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The goal of this expository paper is to describe an analogy, due to Alexander Grothendieck,
between the general linear group GLn(R) and a pinned butterfly specimen. We describe how
different structural features of GLn(R) correspond to various parts of the butterfly, and
describe several equations relating these parts of GLn(R) to each other.

We assume the reader is familiar with the real numbers R, matrix multiplication, and
writing functions as f : X → Y . It is useful to know some basic group theory, but not
strictly necessary.
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1 Structural features of GLn(R)

Let n be a positive integer. The general linear group GLn(R) is the group of n × n
invertible matrices, a.k.a. matrices with determinant not equal to zero. In this context,
“group” is shorthand for the fact that the product of two invertible matrices is invertible,
and the inverse of an invertible matrix is invertible.

Example 1.1. When n = 1, we have 1× 1 matrices with nonzero determinant, so the only
requirement is that the single entry must be nonzero. In other words, we can identify GL1(R)
with the set of nonzero real numbers R× = R \ {0}.

The goal of this paper is to make an analogy between GLn(R) and a pinned butterfly
specimen, something you might see in a museum. This analogy comes from the general
theory of reductive algebraic groups, but we’ll just study GLn(R), and you don’t need to
know what “reductive” or “algebraic group” mean to understand what’s going on. Here is
a diagram with all the parts of the butterfly which we will eventually identify with various
aspects of GLn(R).

Torso

Upper wing

Lower wing

Segment

Pin

In this picture, we have a main torso with segments along it, two wings, and some pins
holding the wings in place. Each of these elements of the diagram corresponds to some
feature of GLn(R), and we will revisit this diagram each time as we develop the analogy. We
will also eventually describe a feature of GLn(R) corresponding to the DNA of the butterfly,
though this will come last.
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1.1 Diagonal subgroup

Definition 1.2. The diagonal subgroupD ⊂ GLn(R) is the subgroup of diagonal matrices
with nonzero entries.

D =


d1 0 0

0
. . . 0

0 0 dn

 : d1, . . . , dn ∈ R×


The diagonal entries have to be nonzero otherwise the determinant would be zero. (Remem-
ber: the determinant of a diagonal matrix is the product of the diagonal entries.)

Notation 1.3. From now on, when writing matrices with zeros, we omit the zeros and just
leave those spaces blank. For example, in this notation D is

D =


d1 . . .

dn

 : d1, . . . , dn ∈ R×


For brevity, we can also denote the diagonal matrix with entries d1, . . . , dn by diag(d1, . . . , dn).
One important diagonal matrix is the identity matrix.

In =

1
. . .

1


This is called the identity matrix because it has the property that for any n × n matrix
A, AIn = InA = A. The fact that D is a subgroup of GLn(R) is a sophisticated way of
saying that the product of two diagonal matrices is diagonal, and the inverse of a diagonal
matrix is diagonal. Multiplying diagonal matrices together is very quick - just multiply the
corresponding entries. For example, the product of two 2× 2 diagonal matrices is given by(

a1
a2

)(
b1

b2

)
=

(
a1b1

a2b2

)
A consequence of this is that to invert a diagonal matrix, all we have to do is invert each
diagonal entry. Usually computing matrix inverses is hard, but not with diagonal matrices.d1 . . .

dn


−1

=

d
−1
1

. . .

d−1n


In our butterfly analogy, D is the torso of the butterfly. This is why we draw our butterfly
“at an angle” in our diagram, so that the torso goes diagonally from top left to bottom right,
just like D does inside of GLn(R).
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D

Definition 1.4. Let U ⊂ G be the subgroup of upper triangular matrices. Similarly, L
will be the lower triangular matrices. For example, when n = 3, these are matrices of the
following shapes.

U =


∗ ∗ ∗∗ ∗

∗

 L =


∗∗ ∗
∗ ∗ ∗


In U , the entries above the main diagonal can be anything, but the entries along the diagonal
have to be nonzero (the determinant of an upper triangular matrix is the product of the
diagonal entries). Similarly, in L the entries below the main diagonal can be anything, but
entries along the diagonal must be nonzero.

In terms of the butterfly analogy, U and L are the wings of the butterfly. They reach out in
opposite directions from the diagonal D.

