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Abstract

Eğecioğlu and Remmel [Linear Multilinear Algebra 26 (1990) 59–84] gave an interpretation for
the entries of the inverse Kostka matrix K−1 in terms of special rim-hook tableaux. They were able to
use this interpretation to give a combinatorial proof that KK−1 = I but were unable to do the same
for the equation K−1K = I . We define an algorithmic sign-reversing involution on rooted special
rim-hook tableaux which can be used to prove that the last column of this second product is correct.
In addition, following a suggestion of Chow [preprint, math.CO/9712230, 1997] we combine our
involution with a result of Gasharov [Discrete Math. 157 (1996) 193–197] to give a combinatorial
proof of a special case of the (3 + 1)-free Conjecture of Stanley and Stembridge [J. Combin. Theory
Ser. A 62 (1993) 261–279].
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1. Introduction

We first recall some definitions from the theory of Young tableaux. Further exposition
can be found in the texts of Fulton [3], Macdonald [9], Sagan [10], and Stanley [13].
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Let λ = (λ1, λ2, . . . , λl) be a partition of the nonnegative integer n, denoted λ � n, so
λ is a weakly decreasing sequence of positive integers summing to n. We will also let λ

stand for the Ferrers diagram of λ written in English notation with λi nodes or cells in the
ith row from the top. In addition, we will use the notation λ = (1m1,2m2, . . . , nmn) which
means that the integer j appears mj times in λ. The set of all partitions of all n � 0 will be
denoted Par.

Given λ,μ � n, the corresponding Kostka number Kλ,μ is the number of semistandard
Young tableaux T of shape sh(T ) = λ and content c(T ) = μ, i.e., the number of fillings
of the diagram λ with integers such that rows weakly increase, columns strictly increase,
and for all k the integer k occurs μk times. For fixed n, we collect these numbers into the
Kostka matrix K = (Kλ,μ). We will use the reverse lexicographic order on partitions so
that K becomes upper unitriangular.

Eğecioğlu and Remmel [2] gave a combinatorial interpretation for the entries of the in-
verse Kostka matrix K−1 as follows. A rim hook, H , is a skew diagram (the set-theoretic
difference of two ordinary diagrams) which is connected and contains no 2 × 2 square
of cells. The size of H is the number of cells it contains. A rim-hook tableau of shape
λ is a partition of the diagram of λ into rim hooks. This tableau S is special if each
of the rim hooks contains a cell from the first column of λ. The type of S is t (S) =
(1m1,2m2, . . . , nmn) where mk is the number of rim hooks in S of size k. Using nodes
for the Ferrers diagram and connecting them if they are adjacent in the same rim hook,
the following diagram illustrates a special rim-hook tableau S with sh(S) = (12,22,3) and
t (S) = (1,42):

The leg length of rim hook H , l(H), is the number of vertical edges in H when viewed
as in the diagram above. We now define the sign of a rim hook H and of a rim-hook tableau
S to be

ε(H) = (−1)l(H) and ε(S) =
∏
H∈S

ε(H),

respectively. The previous rim-hook tableau has sign

ε(S) = (−1)0 · (−1)1 · (−1)2 = −1.

We can now state Eğecioğlu and Remmel’s interpretation.

Theorem 1.1 ((Eğecioğlu and Remmel)). The entries of the inverse Kostka matrix are given
by

K−1
μ,λ =

∑
S

ε(S)

where the sum is over all special rim-hook tableaux S with sh(S) = λ and t (S) = μ.
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In [2] they used the combinatorial interpretation in this theorem to give a proof of the
fact that KK−1 = I using a sign-reversing involution, but were not able to do the same
thing for the identity K−1K = I . In the next section, we will give an algorithmic sign-
reversing involution which will prove that the last column of the second product is correct.
Parts of this procedure are reminiscent of the lattice path involution of Lindström [8] and
Gessel–Viennot [6,7] as well as the rim-hook Robinson–Schensted algorithm of White [16]
and Stanton–White [15]. In Section 3 we follow a suggestion of Chow [1] and combine
our involution with a result of Gasharov [5] to prove a special case of the (3 + 1)-free
Conjecture of Stanley and Stembridge [14]. Finally, we end with a discussion of further
work which needs to be done.

