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1 Definitions

1.1 Intuitive definition

Definition 1.1. A root system is a “very symmetrical” set of vectors in Rn.

Example 1.2. Each of the following pictures takes place in R2, and the point where every-
thing meets is the origin (0, 0). Each line segment out from the origin represents a vector.
Here is a picture of the A2 root system.

Here is a picture of the B2 root system.

Here is a picture of the C2 root system.

In a minute I’ll give a technical definition of “very symmetrical,” but for now, just look at
these and think about how you would describe the symmetries present. The main two things
going on are:

1. For any vector v, −v is also in the root system.

2. If you take any vector v , and look at the line perpendicular to v, and reflect the whole
picture across that line, the reflection coincides with the original picture.

There is a third important feature that is not at all obvious from these pictures, which is
that the dot product of any two vectors have nice algebraic properties.
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1.2 Motivation for study of root systems

In this section I’m going to use a lot of words without defining them, but that’s because
they are just for motivation, not the focus of this seminar talk.

The main classical motivation for studying root systems is their role in the classification
of semisimple Lie algebras over C.

Theorem 1.3 (Cartan, Killing). Every semisimple Lie algebra over C has an associated root
system, and the root system determines the Lie algebra (up to isomorphism).

From this, we can get a full classification of such Lie algebras, provided we can classify all
the root systems. This was mostly worked out by Wilhelm Killing and Elie Cartan around
1880-1900.

More recently, in the 1940’s and 1950’s, Chevalley proved something similar for reductive
algebraic groups.

Theorem 1.4 (Chevalley). Every reductive algebraic group has associated root data, and
the root data determines the group (up to isomorphism).

I’m not going to go into what “root data” is, but basically it is a root system with some
additional structure.

So the main takeaway is that classifying root systems is used in classifying some other
important types of mathematical objects.

1.3 Precise technical definition

Everything that follows will take place in a fixed finite dimensional real vector space E = R`

with an inner product denoted by (−,−). By GL(E) we mean invertible R-linear endomor-
phisms of E, that need not preserve the inner product.

Definition 1.5. For α, β ∈ E, we set 〈α, β〉 = 2(α,β)
(β,β)

. Note that 〈−,−〉 is linear in the first
variable, but not the second.

Definition 1.6. For α ∈ E, Pα denotes the hyperplane/subspace perpendicular to α.

Pα = {β ∈ E : (α, β) = 0}

Definition 1.7. For α ∈ E, let σα ∈ GL(E) denote the reflection through the Pα. One can
check that a formula for σα is given by

σα(β) = β − 2(α, β)

(α, α)
α = β − 〈β, α〉α

Note that σα(α) = −α, and that σ2
α = Id.
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Definition 1.8. A root system in E is a finite set Φ ⊂ E such that

1. Φ spans E and does not contain zero.

2. For α ∈ Φ, the only multiples of α in Φ are ±α.

3. (Symmetry) For α ∈ Φ, Φ is invariant under σα. (Hence σα permutes Φ.)

4. (Integrality) For α, β ∈ Φ, 〈α, β〉 ∈ Z.

An element α ∈ Φ is a root.

Definition 1.9. Since Φ must span E, the dimension ` = dimRE is an invariant of Φ, called
the rank of Φ, and denoted rk(Φ).

Definition 1.10. Let Φ be a root system in E. For α ∈ Φ, the hyperplanes Pα divide
up E into connected components. The connected components of E \

⋃
α Pα are the Weyl

chambers of Φ.

Definition 1.11. Let Φ,Φ′ be root systems in E,E ′ respectively. A morphism of root
systems is a linear map T : E → E ′ such that T (Φ) ⊂ Φ′ and T preserves the angle bracket.
That is, for α, β ∈ Φ,

〈α, β〉 = 〈Tα, Tβ〉

Endomorphism, isomorphisms, and automorphisms of root systems are defined in the usual
way from this notion of morphism. We write Aut(Φ) for the group of automorphisms of Φ,
so and we view Aut(Φ) as a subgroup of GL(E). Note that for α ∈ Φ, σα ∈ Aut(Φ).

2 Examples

Before any general facts or attempt at classification, I’ll describe some concrete examples of
root systems in low dimensions. All of these examples will take place in R` with standard
basis e1, . . . , e` with the dot product determined by

(ei, ej) = δij

where δij is the Kronecker delta.

