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1 Galois theory

1.1 Review of field extension terminology

Definition 1.1. A field extension Ω/F is normal if it is a splitting field of a family of
polynomials in F [x]. (It is generated over F by roots of all polynomials in the family, and
all the polynomials in the family factor linearly in Ω.)

Definition 1.2. A field extension Ω/F is separable if it is algebraic and if for every α ∈ Ω,
the irreducible polynomial of α over F has no repeated roots.

Definition 1.3. A field extension Ω/F is Galois if it is normal and separable. If Ω/F is a
Galois extension, the Galois group, denoted Gal(Ω/F ), is the group of automorphisms of
Ω that fix F .

Definition 1.4. Let G = Gal(Ω/F ) and let H ⊂ G be a subgroup. The fixed field of H,
denoted ΩH , is the set

ΩH = {x ∈ Ω : σx = x ∀σ ∈ H}
(This is in fact a field.)

Proposition 1.1 (Milne Prop 7.3). Let Ω/F be Galois and G = Gal(Ω/F ). Let E be an
intermediate field, F ⊂ E ⊂ Ω. Then Ω/E is Galois, and Gal(Ω/E) is a subgroup of G.

Proof. Regardless of whether Ω/E is Galois, the automorphisms of Ω that fix E form a sub-
group of G, so the second statement has nothing to prove. Recall that separable extensions
form a distinguished class, and normal extensions remain normal under lifting. That is, if
Ω/F is separable, then Ω/E and E/F are separable, and if Ω/F is normal, then Ω/E is
normal. Thus Ω/E is normal and separable, so it is Galois.

Note: For a tower F ⊂ E ⊂ Ω, it is NOT true that E/F is necessarily Galois. Separa-
ble extension form a distinguished class, but normal extensions don’t. So E/F is always
separable, but it may not be normal.

Proposition 1.2 (Milne Prop 7.4). Let Ω/F be Galois, and let F ⊂ E ⊂ Ω be an interme-
diate field. Every F -linear map E → Ω extends to an F -linear isomorphism Ω→ Ω.

Proof. Requires Zorn’s lemma, omitted.

1.2 The Galois correspondence

Below is the finite Galois correspondence, followed immediately by the more general version.
The differences are underlined for emphasis.

Theorem 1.3 (Fundamental Theorem of Finite Galois Theory). Let Ω be a finite Galois
extension of a field F , and let G = Gal(Ω/F ). There is a bijection

{subgroups of G} ←→ {intermediate fields F ⊂ E ⊂ Ω}
H 7−→ ΩH

Gal(Ω/E)←− [ E

Notably, ΩGal(Ω/E) = E. This bijection also has the following properties:
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(i) The correspondence is inclusion reversing. That is, H1 ⊂ H2 ⇐⇒ ΩH1 ⊃ ΩH2.

(ii) Subgroup conjugation corresponds to left action. That is, ΩσHσ−1
= σ(ΩH) and

σGal(Ω/E)σ−1 = Gal(Ω/σE). More succintly, if H ↔ E then σHσ−1 ↔ σE.

(iii) A subgroup H ⊂ G is normal if and only if ΩH/F is Galois. In this case, Gal(ΩH/F ) ∼=
G/H.

(iv) If H ⊂ G is normal, then [G : H] = [ΩH : F ]. ([G : H] is the index of H in G, and
[ΩH : F ] is the degree of the field extension.)

Theorem 1.4 (Fundamental Theorem of Galois Theory). Let Ω be a Galois extension of a
field F , and let G = Gal(Ω/F ). There is a bijection

{closed subgroups of G} ←→ {intermediate fields F ⊂ E ⊂ Ω}
H 7−→ ΩH

Gal(Ω/E)←− [ E

Notably, ΩGal(Ω/E) = E. This bijection also has the following properties:

(i) The correspondence is inclusion reversing. That is, H1 ⊂ H2 ⇐⇒ ΩH1 ⊃ ΩH2.

(ii) Subgroup conjugation corresponds to left action. That is, ΩσHσ−1
= σ(ΩH) and

σGal(Ω/E)σ−1 = Gal(Ω/σE). More succintly, if H ↔ E then σHσ−1 ↔ σE.