2. The basic involution

First note that by Theorem 1.1, K−1
(1n),λ

is just the number of special rim-hook tableaux
of shape λ where all hooks have size one (since such tableaux have sign +1). But since
they must also contain a cell of the first column, such a tableau exists precisely when
λ = (1n) and in that case the tableau is unique. Since the definition of the Kostka matrix
immediately gives K(1n),(1n) = 1, we have that the inner product of the last row of K−1

and the last column of K is 1 as desired. So for the rest of this section we will assume that
the type of our special rim-hook tableau is μ �= (1n).

We wish to show that the inner product of the μth row of K−1 with column (1n) of K

is 0. It follows from Eğecioğlu and Remmel’s theorem that we need to prove∑
(S,T )

ε(S) = 0 (1)

the sum being over all pairs (S,T ) where S is a special rim-hook tableau with t (S) = μ,
and T is a standard Young tableau (that is, c(T ) = (1n)) of the same shape as S. We will
prove this identity by exhibiting a sign-reversing involution I on such pairs (S,T ).

Suppose first that the cell of n in T corresponds to a hook of size one in S. Then since
S is special, this cell is at the end of the first column. In this case, remove that cell from
both S and T to form S and T respectively. Now we can assume, by induction on n, that
I (S,T ) = (S ′, T ′) has been defined. So let I (S,T ) = (S′, T ′) where S′ is S′ with a hook
of size 1 added to the end of the first column and T ′ is T ′ with a cell labeled n added to
the end of the first column. Clearly this will result in a sign-reversing involution as long as
this was true for pairs with n − 1 cells. So for the rest of this section we will also assume
that the cell containing n in T corresponds to a cell in a hook of at least two cells in S.

To describe I under these assumptions, we will need names for the different parts of
a rim hook H . As usual, let (i, j) denote the cell of a shape λ in row i and column j .
An internal corner of H is (i, j) ∈ H such that (i + 1, j), (i, j + 1) ∈ H . Dually, an
external corner of H is (i, j) ∈ H such that (i − 1, j), (i, j − 1) ∈ H . The head of H is
the (i, j) ∈ H with smallest i and largest j . Similarly, the tail of H is the (i, j) ∈ H with
largest i and j = 1. In the previous example, the upper hook of size 4 has internal corner
(1,2), external corner (2,2), head (1,3), and tail (2,1). The permissible cells of H are
precisely those which are either an internal corner, external corner, head, or tail.
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Now define a rooted Ferrers diagram to be a Ferrers diagram where one of the nodes
has been marked. We will indicate this in our figures by making the distinguished node a
square. Any tableau built out of a Ferrers diagram can be rooted in an analogous way. Any
invariants of the original tableau will be carried over to the rooted version without change.
Now associate with any pair (S,T ) in the sum (1) a rooted special rim-hook tableau Ṡ by
rooting S at the node where the entry n occurs in T . We will define a sign-reversing invo-
lution ι on the set of rooted special rim-hook tableaux of given type which are obtainable
in this way. In addition, ι will have the property that if ι(Ṡ) = Ṡ′ and Ṡ, Ṡ′ have roots r, r ′
respectively, then

sh
(
Ṡ
) − r = sh

(
Ṡ′) − r ′ (2)

where the minus sign represents set-theoretic difference of diagrams. Our full involution
I (S,T ) = (S′, T ′) will then be the composition

(S,T ) −→ Ṡ
ι−→ Ṡ′ −→ (

S′, T ′)
where S′ is obtained from Ṡ′ by forgetting about the root and T ′ is obtained by replacing
the root of Ṡ′ by n and leaving the numbers 1,2, . . . , n − 1 in the same positions as they
were in T . Note that (2) guarantees that T ′ is well defined. Furthermore, it is clear from
construction that I will be a sign-reversing involution because ι is. Even though ι has not
been fully defined, we can give an example of the rest of the algorithm as follows:

To define ι precisely, we will need to enlarge the set of tableaux under consideration.
An overlapping rooted special rim-hook tableau is a way of writing a shape as a union of
special rim-hooks all of which are disjoint with the exception of two whose intersection is
precisely the root, and this root must be a permissible element of both hooks. Furthermore,
one of the two hooks containing the root will be designated as active. In our diagrams,
the active hook will have all of its nodes enlarged. In a non-overlapping rooted special
rim-hook tableau, the unique hook containing the root is considered active.

We are now ready to fully describe the involution ι. Starting with an appropriately rooted
special rim-hook tableau Ṡ, we will generate a sequence of tableaux

Ṡ = Ṡ0, Ṡ1, Ṡ2, . . . , Ṡt = ι
(
Ṡ
)
. (3)

For 0 < i < t , Ṡi will be an overlapping rooted special rim-hook tableau of shape sh(Ṡ)− r

where r is the root of Ṡ. Finally, Ṡt will be a non-overlapping rooted special rim-hook
tableau satisfying (2). All tableaux in the sequence will have the same type. There are
five operations for obtaining Ṡi from Ṡi−1, 1 � i � t , as follows. Whichever operation is
applied, the designation of “active” is transfered from the hook that was modified to the
new hook which it overlaps (except in the last step where no new hook is overlapped and
so the hook which was active remains so). Throughout, r is the current root.
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CO If r is an internal or external corner of the active hook, reflect the root in a line con-
taining the two nodes of the hook to which it is adjacent.

SI If the active hook of size one, i.e., consists only of r , then it must be at the top or
bottom of the first-column portion of the other hook containing it (since all roots are
at permissible nodes). Move the hook of size one and the root to the opposite end of
that portion of the other hook.

HE If r is at the head of the active hook of size at least two, then remove it and attach it
just below the tail of this hook.

TV If r is at the tail of the active hook of size at least two and the next node of the
hook is directly above, then remove it and attach it to the head of the active hook.
Because of permissibility, exactly one of the two ways to attach the root (vertically or
horizontally) will be possible.

TH If r is at the tail of the active hook of size at least two and the next node of the hook
is directly to the right, note that r must also be at the tail of the other hook containing
it (because of permissibility) and so the hooks must have different sizes (because they
are special). Let s be the size of the smaller hook and let v be the (s + 1)st node from
r in the bigger hook. Remove the portion of the bigger hook from v on and attach it
to the end of the smaller hook. The root stays in the same place.

Here is an example of the application of these rules to construct ι(Ṡ). Each step is labeled
with the operation being used. When TH is applied, the vertex v is marked.

We must now show that ι is a well-defined sign-reversing involution. By examining each
of the rules in turn it is easy to see that all the rim-hook tableaux generated have the same
type and that the root is always in a permissible cell. Also it is clear that each rule can be
reversed: CO, SI, and TH are self-inversive while HE and TV are inverses of each other.
So if we do a single step without changing which hook is designated as active and then
apply the rules again we will return to the original tableau. This means that ι will be an
involution if it is well defined.

To finish the proof of well definedness, we must show that the algorithm terminates, i.e.,
that eventually a non-overlapping tableau is produced. Suppose to the contrary that (3) goes
on forever. Since there are only a finite number of tableaux of a given type, this sequence
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must repeat. Let Ṡi have the smallest index such that Ṡi = Ṡj for some j > i. Note that
since we are assuming that all tableaux other than Ṡ0 are overlapping, we must have i � 1.
But we saw in the previous paragraph that each step of the algorithm is invertible and
i � 1, so we must have Ṡi−1 = Ṡj−1. This contradicts the minimality of i and proves
termination.