D

U

L
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1.2 Character functions

Next we describe the part of GLn(R) which corresponds to segments along the torso of the
butterfly.

Definition 1.5. For i = 1, . . . , n, define the ith character function of D to be the function
which sends a diagonal matrix to its ith diagonal entry. I will denote this function by αi.

αi : D → R× αi

d1 . . .

dn

 = di

In our analogy, the character functions are the separate segments of the torso. There are n
characters functions, so in our butterfly diagram there should be n segments.

D

U

L

α1

αn

α2

αn−1

. . .

. . .

Example 1.6. Here are some examples of characters evaluated in the case n = 3.

α1

3
−2

5

 = 3 α2

3
−2

5

 = −2

Definition 1.7. Let d ∈ D be a diagonal matrix. Given two character functions αi, αj :
D → R×, their sum, negation, and difference are defined as follows.

(αi + αj)(d) = αi(d) · αj(d) = didj

(−αj)(d) = αj(d)−1 = d−1j

(αi − αj)(d) = (αi + (−αj))(d) = αi(d)αj(d)−1 = did
−1
j
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Example 1.8. For example,

(α1 + α2)

3
−2

5

 = −6 (α1 − α2)

3
−2

5

 = −3

2

More generally, inside GL2(R) with the character functions α1, α2 and the diagonal matrix
d = diag(d1, d2) ∈ D.

α1

(
d1

d2

)
= d1 α2

(
d1

d2

)
= d2

The sum α1 + α2 is another function D → R×, which is the function

(α1 + α2)

(
d1

d2

)
= α1(d) · α2(d) = d1d2

And the difference is
(α1 − α2)(d) = d1d

−1
2

Remark 1.9. Why not define addition of characters “more logically” as below?

(αi + αj)(d)
?
= αi(d) + αj(d)

The problem is that with this definition, the function αi + αj no longer is a function to R×.
For example, if d is the matrix (

1
−1

)
then (α1 + α2)(d) = 0, which is a problem. Since I want the sum of two character functions
to also be a function D → R×, I have to define it in the way I did.

1.3 Elementary matrices and pinning functions

Definition 1.10. For each pair (i, j) with 1 ≤ i, j ≤ n and i 6= j, and a real number x, the
elementary matrix eij(x) is the matrix with x in the ijth entry, 1’s on the diagonal, and
zeros everywhere else. For example, inside GL2(R),

e12(x) =

(
1 x

1

)
e21(x) =

(
1
x 1

)
And inside GL3(R),

e12(x) =

1 x
1

1

 e13(x) =

1 x
1

1


There is theoretically potential for confusion between these two different meanings of e12(x),
but practically speaking we almost always have some fixed n in mind. And anyway, the two
matrices both called e12(x) aren’t that different anyway, the only difference is an extra row
and column with just a 1 on the diagonal and zero elsewhere.

Instead of just thinking of eij(x) as an individual matrix, think of eij(−) as a function. It
is a function eij : R→ GLn(R), whose input is x, and output is eij(x). Note that eij(0) = In
for any i and j.
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In terms of the butterfly analogy, each function eij : R→ GLn(R) is a pin. There are n2−n
of them, and together, they hold the wings (U and L) fixed in place. Because of this analogy
the functions eij are called pinning functions.

D

U

L

α1

αn

α2

αn−1

. . .

. . .

e12

e23

e21

e21

Notice that e12 and e23 are depicted pinning the upper triangular subgroup as e12(x) and
e23(x) are upper triangular matrices (for any x), while e21(x) and e32(x) are lower triangular
so they are pinning L in the picture.

Remark 1.11. Elementary matrices encode the most useful elementary row operation in-
volved in Gaussian elimination, namely adding a multiple of one row to another row. Specif-
ically, multiplying an n× n matrix A by eij(x) on the left modifies A by adding x times the
jth row to the ith row. As an equation,

eij(x) · A = A′

where A′ is the matrix obtained by adding x times the jth row of A to the ith row of A. For
concreteness, let’s suppose i = 1, j = 2 and A is 2× 2.

e12(x) · A =

(
1 x

1

)(
a11 a12
a21 a22

)
=

(
a11 + xa21 a12 + xa22

a21 a22

)
Similarly, multiplying A by eij(x) on the right modifies A by a column operation, but column
operations are not important for the rest of our discussion. On the other hand, our ability
to conceptualize eij(x) as a column operation will be critical to some proofs later.
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This concludes our description of the structural features of GLn(R) corresponding to parts
of a butterfly. As already alluded to there is one more analogy to make with the DNA of
the butterfly, but we aren’t quite ready yet. Here is a table summarizing the analogy so far.