(iii) A closed subgroup H ⊂ G is normal if and only if ΩH/F is Galois. In this case,
Gal(ΩH/F ) ∼= G/H.

(iv) A closed subgroup H ⊂ G is open if and only if ΩH/F is a finite extension. In this

case, [G : H] = [ΩH : F ]. ([G : H] is the index of H in G, and [ΩH : F ] is the degree
of the field extension.)

Assume for the moment that we only know the theorem holds in the finite case. We would
like to understand what happens when Ω/F is an infinite extension. Is the exact same
theorem still true? Most of the results leading up to this don’t care about the degree of the
extension. However, some do require a finite extension, so this theorem as stated (without
“closed”) is false if Ω/F is infinite. Dedekind was the first to give examples of a subgroup
that doesn’t correspond to a subextension.

Lemma 1.5. An extension Ω/F is Galois if and only if it is a union of finite Galois exten-
sions.

Proof. If Ω is a union of finite Galois extensions, then it is the compositum of those ex-
tensions. The compositum of Galois extensions is Galois (because normal and separable
extensions have these properties), so Ω/F is Galois.

Suppose Ω/F is Galois and let E be an intermediate field, which is finite Galois over F .
Since E/F is separable, by the Primitive Element Theorem it has the form E = F (α) for
some α ∈ Ω. Let f be the irreducible/minimal polynomial of α over F . Then E embeds
into the splitting field of f , which is finite Galois over F . Then Ω is the union of all of these,
since each α ∈ Ω is contained in some such intermediate field.
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This lemma suggests that we might be able to understand an infinite Galois extension
just by piecing together all the finite Galois subextensions in the right way. If we have a
tower F ⊂ E1 ⊂ E2 ⊂ E3 ⊂ Ω where Ei are all finite Galois extensions of F , we have
restriction homomorphisms in the following commutative diagram.

Gal(Ω/F ) . . . Gal(E3/F ) Gal(E2/F ) Gal(E/F )
φ32

φ31

φ21

where φji (σ) = σ|Ei
. If we have a longer chain, F ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Ω, we can extend

this diagram to the left forever. This suggests that if we take some sort of limit, we can
approximate Gal(Ω/F ). We’re going to do this with inverse limits.

2 Inverse limits

2.1 Definitions

Definition 2.1. A directed set is a partially ordered set (I,≤) such that for all i, j ∈ I,
there exists k ∈ I so that i ≤ k and j ≤ k.

Definition 2.2. Let C be a category and (I,≤) a directed set. An inverse system in C is
a family (Ai)i∈I of objects together with a family (pji : Aj → Ai)i≤j of morphisms such that
pii = IdAi

and pji ◦ pkj = pki for all i ≤ j ≤ k.

Ak

Aj Ai

pkj pki

pji

Definition 2.3. Let (Ai), (p
j
i ) be an inverse system. An inverse limit of this system is an

object A along with a family of morphisms pj : A→ Aj satisfying pji ◦ pj = pi for all i ≤ j,

A

Aj Ai

pj pi

pji

as well as the following universal property. For any object B and family of morphisms
qj : B → Aj satisfying pji ◦ qj = qi for i ≤ j, there exists a unique morphism r : B → A such
that pj ◦ r = qj for all j.

B

A

Aj Ai

r
qj qi

pj pi

pji
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Definition 2.4. Let (Gi, p
j
i : Gj → Gi) be an inverse system of groups. The inverse limit

of this system, denoted lim←−Gi, is

lim←−Gi =

{
(gi) ∈

∏
i

Gi : pji (gj) = gi, ∀i ≤ j

}

One can check that this is a subgroup of the product
∏
Gi. One needs to check that the

universal property holds; see the next lemma.

In just a minute, we’ll see an example of a direct limit arising from an infinite Galois exten-
sion.

Lemma 2.1. The group defined above satisfies the universal property of inverse limits.