It remains to show that ι is sign reversing. In fact, we will prove the stronger statement
that the sign of Ṡi depends only on the type of active hook it contains and the sign of Ṡ.
We will label the active hook in a tableau with the same pair of letters used for the rule
which can be applied to it. We will also have to refine CO into two types of hooks, namely
CI (respectively, CE) if the corner is internal (respectively, external). So in the previous
example, the CO hook in the third tableau would be classified as a CI. Similarly, we have
to split HE into two types: HV (respectively, HH) if the head of the hook is directly above
(respectively, to the right of) its predecessor in the hook. Looking at the previous example
again, the initial active hook is an HH while the fourth one is an HV.

Lemma 2.1. Let Hi be the active hook in Ṡi from the sequence (3) where 0 � i < t . Then

ε(Ṡi) =
{

ε(Ṡ) if Hi is CE, HH, or TV,
−ε(Ṡ) if Hi is CI, HV, or TH.

Proof. We induct on i. Suppose first that i = 0 so that Ṡ0 = Ṡ. Since n must be at the end
of a row and column, the only possibilities for H0 are CE, HH, or TV. Clearly we also have
ε(Ṡ0) = ε(Ṡ), and so the lemma is true in this case.

The induction step breaks down into six cases depending upon the nature of Hi . Since
they are all similar, we will do the one for Hi = TV and then the other five can be verified
by the reader if they wish.

Note first that because of the way the root moves in each of the steps, TV can only be
preceded by CE, TH, TV, or SI. (For example, after a CI step the root cannot be in the first
column and so it can not precede TV.)

If Hi−1 is CE then by induction and the fact that a CE step does not change the number
of vertical edges in a hook

ε
(
Ṡi

) = ε
(
Ṡi−1

) = ε
(
Ṡ
)
.

If Hi−1 is TH then this step changes the number of vertical edges in the overlapping
hooks by ±1. So by induction again

ε
(
Ṡi

) = −ε
(
Ṡi−1

) = −(−ε
(
Ṡ
)) = ε

(
Ṡ
)
.

If Hi−1 is TV, then in order for it to overlap Hi by a node in the first column it must be
that Hi−1 consists precisely of a strip of nodes in the first column directly below the root
of Hi . So the TV step does not change the number of vertical edges in Hi−1 and so the
same equalities as for the CE case give the desired conclusion.

Finally, consider what happens if Hi−1 is SI. Then in Ṡi−1, the singleton hook must be
at the top of the portion of Hi in the first column. So Hi−2 must have been either a CE (if
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Hi contains nodes outside of the first column) or a TV of the type discussed in the previous
paragraph. In either case, the passage from Hi−2 to Hi−1 causes no change in sign and
neither does the SI step. So by induction

ε
(
Ṡi

) = ε
(
Ṡi−2

) = ε
(
Ṡ
)
.

This completes the demonstration that the lemma holds in the TV case. �
The astute reader will have noticed that this lemma did not deal with the case when Hi

is SI. But then ε(Si) = ε(Si+1) where Hi+1 is one of the cases covered, so there is no harm
in the omission. Now the following theorem will complete the proof that ι, and hence I , is
a well-defined, sign-reversing involution.

Theorem 2.2. If ι(Ṡ) = Ṡ′ then ε(Ṡ′) = −ε(Ṡ).

Proof. We continue to use the notation in (3) where Ṡ′ = Ṡt . Since Ṡt is non-overlapping,
Ht must be one of CE, HH, or TV.

If Ht is CE then Ht−1 must have been CI. So using the previous lemma with i = t − 1
and the fact that a CI step does not change sign gives

ε
(
Ṡ′) = ε

(
Ṡt−1

) = −ε
(
Ṡ
)
.

If Ht is HH then Ht−1 must have been TV. Furthermore, this TV step must have added
a horizontal step to Ht−1 and so decreased the number of vertical edges by one. So using
the lemma again gives

ε
(
Ṡ′) = −ε

(
Ṡt−1

) = −ε
(
Ṡ
)
.