2.1 The A1 root system

Example 2.1 (A1 root system). Consider R2 with the usual inner product given by dot
product, and standard basis e1, e2. Let

Φ = {e1 − e2, e2 − e1}

We can draw this as below. The dotted lines represent the e1, e2 axes.
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e1 − e2

e2 − e1

Let E be the span of (1,−1). Then Φ is a root system in E. All the properties are obvious
except integrality.

〈e1 − e2, e2 − e1〉 =
2(e1 − e2, e2 − e1)

(e2 − e1, e2 − e1)
=

2(−1− 1)

(1 + 1)
= −2

This is called the root system of type A1. The 1 refers to the dimension of E. It is possible
to draw this root system as a subset of R1, but I chose not to because this formulation
generalizes a bit more cleanly.

2.2 The A2 root system

Example 2.2 (A2 root system). Consider R3 with the usual inner product, given by dot
product, and standard basis vectors e1, e2, e3. Let

Φ = {e1 − e2, e2 − e1, e1 − e3, e3 − e1, e2 − e3, e3 − e2}

The span of Φ is the plane with normal vector e1 + e2 + e3. Let E be this subspace. We
claim Φ is a root system in E. By what I just said, Φ spans E. The other properties are
most easily verified by drawing a picture (in the plane E).

e1 − e3e3 − e1

e2 − e3e2 − e1

e1 − e2e3 − e2

From the picture, it is clear that the only multiplies of any root that are in Φ are ±α. And we
can see that Φ is closed under hyperplane reflections, meaning the hyperplanes perpendicular
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to each root. To verify the last condition regarding integrality, we just need to do some case
checking. Let’s just do one.

〈e1 − e2, e2 − e3〉 =
2(e1 − e2, e2 − e3)

(e1 − e2, e1 − e2)
=

2(−1)

(2)
= −1

This is called the A2 root system. The 2 refers to the dimension of the span of Φ.

2.3 The A` root system

Example 2.3 (A` root system). Let e1, . . . , e`, e`+1 be the standard basis of R`+1. Let

Φ = {±(ei − ej) : 1 ≤ i < j ≤ `+ 1}

Let E ⊂ R`+1 be the span of Φ, with the usual Euclidean inner product. Then Φ is a root
system in E. Properties 1,2,4 are all clear (for #4, note that (ei, ej) = δij ∈ Z). Property 3
requires a lot of tedious case-checking. This is the root system of type A`.

2.4 A1 × A1

Example 2.4 (A1 ×A1 root system). Consider R2 with the usual inner product (dot prod-
uct), with standard basis e1, e2. We have two copies of the A1 root system, one given by
{e1 − e2, e2 − e1} and the other given by {e1 + e2,−e1 − e2}. Let

Φ = {e1 − e2, e2 − e1, e1 + e1,−e1 − e1}

e1 − e2

e2 − e1 e1 + e2

−e1 − e2

Furthermore, the two copies of A1 here do not interact, in the sense that the dot product
(or 〈, 〉 product) is zero between any vectors coming from different copies of A1.

〈e1 + e2,−e1 − e2〉 =
2(e1 + e2,−e1 − e2)

(−e1 − e2,−e1 − e2)
=

2(−1− 1)

(1 + 1)
= −2

〈e1 + e2, e1 − e2〉 =
2(e1 + e2, e1 − e2)

(e1 − e2, e1 − e2)
= 0
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2.5 B2

Example 2.5 (B2 root system). Consider R2 with inner product given by dot product with
basis e1, e2. Let

Φ = {±e1,±e2,±e1 ± e2}

e1 − e2

e2 − e1 e1 + e2

−e1 − e2

e1−e1

e2

−e2

This is the root system of type B2.

2.6 C2

Example 2.6 (C2 root system). In R2 as before, consider the root system

Φ = {±2e1,±2e1,±e1 ± e2}

This is the root system of type C2.