Proof. Let (H, qi) be a family with qi : H → Gi satisfying pji ◦ qj = qi. Then the homomor-
phism

H →
∏
i

Gi h 7→ (qi(h))

has image contained in lim←−Gi, because pji (qj(h)) = qi(h). It is also the unique morphism
H → G mapping qi to pi, so this is the required morphism for the universal property.

Definition 2.5. A profinite group is any group that is an inverse limit of finite groups.

2.2 Galois groups as inverse limits

Let Ω/F be a Galois extension. Let I be the set of intermediate fields F ⊂ E ⊂ Ω such that
E/F is finite Galois. I is partially ordered by inclusion and forms a directed set, since any
two E,E ′ are contained in the compositum EE ′ (compositum taken in Ω).

For each E ∈ I, we have the finite group Gal(E/F ), and for E ⊂ E ′ we have a restriction
homomorphism pE

′
E : Gal(E ′/F )→ Gal(E/F ), σ 7→ σ|E, so we get an inverse system of finite

groups, so we can take the inverse limit.

Proposition 2.2. Let Ω/F be a Galois extension. Then

Gal(Ω/F )→ lim←−Gal(E/F )

σ 7→ (σ|E)

is a group isomorphism.

Proof. We check that it actually maps into lim←−Gal(E/F ). We need to check that pE
′

E (σ|E′) =

σ|E, but this is true by definition of pE
′

E . It is a group homomorphism because στ 7→
((στ)|E) = (σ|Eτ |E) = (σ|E)(τ |E) for any σ, τ ∈ Gal(Ω/F ). The kernel is

ker = {σ ∈ Gal(Ω/F ) : σ|E = IdE}

Since Ω =
⋃
E, anything in the kernel is the identity on all of Ω. Thus the kernel is trivial

so the map is injective.
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Finally, suppose (σE) is in lim←−Gal(E/F ), with σE ∈ Gal(E/F ). Then we define σ : Ω→
Ω by σ(x) = σE(x) for x ∈ E. As already noted, Ω =

⋃
E, so this defines σ on all of Ω.

We need to check that this is well-defined, so we need to check that if x ∈ E ∩ E ′, then
σE(x) = σE′(x). Note that E ∩ E ′ is also a finite Galois extension of F . (Intersection of
normal extensions is normal.)

Ω

E E ′

E ∩ E ′

F

Since (σE) ∈ lim←−Gal(E/F ),

pEE∩E′(σE) = σE∩E′ pE
′

E∩E′(σE′) = σE∩E′

thus σE and σE′ agree on E ∩ E ′, which contains x, so σ is well-defined. By construction,
σ|E = σE, so our map is surjective.

Corollary 2.3 (Milne 7.6). Let Ω/F be a Galois extension, and F ⊂ E ⊂ Ω be an interme-
diate field, with E/F finite Galois. Then the map

Gal(Ω/F )→ Gal(E/F ) σ 7→ σ|E

is a continuous surjection, if we put the discrete topology on Gal(E/F ).

Proof. If σE ∈ Gal(E/F ), and view it as an F -linear map E → Ω. By Proposition 1.2, σE
extends to an F -linear isomorphism σ : Ω→ Ω, which means precisely that σ|E = σE. Hence
the map is surjective. It is continuous because it is the canonical map associated with the
direct limit.

2.3 Example - absolute Galois group of a finite field

Definition 2.6. Let F be a field, and F sep the separable closure (maximal Galois extension
of F ). The absolute Galois group of F is Gal(F sep/F ).

Now we use the results we developed to compute the absolute Galois group of a finite
field with p elements. Let p be a prime and let Fp be the finite field with p elements. Let Ω
be an algebraic closure of Fp, so Ω/Fp is Galois (since Fp is a perfect field).

Using our direct limit characterization, we can can get a handle on the structure of
Gal(Ω/Fp). We know that the finite Galois subextensions Fp ⊂ E ⊂ Ω are exactly the finite
fields Fpn for n ∈ Z+, and Fpm is contained in Fpn if and only if m|n, so that’s our partial
ordering.