Finally, suppose Ht is TV. Then Ht−1 is either HH or HV and either the previous string
of equalities or the one before that, respectively, hold. So in all cases ε(Ṡ′) = −ε(Ṡ). �

3. The (3 + 1)-free Conjecture

In order to make a connection of our work with the (3 + 1)-free Conjecture, we first
need to introduce Stanley’s chromatic symmetric function [11,12]. Let G = (V ,E) be a
graph with a finite set of vertices V and edges E. A proper coloring of G from a set A

is a function κ :V → A such that uv ∈ E implies κ(u) �= κ(v). Now consider a countably
infinite set of variables x = {x1, x2, . . .}. Stanley associated with each graph a formal power
series

XG = XG(x) =
∑

κ:V →P

xκ(v1)xκ(v2) · · ·xκ(vn)

where κ is a proper coloring from the positive integers P. Note that if one sets x1 = x2 =
· · · = xn = 1 and xi = 0 for i > n, denoted x = 1n, then XG reduces to the number of
proper colorings of G from a set with n elements. So under this substitution, XG(1n) =
PG(n) where PG(n) is the famous chromatic polynomial of Whitney [17]. Also, because
permuting the colors of a proper coloring keeps the coloring proper, XG(x) is in the algebra
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Λ(x) of symmetric functions in x over the rationals. In [11,12], Stanley was able to derive
many interesting properties of the chromatic symmetric function XG(x) some of which
generalize those of the chromatic polynomial and some of which cannot be interpreted
after substitution.

One natural question to ask is whether one can say anything about the expansion of
XG(x) in any of the usual bases for Λ(x). If f ∈ Λ(x) and {bλ: λ ∈ Par} is a basis for
Λ(x), then we will say that f is b-positive if in the expansion f = ∑

λ cλbλ, all of the
coefficients satisfy cλ � 0. The (3 + 1)-free Conjecture states that for certain graphs, XG

is e-positive where the eλ are the elementary symmetric functions.
To describe the appropriate graphs for the conjecture, consider a finite poset (partially

ordered set) (P,�). We say that P is (a+b)-free if it contains no induced subposet iso-
morphic to a disjoint union of an a-element chain and a b-element chain. Also, given any
poset P , we can form its incomparability graph, G(P ), having vertices V = P and an
edge between u and v in G(P ) if and only if u and v are incomparable in P . Through their
work on immanants of Jacobi–Trudi matrices, Stanley and Stembridge [14] were led to the
following conjecture.

Conjecture 3.1 (((3 + 1)-free Conjecture)). Let P be a (3 + 1)-free poset. Then XG(P) is
e-positive, i.e., if

XG(P) =
∑
μ

cμeμ (4)

then cμ � 0 for all μ.

There is a fair amount of evidence to support this conjecture. Stembridge has veri-
fied that it is true for all 884 (3 + 1)-free posets having at most 7 elements. Gebhard
and Sagan [4] have used the theory of symmetric functions in noncommuting vari-
ables to prove that the conjecture holds for certain posets which are both (3 + 1)- and
(2 + 2)-free.

One of the most significant results about this conjecture was obtained by Gasharov [5]
who proved that if P is (3+1)-free then XG(P) is s-positive where sλ is the Schur function
corresponding to λ. He did this by giving a combinatorial interpretation to the coefficients
in the s-expansion of XG(P) which we will need in the sequel.

For a poset P , a P -tableau T of shape λ is a filling of the cells of λ with the elements
of P (each used exactly once) such that for all (i, j) ∈ λ:

(1) Ti,j < Ti+1,j , and
(2) Ti,j �> Ti,j+1

where a condition is considered vacuously true if subscripts refer to a cell outside of λ.
Note that when P is a chain, then a P -tableau is just a standard Young tableau. Let-
ting f λ

P denote the number of P -tableaux of shape λ, Gasharov proved the following
result.
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Theorem 3.2 ((Gasharov)). If P is (3 + 1)-free then

XG(P) =
∑
λ

f λ
P sλ′ (5)

where λ′ is the conjugate of λ.