2.7 G2

Example 2.7 (G2 root system). Consider R3 with basis e1, e2, e3 and usual dot product.
Let

Φ = { ± (e1 − e2),±(e1 − e3),±(e2 − e3),

± (2e1 − e2 − e3),±(2e2 − e1 − e3),±(2e3 − e1 − e2)}

The first six vectors is an exact copy of A2 from earlier, which lives in the hyperplane
perpendicular to e1 + e2 + e3. Notice that the other six vectors also lie in this same plane,
so we take E to be that plane. Instead of labelling all the roots in terms of ei, instead we’ll
label them in terms of α = e1 − e2 and β = 2e2 − e1 − e3.
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α−α

β β + α β + 2α β + 3α

3β + 2α

−3β − 2α

−β − 3α −β − 2α −β − α −β

One way to think about this picture is that it is two copies of A2, with slightly differently
scaled lengths. In the original copy involving α, the vectors have squared length 2. In the
larger copy of A2, the vectors have squared length 6. All of the angles between adjacent
vectors are π/6.

Remark 2.8. Although it is far from obvious at this point, I have shown you all of the
(irreducible) root systems of rank 2.

Remark 2.9. The B2 and C2 root systems generalize to infinite familes B`, C` of root systems
in any dimension. Not so obviously, the G2 root system does NOT generalize in this way, it
is one of the exceptional root systems, along with F4 and E5, E6, E7, E8.

3 Classification of root systems

Now that we’ve seen some examples, I’ll outline the classification of root systems.

3.1 Restrictions on possible angles

The first and very immediate consequence of the definition of root system is that the angles
between vectors appearing in a root system are very restricted, as a consequence of the
integrality property.

Definition 3.1. For α, β ∈ E, let θαβ denote the angle between α and β. Then

cos θαβ =
(α, β)2

(α, α)(β, β)
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Also note that

(α, β) > 0 ⇐⇒ 0 < θαβ <
π

2
⇐⇒ θαβ is acute ⇐⇒ 〈α, β〉 > 0

(α, β) < 0 ⇐⇒ π

2
< θαβ < π ⇐⇒ θαβ is obtuse ⇐⇒ 〈α, β〉 < 0

Proposition 3.2. Let Φ be a root system. For α, β ∈ Φ, with β 6= ±α,

〈α, β〉 〈β, α〉 ∈ {0, 1, 2, 3}

Proof. We know 〈α, β〉 〈β, α〉 ∈ Z. The bounds basically follow from the angle formula

cos θαβ =
(α, β)2

(α, α)(β, β)

Rearranging this,
〈α, β〉 〈β, α〉 = 4 cos2 θαβ ≤ 4

If it is equal to 4, then θ = π, which would make β = ±α.

Remark 3.3. Using the previous result, one can make a table of all the possible values of
〈α, β〉, and a list of all possible angles (α, β) between roots. We can also list all the possible
ratios of squared lengths, except for the case where α, β make a right angle. Without loss of
generality, assume (α, α) ≤ (β, β).

〈α, β〉 〈β, α〉 θαβ
(β,β)
(α,α)

= |β|2
|α|2 =

(
|β|
|α|

)2

0 0 π/2 undetermined
1 1 π/3 1
-1 -1 2π/3 1
1 2 π/4 2
-1 -2 3π/4 2
1 3 π/6 3
-1 -3 5π/6 3

So from this table, there are only six different possible acute angles between roots, and there
are only three possible square length ratios between roots of different lengths which don’t
make a right angle. We discuss this briefly for each example we have considered.

In the A` root system, all roots have the same length, and all the angles are integer
multiples of π

3
.

In the B2 and C2 root systems, there are two root lengths with squared ratio 2, and all
the angles are integer multiples of π

4
.

In the G2 root system, there are two root lengths with squared ratio 3, and all the angles
are integer multiples of π

6
.

After seeing this example of how restrictive the integrality condition is on the geometry of a
root system, hopefully you aren’t that surprised that these things can be totally classified.
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3.2 Irreducibility

Definition 3.4. A root system Φ is reducible if it can be written as a disjoint union of
nonempty sets Φ = Φ1 tΦ2 which are orthogonal, meaning (α, β) = 0 for α ∈ Φ1, β ∈ Φ2. It
is irreducible if it is not reducible.

Proposition 3.5. A root system Φ in E can be written as a disjoint union of irreducible
root systems

Φ =
⊔
i

Φi

such that
E =

⊕
i

Ei =
⊕
i

span(Φi)

is a direct sum decomposition into pairwise orthogonal subspaces Ei = span(Φi).

Remark 3.6. Due to this, in order to classify all root systems, it suffices to classify irre-
ducible root systems.