Fp ⊂ Fpn ⊂ . . . ⊂ Ω
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Furthermore, we know exactly what these finite Galois groups are. The Galois group
Gal(Fpn/Fp) is cyclic of order n, generated by the Frobenius automorphism x 7→ xp. For
m|n, the restriction map

Gal(Fpn/Fp)→ Gal(Fpm/Fp)
sends σ (Frobenius) to itself, so this is just the map

φnm : Z/nZ→ Z/mZ x 7→ x mod m

The inverse limit of this system is called Ẑ. This looks like

Ẑ =

{
(an) ∈

∞∏
n=1

Z/nZ : φnm(an) = am, ∀m|n

}
Notice that the condition φnm(an) = am is equivalent to an mod m = am which is equiva-

lent to an ≡ am mod m.
What are some example elements in Ẑ? The “constant sequences” such as (1, 1, 1, . . .), (2, 2, 2, . . .)

(these actually form an embedded copy of Z in Z̃). Here’s a family of elements not of this
form. Choose a prime p, and let an = 1 if n is a power of p and an = 0 else. For p = 2, this
looks like

(an) = (0, 1, 0, 1, 0, 0, 0, 1, 0 . . .)

(Remember that 1 = 0 in Z/1Z, so it doesn’t really matter how we write a1.)

Note: For those who are interested, Ẑ is closely related to the p-adic integers. It is isomor-
phic the product over all Zp.

2.4 The Krull topology

Definition 2.7. A topological group is a topological space with a group structure such
that the multiplication map G×G→ G, (x, y) 7→ xy and the inversion map G→ G, x 7→ x−1

are continuous. (G×G has the product topology.)

If we have an inverse system of topological groups, the inverse limit in the category of
groups is also an inverse limit in the category of topological groups, provided lim←−Gi has the
subspace topology from the product topology on

∏
Gi. We just need to observe that the

projection maps are continuous, so everything is still a morphism.
Any profinite group has a “natural” topology. We endow the finite groups in the sys-

tem with the discrete topology, then give
∏
Gi the product topology, then give lim←−Gi the

subspace topology from this. This makes lim←−Gi a topological group.
So we have a topology on the inverse limit of Galois groups above. Then using our

isomorphism from Proposition 2.2, there is a unique topology on Gal(Ω/F ) making this group
isomorphism into a homeomorphism as well. This topology is called the Krull topology
on Gal(Ω/F ).

Now that we have defined this topology, what can we say about it? What does a typical
open set look like? We know that the projection maps pi : G → Gi are continuous, so
the preimage of any x ∈ Gi is an open subset of G, since Gi is discrete. In particular, the
preimage of the identity of Gi is open.
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Lemma 2.4. Let (Gi, p
j
i ) be an inverse system of finite groups, and let G = lim←−Gi. The

kernels ker pi are a family of open neighborhoods of the identity in G, consisting of normal
subgroups of finite index.

Proof. Gi is discrete, so the identity {ei} is open. The projection pi : G→ Gi is continuous,
so the preimage ker pi is open. Kernels are always normal subgroups, so it contains the
identity. It has finite index because G/ ker pi ∼= Gi, and Gi is finite.

We can actually say more than the previous lemma - the kernels form a neighborhood base
of the identity in G, but we won’t go into the definition of a neighborhood base.

Proposition 2.5. Let (Gi, p
j
i : Gj → Gi) be an inversely directed system of finite groups, and

give each the discrete topology. Then lim←−Gi is Hausdorff, compact, and totally disconnected.

Proof. Let G = lim←−Gi. Subspaces and products of Hausdorff spaces are Hausdorff, so
∏
Gi

is Hausdorff, so the subspace G is Hausdorff. Similarly, subspaces and products of totally
disconnected spaces are totally disconnected, so G is totally disconnected.

Now we want to show compactness. Each Gi is compact, so by Tychonoff’s Theorem
∏
Gi

is compact. Thus it is sufficient to show that G is closed in
∏
Gi, since closed subspaces

of compact spaces are compact. Choose (xi) ∈ (
∏
Gi) \ G. Then there exist j, k so that

pkj (xk) 6= xj. The set
{(gi) : gj = xj, gk = xk}

is open in
∏
Gi and lies entirely in the complement of G, so the complement of G is open,

so G is closed.