Note that this immediately implies s-positivity.
Chow [1] pointed out that (5) could be combined with Eğecioğlu and Remmel’s result to

obtain a combinatorial interpretation of the coefficients cμ in (4). First note that the change
of basis matrix between the Schur and elementary symmetric functions is

sλ′ =
∑
μ

K−1
μ,λeμ.

Combining this with (5) we get

XG(P) =
∑
λ,μ

K−1
μ,λf

λ
P eμ.

Since the eμ are a basis, we have

cμ =
∑
λ

K−1
μ,λf

λ
P .

Finally we apply Theorem 1.1 to get the desired interpretation.

Corollary 3.3 ((Chow)). The coefficients cμ in the e-expansion of XG(P ) satisfy

cμ =
∑
(S,T )

ε(S)

where the sum is over all pairs of a special rim-hook tableau S of type μ and a P -tableau
T with the same shape as S.

Note that a column of a P -tableau T must be a chain in P and the number of rim
hooks in S is at most the length of its first column because they are special. So the previous
corollary implies that cμ = 0 whenever μ has more parts than the height of P , h(P ) (which
is defined as the number of elements in the longest chain of P ). So this cuts down on the
number of coefficients which we need to consider.

So to show that cμ � 0, it suffices to find an involution I on the pairs in the previous
corollary such that if I (S,T ) = (S′, T ′) then

(1) (S,T ) = (S′, T ′) implies ε(S) = 1, and
(2) (S,T ) �= (S′, T ′) implies ε(S′) = −ε(S).

The involution in the previous section does this when P is a chain (so that P -tableaux
are standard Young tableaux). Of course, then G(P ) is a totally disconnected graph and
thus XG(P) = e(1n) directly from the definition of XG. So it would be nice to apply these
ideas to a less obvious case. This will be done in the next theorem which was also derived
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by Stanley and Stembridge themselves [14] using the theory of rook placements. Note
that if h(P ) � 2 then P must be (3 + 1)-free since it does not even contain a 3-element
chain.

Theorem 3.4 ((Stanley–Stembridge)). If h(P ) � 2 then XG(P) is e-positive.

Proof. It suffices to construct the involution I in this case. First of all, the remarks after
Corollary 3.3 show that any P -tableau, T , will have at most two rows since h(P ) � 2. If a
special rim-hook tableau S has at most two rows and ε(S) = −1, then it must have exactly
two rows and contain exactly one vertical edge.

So let (S,T ) be a pair having common shape λ = (λ1, λ2) and with ε(S) = −1. Let Ṡ

be the tableau obtained by rooting S at the end of the second row. Note that a priori it is not
clear that this is the best place to root S since P may have more than one maximal element.
But we will see that this choice will work well.

Now form Ṡ′ = ι(Ṡ). By our assumptions on S, ι will consist of a sequence of steps
resulting in an Ṡ′ which will be the unique tableau of shape (λ1 + 1, λ2 − 1) where each
row is a special rim hook and the root is at the end of the first row. We now obtain (S′, T ′) =
I (S,T ) as before by removing the root from Ṡ′ to get S′ and getting T ′ by leaving all the
elements of T in the same place except the one, x, which was at the end of the second row
in T and is now at the end of the first row in T ′. Clearly this reverses sign, but we must
check that T ′ is still a valid P -tableau. But x was at the end of a column of length two in T

and so cannot have any element above it in P which is of height two. So the row condition
for P -tableaux will still be satisfied and I is well defined.

In order to turn I into an involution, we must characterize those pairs (S′, T ′) which
are in the image of the function so far and map them back to their preimages. So suppose
the tableaux in (S′, T ′) have shape ν = (ν1, ν2) where ν1 > ν2 + 1 > 0 and ε(S′) = +1.
Consider the elements x = T ′

1,ν1
and y = T ′

1,ν2+1. Then it is easy to see that the image of I

is precisely the set of all such pairs such that x > y in P . So we can reverse the algorithm
by forming Ṡ′ which is Ṡ rooted at the end of the first row, applying ι, and then using the
usual operations to recover (S,T ).