Group Butterfly
GLn(R) Whole butterfly
D Torso
U,L Wings
αi Segment on torso
eij(−) Pin

2 Formulas

Now that we’ve set the stage with the various parts of GLn(R) corresponding to parts
of our metaphorical butterfly, we can start talking about the relationships between these
components.

2.1 Exponential formula

Our first formula concerns the pinning maps.

Proposition 2.1 (Exponential formula). For any i 6= j and any x, y ∈ R, eij(x + y) =
eij(x) · eij(y).

Example 2.2. Before the proof, let’s check this in a particular case, e12 inside GL2(R).

e12(x) · e12(y) =

(
1 x

1

)(
1 y

1

)
=

(
1 x+ y

1

)
= e12(x+ y)

Proof. Recall that we can think of eij(x) in terms of row operations. As a row operation,
eij(x + y) means I add (x + y) times the jth row to the ith row. On the other hand,
eij(x) · eij(y) (multiplied on the left of some matrix A) means first add y times the jth row
to the ith row, then add x times the jth row to the ith row. But obviously that’s the same
as just doing (x+ y) times the jth row to the ith row all in one step.

In algebraic terms, the exponential formula says that the map eij : R→ GLn(R) is a group
homomorphism, if we view R as a group under addition and GLn(R) as a group under matrix
multiplication.

Corollary 2.3. The inverse of the matrix eij(x) is eij(−x).

Proof. Recall that the inverse of a matrix A is, by definition, the matrix A−1 with the
property AA−1 = In. We can check then that

eij(x) · eij(−x) = eij(x+ (−x)) = eij(0) = In
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Remark 2.4. We have called this the “exponential formula” because it looks like an expo-
nent rule that you already know. Remember that

ex+y = exey

(Actually, you can replace e with any number here.) The equation

eij(x+ y) = eij(x) · eij(y)

is analogous to this. If you study far enough into the theory of Lie groups and Lie algebras,
or algebraic groups (and their Lie algebras), then the analogy here becomes more precise.
These maps eij are in fact generalizations of the exponential map, but this involves much
more theory than we have space to discuss.

2.2 Conjugation formula and root system

The next formula describes how a pinning function interacts with the diagonal subgroup D
and the character functions. It involves a conjugation computation. We’re going to take a
diagonal matrix d and an elementary matrix eij(x), and compute

d · eij(x) · d−1

Remember that in general, matrix multiplication is not commutative. If it was, then
d ·eij(x) = eij(x) ·d and the expression above would just be equal to eij(x) because the d and
d−1 would cancel out. But these matrices do not commute (meaning d · eij(x) 6= eij(x) · d),
so we shouldn’t expect to get eij(x) at the end. However, we will get a matrix that looks
like eij(x), with a different input than x.

Proposition 2.5 (Conjugation formula, incomplete). For any i 6= j, any d ∈ D, and any
x ∈ R,

d · eij(x) · d−1 = eij( )

To figure out what goes in the blank, we’ll work out an example with i = 1 and j = 2 and
stay inside GL2(R), but let x be any real number, and d any (invertible) diagonal matrix.
First invert d by inverting each diagonal entry. Then do the matrix multiplication.

d · e12(x) · d−1 =

(
d1

d2

)(
1 x

1

)(
d1

d2

)−1
=

(
d1

d2

)(
1 x

1

)(
d−11

d−12

)
=

(
d1 d1x

d2

)(
d−11

d−12

)
=

(
1 d1xd

−1
2

1

)
=

(
1 d1d

−1
2 x
1

)
= e12(d1d

−1
2 x)
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In one step, I reversed the order of x and d−12 . Why is this ok, but it wasn’t ok to do this
earlier? Earlier it was with matrices, which isn’t valid, but now this is with real numbers,
where such a reversal is valid. We still aren’t done. We did the calculation, but I want to
rewrite the final result, because the expression d1d

−1
2 should look familiar. Using the fact

that
(α1 − α2)(d) = d1d

−1
2

I can rewrite it again as

d · e12(x) · d−1 = e12(d1d
−1
2 x) = e12

(
(α1 − α2)(d) · x

)
The general statement just replaces 1 with i and 2 with j.