Note: The converse to the above is also true, that any topological group with those prop-
erties is profinite. That direction is much harder to prove.

Corollary 2.6. For any Galois extension Ω/F , Gal(Ω/F ) is Hausdorff, compact, and totally
disconnected.

Proof. Immediate consequence of Propositions 2.2 and 2.5.

3 The Galois correspondence again

We can now update our statement of the Galois correspondence to include infinite extensions.
We haven’t actually proved it, but at least now we know what topology is behind the phrase
“closed subgroup.” This phrase is the key difference in passing to infinite Galois extensions
- we no longer have a correspondence with all subgroups, just the closed ones. Let’s prove
some of it at least.

Lemma 3.1. Let G be a topological group.

I. Every open subgroup of G is closed.

II. Every closed subgroup of finite index is open.
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Proof. (I) Let H be an open subgroup. For any g ∈ G, the map G → G, x 7→ gx is a
topological group isomorphism. In particular, the cosets gH are all homeomorphic to H, so
they are open. Since G =

⊔
gH, the complement of H is a union of open sets, so it is open,

so H is closed. This proves the first statement.
(II) Let H be a closed subgroup of finite index. As before, G =

⊔
gH, but now with

each gH closed. Since H has finite index, the complement of H is a finite union of closed
subsets, so it is closed, so H is open.

Definition 3.1. Let G = Gal(Ω/F ) and let S ⊂ Ω be a finite set. Define

G(S) = {σ ∈ G : σs = s, ∀s ∈ S}

This is the stabilizer of S in the action of G on Ω. Note that G(S) = Aut(Ω/F (S)), where
F (S) is the extension of F generated by S.

Definition 3.2. Let Ω/F be a Galois extension. A subset S ⊂ Ω is stable under G if for
σ ∈ G, σ(S) ⊂ S.

Lemma 3.2. Let Ω/F be a Galois extension, and let S ⊂ Ω be a finite set stable under G.
Then we have a short exact sequence of groups

1→ G(S)→ Gal(Ω/F )
π−→ Gal(F (S)/F )→ 1

Hence G(S) is an open normal subgroup of G of finite index.

Proof. First, note that for such S, F (S)/F is Galois. We know it is separable, we just need
to check that it is normal. For α ∈ S, let fα be the irreducible/minimal polynomial of α
over F . Since S is stable under G, all roots of fα are in S. Thus F (S) is the splitting field
of the family fα, so this is a normal (and hence Galois) extension.

If σ ∈ kerπ, then σ|F (S) = Id, so σ|S = Id and σ ∈ G(S). For the reverse inclusion, if
σ ∈ G(S), then σ|F = Id and σ|S = Id, and since F (S) is generated by S over F , σ|F (S) = Id,
so σ ∈ kerπ. Hence ker π = G(S).By Corollary 2.3, π is conintuous and surjective, so the
sequence is exact as claimed. Since π is continuous and Gal(F (S)/F ) is discrete, the kernel
G(S) is a open normal subgroup.

Lemma 3.3. Let Ω/F be a Galois extension and G = Gal(Ω/F ), and let S ⊂ Ω be any
finite subset. Then G(S) is an open subgroup of G of finite index. It is normal if and only
if S is stable under G.

Proof. That G(S) is a subgroup of finite index is clear, what is not so clear is that it is a
open and normal. From the previous lemma, we know this is true in the case where S is
stable under G. Let

S = {τs : τ ∈ G}

be the set of all Galois conjugates of S, so S is stable under G. It is clear that G(S) ⊂ G(S),
so G(S) is an open normal subgroup of finite index. We claim that

G(S) =
⋃

σ∈G(S)

σG(S)
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The inclusion ⊂ is obvious, since σ ∈ σG(S). The reverse inclusion is also obvious, since for
σ ∈ G(S) and τ ∈ G(S), στ fixes S, so σG(S) ⊂ G(S). Since each G(S) is open and left
multiplication by σ is a homeomorphism, σG(S) is also open, so the union above is open.