Finally, we need to consider what happens to the (S,T ) which have not been paired up
so far by I . But since these all have positive sign, we can just make them fixed points of I .
This completes the definition of I and the proof of the theorem. �

As an example of the algorithm in the previous proof, consider the poset

There are 20 pairs (S,T ) for this poset. To present them in an economical way, we will
combine each pair into a single tableau with elements in the same places as in T and edges
between pairs of elements which are adjacent in a hook of S. With this notation, tableaux
which are matched by I are as follows:
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a — b — d — c ←→ a — b — d

|
c

b — a — c — d ←→ b — a — c

|
d

b — a — d — c ←→ b — a — d

|
c

b — d — a — c ←→ b — d — a

|
c

a — b — d ←→ a b

|
c c — d

b — a — c ←→ b a

|
d d — c

And here is a list of the fixed points organized in columns by shape:

a — b — c — d b — a — d a — b

c c — d

b — c — d — a b — d — a b — a

c d — c

c — d — a — b

d — a — b — c

Counting the fixed points by shape, we immediately have

XG(P) = 4e(4) + 2e(3,1) + 2e(2,2).

We remark that if one adjoins a unique maximum or minimum to P , then this adds an
isolated vertex to G(P ). So this just multiplies XG(P) by e(1). So the previous theorem
implies that XG(P) is e-positive in the case when h(P ) = 3 and P has a unique maximum
or minimum as well as in the case when h(P ) = 4 and P has both.



160 B.E. Sagan, J. Lee / Journal of Algorithms 59 (2006) 149–161
4. Further work

We hope that the involution we have presented will just be a first step towards making
progress on the problem of Eğecioğlu and Remmel as well as on the (3 + 1)-free Conjec-
ture. In order to encourage the reader to develop these ideas, let us present some thoughts
about how to proceed.

To complete a combinatorial proof of K−1K = I , we must find an involution I on pairs
(S,T ) of the same shape for any given type t (S) = μ and content c(T ) = ν. Of course,
I should be sign reversing on all its 2-cycles and any fixed points should have S of positive
sign. If μ �= ν then there should be no fixed points. If μ = ν then there should be a single
fixed point which should probably be the unique pair of shape μ = ν.

If the largest element of T to appear in a hook of size at least two only occurs once in T ,
then one can use the same algorithm as before to construct I . The question is what to do
if the largest element of T occurs with nontrivial multiplicity. One possible solution is to
recall that to every semistandard T there is a canonically associated standard Young tableau
T0 obtained by labeling the 1’s in T from left to right with 1,2, . . . , ν1, then labeling the
2’s in the same manner with ν1 + 1, ν1 + 2, . . . , ν1 + ν2, and so forth. One can now apply
the old involution I to the pair (S,T0) to obtain a pair (S′, T ′

0). The problem is that if we
now reverse the standardization procedure, we may no longer get a semistandard tableau
as one may get two largest elements in the same column. But perhaps there is a way to
circumvent this.

Another possible approach would be to try and come up with a new set of rules where
all the largest elements were moved as a group in each step. We have been able to see how
some pairs might behave under this assumption, but have not been able to come up with
something that works in all circumstances.

The difficulties when dealing with posets are similar. Since P may have many maximal
elements, it is unclear which of them should be used to root S. Or maybe it is the case that
the root can be chosen arbitrarily among these maximals as long as one always chooses
the same element. But some extra idea will have to be incorporated to deal with the fact
that a maximal element need not be at the end of a row (although it must be at the end of
a column) and to make sure that when the maximal element is moved to the new position,
the new array remains a P -tableau. This should be where the (3 + 1)-free condition comes
in.
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