Proposition 2.6 (Conjugation formula). For any i 6= j, any d ∈ D, and any x ∈ R,

d · eij(x) · d−1 = eij

(
(αi − αj)(d) · x

)
Proof. Again we exploit the fact that eij(x) represents an elementary row operation. When
we multiply d−1 on the left by eij(x), we add x times the jth row (which is just a d−1j in the
jth column and zeros elsewhere) to the ith row (which has a zero in the jth spot, because
d−1 is diagonal.) So we end up with d−1, except with a d−1j in the ijth spot.

eij(x) · d−1 =



d−11

d−12
. . .

d−1i · · · d−1j
. . .

...
d−1j

. . .

d−1n


Now we multiply this by d (on the left). We aren’t quite multiplying two diagonal matrices,
but what ends up happening is that we multiply the corresponding diagonal entries, and
this one nonzero off-diagonal entry of eij(x) · d−1 gets multiplied by di because it is in the
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ith row. So we get

d · eij(x) · d−1 =



d1d
−1
1

. . .

did
−1
i · · · did

−1
j

. . .
...

djd
−1
j

. . .

dnd
−1
n



=



1
. . .

1 · · · did
−1
j

. . .
...
1

. . .

1


= eij

(
did
−1
j x
)

= eij

(
(αi − αj)(d) · x

)

How should we think about this equation in terms of the butterfly analogy? It involves
several of the pieces of GLn(R) as a butterfly that we’ve talked about, and relates them
together in a single equation. It relates the torso (the diagonal subgroup D where d comes
from), the segments of the torso (characters αi, αj), and a single pin (eij).

Definition 2.7. Because of their important role in the conjugation formula, the differences
of characters αi−αj have a name. The difference αi−αj is called a root, and the set of all
these is the root system Φ of GLn(R).

Φ = {αi − αj : i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}

Φ is not a group or vector space or anything special, it is just a set for now. To make notation
easier, we will define

αij = αi − αj
Notice that there is one root for each pinning function, because for each (i, j) with 1 ≤ i, j ≤
n and i 6= j, we have a pinning function eij and a root αij. So just as there are n2 − n
pinning functions, there are n2 − n roots.

Remark 2.8. Using the notation αij = αi − αj, we can rewrite the conjugation formula
more compactly as

d · eij(x) · d−1 = eij

(
αij(d)x

)
In terms of the butterfly analogy, the root system is the DNA. It’s invisible to the eye, but it
pulls the strings. Just like a biologist wouldn’t study a butterfly without considering DNA,
a mathematician studying GLn(R) should keep Φ in mind.
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D

U

L

α1

αn

α2

αn−1

. . .

. . .

e12

e23

e21

e21

Φ, DNA

Setting aside GLn(R) and the butterfly analogy for the moment, let’s draw a more geometric
picture of Φ, starting with the case n = 2, where there are just two roots.

Φ = {α1 − α2, α2 − α1}

To draw this, I’ll draw an xy-plane with the x-axis labelled α1, and the y-axis labelled α2.

α1 − α2

α2 − α1

This is called the A1 root system. Now let’s draw the case n = 3, where there are 6 roots.

Φ = {α1 − α2, α2 − α1, α1 − α3, α3 − α1, α2 − α3, α3 − α2}

If I try to draw this like the other one, I would need to draw it in three dimensions using α1 as
x-axis, α2 as y-axis, and α3 as z-axis. That’s kind of hard, though, so I want to do something
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easier. Instead, I’m going to start out by observing that all of these are “perpendicular” to
the vector α1 + α2 + α3. In other words, if I draw those 6 vectors above in R3, all of them
lie in the plane perpendicular to the vector 〈1, 1, 1〉. So I’ll just draw the picture inside that
plane, because then I only need two dimensions (instead of three).