3.3 Weyl group

Definition 3.7. Let Φ be a root system in E. Recall that for α ∈ E, σα ∈ GL(E) is the
reflection through the hyperplane perpendicular to α. The Weyl group of Φ is the subgroup
of GL(E) generated by σα for α ∈ Φ.

W (Φ) = 〈σα | α ∈ Φ〉

Since Φ is a root system, each σα preserves Φ, so W (Φ) may also be viewed as a subgroup
of the permutation group of Φ. In particular, W (Φ) is finite.

Example 3.8 (Weyl group of A2). What is the Weyl group of the A2 root system? It is
the subgroup of the symmetry group of A2 generated by reflections. This is the symmetry
group of an equilateral triagle, which is S3.

Example 3.9 (Weyl group of A`). The Weyl group of A` is S`+1.

Example 3.10 (Weyl group of G2). The Weyl group of G2 is the dihedral group of order
12.
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3.4 Bases for root systems

Definition 3.11. A base for a root system Φ is a subset ∆ ⊂ Φ such that ∆ is a basis for E,
and so that for every β ∈ Φ when written uniquely in terms of this basis, all the coefficients
are integers, and have the same sign. That is, for β ∈ Φ,

β =
∑
α∈∆

kαα kα ∈ Z

with kα ∈ Z all having the same sign. That is, all the kα are ≥ 0 or ≤ 0. After fixing a base
∆ for Φ, set

simple roots = ∆

positive roots = Φ+ =
{∑

kαα : kα ≥ 0
}

negative roots = Φ− =
{∑

kαα : kα ≤ 0
}

Note that ∆ ⊂ Φ+. Also note that as ∆ is a basis for E, |∆| = rk(Φ).

Example 3.12 (Bases for A2). A base for A2 is given by e1 − e2 and e3 − e1.

Example 3.13 (Base forA`). Consider again theA` root system Φ = {±(ei − ej) : 1 ≤ i < j ≤ `+ 1}.
One base for this root system is {e1 − e2, . . . , e` − e`+1}.

Example 3.14 (Base for G2). When we described G2, we described it in such a way that
α = e1 − e2 and β = 2e2 − e1 − e3 together form a base ∆ = {α, β} for G2. Looking back
to our picture, all of the roots are integral combinations of α and β with coefficients of the
same sign. We can also look at the picture we drew of G2 and see that the positive and
negative roots are divided by a single hyperplane.

Theorem 3.15. Every root system has a base (actually several).

Theorem 3.16. The Weyl group W (Φ) acts simply transitively on the set of bases for Φ.

3.5 Cartan matrices

Definition 3.17. Let Φ be a root system, with base ∆. Fix an ordering of ∆ = 〈α1, . . . , α`).
The Cartan matrix associated to this is the matrix

C = (cij) = (〈αi, αj〉) ∈ Mat(`,Z)

Changing the ordering of ∆ just acts by permuting rows and columns of C. Since W acts
simply transitively on the set of bases, changing the basis just means applying an element
of W to each αi, which does not affect the bracket product, so C does not depend on the
choice of basis.

Remark 3.18. The diagonal entries of the Cartan matrix are always 2, since 〈α, α〉 =
2(α,α)
(α,α)

= 2.
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Example 3.19 (Cartan matrix for A2). Let’s compute the Cartan matrix for A2. We use
the base α1 = e1 − e2 and α2 = e3 − e1. Then we compute a few brackets.

〈α1, α2〉 =
2(α1, α2)

(α2, α2)
=

2(e1 − e2, e3 − e1)

(e3 − e1, e3 − e1)
=

2(−1)

2
= −1

〈α2, α1〉 = −1

So the Cartan matrix is (
2 −1
−1 2

)
Example 3.20 (Cartan matrix for A`). Using the base previous mentioned for A`, the
Cartan matrix associated to the root system of type A` is

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


Example 3.21 (Cartan matrix for G2). We use the basis α = e1 − e2, β = 2e2 − e1 − e3 for
G2. The relevant bracket products are

〈α, β〉 =
2(e1 − e2, 2e2 − e1 − e3)

(2e2 − e1 − e3, 2e2 − e1 − e3)
=

2(−1− 2)