Regarding the statement about normality, we already know that if S is stable under G,
G(S) = G(S) is normal. For the converse, notice that for τ ∈ G, we have

τG(S)τ−1 =
{
τστ−1 : σs = s, ∀s ∈ S

}
=
{
β : τ−1βτs = s,∀s ∈ S

}
= {β : βτs = τs,∀s ∈ S}
= G(τS)

If S is stable under G, then τS = S hence τG(S)τ−1 = G(S) for all τ ∈ G, which is precisely
the condition that G(S) is normal.

Proposition 3.4. Let G = Gal(Ω/F ), and let E an intermediate field, F ⊂ E ⊂ Ω. Then
Gal(Ω/E) is closed in G.

Proof. For each finite subset S ⊂ E, G(S) is an open subgroup of G by Lemma 3.3, so it
also closed by Lemma 3.1. We claim that

Gal(Ω/E) =
⋂

S⊂E, finite

G(S)

One inclusion is easy: Gal(Ω/E) is contained in each G(S), since elements of Gal(Ω/E) fix
every element of E. For the reverse inclusion, it is clear that each α ∈ E is contained in
some S, so if σ fixes each S, it fixes E. Since we have written Gal(Ω/E) as an intersection
of closed sets, it is closed.

We know that if we take any subgroup of Gal(Ω/F ), we can take its fixed field and get
an intermediate field, with associated Galois group Gal(Ω/ΩH). Suppose H is not closed.
Then the subgroup corresponding to this intermediate field can’t be H, so what is it? The
next proposition answers this question.

Proposition 3.5. Let G = Gal(Ω/F ), and let H ⊂ G be a subgroup. Then Gal(Ω/ΩH) is
the closure of H.

Proof. I don’t understand this proof well enough to give a succinct proof appropriate for a
seminar.

A natural question to ask is, “Are all subgroups of the Galois group closed?” If this is
the case, then the restriction is not actually a restriction, just a vacuous condition. However,
there are subgroups that are not closed. Dedekind was the first person to find non-closed
subgroups in specific cases. Krull later showed that ANY infinite Galois extension includes
non-closed subgroups. Thus, the restriction to closed subgroups is highly nontrivial.
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3.1 Example - Galois group of infinite cyclotomic extension of Q
In this section, we describe the infinite Galois group of the infinite extension Ω/Q, where Ω
is formed by adjoining all roots of unity to Q.

Definition 3.3. A field extension E/F is cyclotomic if E is the splitting field of xn − 1
over F for some n.

Proposition 3.6. Let En be the splitting field of xn−1 over Q. Then Gal(En/Q) ∼= (Z/nZ)×.

Proof. We don’t have time or space to prove this here.

All En are contained in Q, so we can take the compositum over all n; we will denote this
compositum by Ω.

Ω = E1E2E3 . . .

Since the compositum of normal extensions is normal, Ω/Q is normal, and since charQ = 0,
all extensions of Q are separable, so Ω/Q is Galois. Next we wanto to take the inverse limit
over Galois groups of finite Galois subextensions. While not every finite Galois subextension
here is one of the En, we do have the following.

Theorem 3.7 (Kronecker-Weber). Every finite abelian Galois extension of Q is contained
in some En.

Because of this, when forming the direct limit over all finite Galois subextensions, it’s
sufficient to just consider the En extensions. I don’t understand how to make this precise,
but it’s something I’ve been told.

Thus, the inverse system we should consider is the groups (Z/nZ)× for n ≥ 1, partially
ordered by divisibility (m|n). When m|n, Em ⊂ En, so we get a restriction homomorphism
Gal(En/Q)→ Gal(EmQ) which is given by

Gal(En/Q)→ Gal(Em/Q)

(Z/nZ)× → (Z/mZ)×

x 7→ x mod m

And by our theorem, Gal(Ω/Q) ∼= lim←−(Z/nZ)×.

lim←−(Z/nZ)× =

{
(an) ∈

∞∏
n=1

(Z/nZ)× : an ≡ am mod m, ∀m|n

}

If we put a ring structure on Ẑ (induced by mulitplication in each Z/nZ), then one can show

that this inverse limit above is the group of units of Ẑ.
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