _abnormal 
orientation, deleted because unorienting it would produce a cycle, or yoriented. 
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To show that this algorithm has the desired properties, we shall first introduce 
a sequence of sets 9,,, . . . , 9Iq such that Bbo is the set of all acyclic orientations 
of G and Bq, where q is the number of edges of G ,  is the set of subsets of E ( G )  
that contain no broken circuit. Then we shall show that the kth step in the 
algorithm produces a bijection A, from 911-1 to 9 k ;  in fact, we will explicitly 
describe, in the proof of Lemma 3,  the inverse of each step. This will clearly 
suffice to complete the proof. 

The set %k, which should be viewed as the set of possible results of the first 
k steps of the algorithm, is defined to be the set of all sub-digraphs D of G having 
the same vertices as G and satisfying: 

(a) Each of the first k edges of G is either present in D (as a symmetric pair 
of arcs) or absent from D, but each of the remaining q - k edges is oriented in 
D (i.e., D contains exactly one arc from the symmetric pair). 

(b) D is acyclic. 
(c) The unoriented part of D (as in the first part of (a)) contains no broken 

circuit of G .  

In the figure above, each column exhibits the members of the 5$ named at the 
top of the column. The following three lemmas show that Ak, the function defined 
by the kth step of the algorithm, is a bijection from Bk-l to 9?k. They thus establish 
Stanley’s theorem. 

Lemma 1. Ak maps into Bk. 

Proof. If D E 3 k - 1 ,  then Ak either deletes or unorients the kth edge, so 
condition (a) for Ak(D ) follows immediately from the corresponding condition 
(with k - 1 in place of k )  for D. Condition (b) for A,(D) follows from the fact 
that the algorithm never adds an arc without first checking that acyclicity is 
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preserved. To see that Ak(D) also satisfies (c), consider any circuit C in G ,  let 
1 be its last edge, and suppose the broken circuit C - { I }  is in the unoriented part 
of A,@). Since it is not in the unoriented part of D, and since the only difference 
between D and Ak(D) is at the kth edge e ,  we conclude that e E C - {I} .  Being 
the last edge in C ,  I must be later than e and must therefore be present, in exactly 
one of its orientations, in Ak(D). But then Ak(D) contains a cycle of length 2 3 ,  
namely, one of the two cyclic orientations of C C G .  This contradicts the fact, 
observed above, that A,(D) is acyclic. So Ak(D) satisfies condition (c) and 
therefore belongs to 9jk. I 

Lemma 2. Ak is one-to-one. 

Proof. Suppose D,  and D2 are two distinct elements of 9 k - l  that are sent by 
Ak to the same element D of 9 k .  Since Ak affects only the kth edge e ,  DI and D2 
must differ only in the orientation they give e .  So we may assume that e is 
oriented normally in DI  and abnormally in D2. Acting on D2,  the algorithm deletes 
the abnormally oriented e ,  so e is absent from D, which means that the algorithm 
also deletes the normally oriented e in D1 . By definition of the algorithm, this can 
happen only if unorienting e in D1 would introduce a cycle C of length 23. C 
must contain the abnormal orientation of e ,  for otherwise it would be a cycle in 
DI ,  contrary to D I  E 9 k - l .  But then C ,  having length 23, cannot also contain 
the normal orientation of e ,  so it is a cycle in D2, contrary to D2 E 9k-l. I 

Lemma 3. Ak maps Cbk-, onto 91~. 

Proof. Let an arbitrary D' E E d k  be given. We shall find a D E 9 k - 1  such 
that A@) = D'. Let e be the kth edge of G ,  the one that is deleted or unoriented 

In order for condition (a) to be satisfied by D and for the algorithm to transform 
D into D', it is necessary that D be the same as D' except at the edge e .  It is also 
necessary that exactly one of the orientations of e be present in D,  so our job is 
to choose the appropriate orientation. Whichever orientation we choose, condi- 
tions (a) and (c) will be satisfied by D. Our choice need only ensure that (b) holds 
and that the algorithm transforms D into D'. 

If e is present in D', then we have no choice but to orient it normally in D, for 
our algorithm always deletes abnormally oriented edges. The D so obtained 
satisfies (b) because it is formed by deleting an arc from D' (the abnormal 
orientation of e ) .  When the kth step of our algorithm is applied to D it un-orients 
e and thus produces D', because D' is acyclic. 

There remains the case that e is absent from D'. If the digraph obtained by 
adjoining e with its abnormal orientation is acyclic, then let this digraph be D. 
It is clearly in 9k-l, and the kth step of our algorithm converts it to 0' because 
the abnormally oriented e is deleted. 

Finally, suppose e is absent from D' and adding it with abnormal orientation 
destroys acyclicity. Then we have no choice but to add it with normal orientation 

by A k .  
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to produce D .  Because the abnormal orientation destroyed acyclicity, the algo- 
rithm will delete this normally oriented e ,  producing D' as desired. 

To check condition (b), suppose toward a contradiction that D is not acyclic. 
Thus, adding e to D ' ,  with either orientation, has produced a cycle. If u and v 
are the endpoints of e ,  then D' must contain directed paths from u to v and from 
v to u. These paths together constitute a closed (directed) walk W in D' .  We 
consider two cases, obtaining a contradiction in each. First, suppose W contains 
an arc that is later than e and is therefore in the oriented part of D', i.e., its 
opposite is not in D' .  Then the smallest closed sub-walk of W containing this arc 
is a cycle (by minimality) of length 2 3  (as the opposite arc is absent), which is 
impossible as D' E gk. There remains only the possibility that W consists entire- 
ly of arcs earlier than e ,  hence in the unoriented part of D'. But W contains a path 
from u to v,  and that path is a broken circuit of G because all the edges in it are 
earlier than e .  This again contradicts D' E gk, so the proof is complete. I 

Remarks. The problem of finding bijective proofs of these theorems was pro- 
posed by Herbert Wilf. 

The chromatic polynomial of a graph is expressible in terms of the chromatic 
polynomials of the graphs obtained by deleting and contracting an edge (see 
U,p.  1451) 

This formula and Whitney's theorem imply 

The problem originally posed by Wilf was to prove this formula bijectively for 
some edge e ,  i.e., to find a bijection between &(G) and the disjoint union of 
d l ( G  - {e}) and d i - , ( G / e ) .  Taking e to be the first edge of G ,  we can exhibit 
such a bijection as 

E d , ( G  - { e } ) ,  if e A 

- {e}  E d,(G/e),  if e E A .  

This construction was found before those in our proofs of Whitney's and Stan- 
ley's theorems and served as a step in the discovery of these proofs. 
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