1 + 4 + 1
=
−6

6
= −1

〈β, α〉 =
2(2e2 − e1 − e3, e1 − e2)

(e1 − e2, e1 − e2)
=

2(−1− 2)

2
= −3

So the Cartan matrix is (
2 −1
−3 2

)

3.6 Dynkin diagrams/Coxeter graphs

Definition 3.22. Given a root system Φ with base ∆, the associated Dynkin diagram is
a graph, which can have multi-edges and directed edges. The vertices are elements of ∆,
and between two vertices α, β, there are

edge(α, β) = max
(
| 〈α, β〉 |, | 〈β, α〉 |

)
edges. If one of α, β is longer (if (α, α) 6= (β, β) and 〈α, β〉 > 1, then we direct the multiple
edges pointing toward the longer root. The Dynkin diagram depends only on the Cartan
matrix, and it is clear that the Dynkin diagram does not depend on the order of the base,
so it depends only on the root system Φ.

The Coxeter graph of Φ is just the underlying undirected multigraph of the Dynkin
diagram.
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Example 3.23 (Dynkin diagram for A2). There are two roots in the base, so the Dynkin
diagram for A2 has two vertices α1, α2. Between them there is one edge. They have the same
length, so the edge is not directed.

α1 α2

Example 3.24 (Dynkin diagram for A`). We use the same base as before for A`, where the
Cartan matrix is as before. There are ` roots α1, . . . , α`. From the Cartan matrix, we read
off that the Dynkin diagram is

α1 α2 · · ·
α`−1 α`

Example 3.25 (Dynkin diagram for G2). For G2, we use the base α, β as before, with
Cartan matrix (

2 −1
−3 2

)
Since | 〈β, α〉 | = 3, there are three edges between the two vertices. We add an arrow pointing
at the longer root, β.

α β
>

Proposition 3.26. A root system Φ is irreducible iff the Dynkin diagram is connected.

Proof. If Φ = Φ1 t Φ2 is reducible with (Φ1,Φ2) = 0, then the Cartan matrix has blocks, so
the Dynkin diagram has multiple components. Conversely, if the Dynkin diagram has two
components, then there are disjoint orthogonal subsets of Φ, making it reducible.

Proposition 3.27. Let Φ,Φ′ be root systems in E,E ′ respecitvely. Then Φ ∼= Φ′ if and only
if they have the same Dynkin diagram.

Proof. If Φ ∼= Φ′, then they clearly have the same Cartan matrix and same Dynkin diagram.
The other direction is the challenge.

If the Dynkin diagrams are the same, the Cartan matrices are the same up to permutating
rows and columns, so we can choose bases ∆ = {α1, . . . , α`} of Φ and ∆′ = {α′1, . . . , α′`} of Φ′

with 〈αi, αj〉 =
〈
α′i, α

′
j

〉
for all i, j. Define T : E → E ′ by T (αi) = α′i. As ∆,∆′ are bases, T

is an isomorphism of vector spaces, and it preserves the angle bracket. We have T (∆) = ∆′,
we just need to check T (Φ) = Φ′.

Let β ∈ Φ and αi ∈ ∆. Then

Tσαi
β = T (β − 〈β, αi〉αi) = Tβ − 〈β, αi〉α′i = Tβ − 〈Tβ, Tαi〉α′i

= Tβ − 〈Tβ, α′i〉α′i = σα′
i
Tβ

For σ ∈ W (Φ), write it as a product of simple reflections σαi
, and let σ′ ∈ W (Φ′) be the

analogous product of σα′
i
. Since the simple reflections σαi

generate the Weyl group W (Φ),
the previous equation shows for any σ ∈ W (Φ) that

Tσβ = σ′Tβ
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Since W (Φ) acts transitively on Φ, choose σ so that σβ ∈ ∆. Then Tσβ = σ′Tβ ∈ T (∆) =
∆′. So Tβ is in the W (Φ′)-orbit of ∆′, which is exactly Φ′. Thus T (Φ) ⊂ Φ′. Applying the
same argument to T−1 gives the reverse inclusion, so T (Φ) = Φ′. Hence T is an isomorphism
of root systems.

3.7 Classification of Coxeter graphs

Theorem 3.28. The only possible Dynklin diagrams arising from root systems are the fol-
lowing. Conversely, for each of these, there exists a root system with the given Dynkin
diagram.
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