α1 − α3α3 − α1

α2 − α3α2 − α1

α1 − α2α3 − α2

This is called the A2 root system. Notice that αi−αj is opposite from αj −αi for every pair
(i, j). Drawing the n = 4 or higher cases get into more dimensions and gets a lot harder.
Wikipedia has a picture of the n = 4 case (which is called type A3) on their page on root
systems: https://en.wikipedia.org/wiki/Root_system#/media/File:A3vzome.jpg. In
general, the root system of GLn(R) is the type An−1 root system.

Remark 2.9. Four quick observations about our picture of A2.

1. Φ is a finite set of vectors not containing the zero vector. (Because i = j is not allowed
for a root αi − αj.)

2. For any v ∈ Φ, the scalar multiples of v which are in Φ are exactly v and −v. That is,
no scalar multiples other than ±v are included in Φ, and −v is always included if v is.
(Concretely, −αij = αji ∈ Φ.)

3. For any v ∈ Φ, if you take the line perpendicular to v and reflect Φ across that line,
you get Φ back. (Try some examples to convince yourself.)

4. For any v, w ∈ Φ, the dot product v · w is an integer. 1

These are the four axioms to have a root system. A root system is a very nice symmetrical
structure, and one showing up here when talking about GLn(R) is no coincidence. This is
part of a really big pattern and theorem which classifies algebraic groups in terms of root
systems.

1To take dot products of roots, use the rule

αi · αj =

{
1 i = j

0 i 6= j

For example,

α12 · α23 = (α1 − α2) · (α2 − α3) = α1 · α2 − α1 · α3 − α2 · α2 + α2 · α3 = 0− 0 + 1− 0 = 1
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One last thing to notice about Φ is that sometimes you can add two elements of Φ and
end up back in Φ, but other times the sum is not in Φ. For example,

(α1 − α2) + (α2 − α3) = α1 − α3 ∈ Φ

(α1 − α2) + (α1 − α3) = 2α1 − α2 − α3 6∈ Φ

This aspect of Φ will come into play in our last formula.

2.3 Chevalley commutator formula

There is one last formula, which relates the pinning functions to each other. We’ll talk about
how they interact in terms of commutators.

Definition 2.10. Let A,B ∈ GLn(R) be invertible matrices. Their commutator is

[A,B] = ABA−1B−1

One way to think of commutators is that [A,B] measure how “far” A,B are from commuting.
That is to say,

[A,B] = In ⇐⇒ AB = BA

So if [A,B] is “as simple as possible” in the sense that it is the identity matrix, then A and
B commute. But if [A,B] is more complicated (i.e. not the identity) then A and B don’t
commute. Yet another way to rearrange this is to say that

AB = [A,B]BA

which roughly expresses the same idea, that [A,B] is the “defect” of A and B failing to
commute (if [A,B] is not the identity).

Definition 2.11. To emphasize the connection between the root αij and the pinning map
eij, we’ll write eαij

instead of eij. It’s still the same function, it just has a slightly different
name now.

With this notation, we can state the final formula, which is named after French mathemati-
cian Claude Chevalley.

Proposition 2.12 (Chevalley commutator formula). Let i, j, k, ` be positive integers and
x, y ∈ R, and suppose αij 6= −αk`. Then

[eαij
(x), eαk`

(y)] =

{
In αij + αk` 6∈ Φ

eαij+αk`
(εxy) αij + αk` ∈ Φ

where ε = ±1 depends on i, j, k, ` (but not on x, y).

We won’t go into the proof; we’ll just try to conceptualize what’s going on in this equation.
Conceptually, what this equation says is that the additive structure of Φ determines when

two elementary matrices commute. That last sentence can be very hard to wrap your head
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around fully, so let’s be more specific. The formula says that if the sum of two roots is not a
root and not zero, then the commutator is the identity, or in other words, those elementary
matrices commute. But if the sum of two roots is a root, then the commutator is a third
elementary matrix (different from the identity). The assumption αij 6= −αk` says to ignore
what happens when the sum of two roots is zero. If that happens, the commutator is pretty
complicated, but the theorem doesn’t say anything about that case, and that case isn’t so
useful anyway.

We can write the formula more concretely, though the more concrete version obfuscates
the connection to Φ. Notice that

αij = −αk` ⇐⇒ i = ` and j = k

Equivalently,
αij 6= −αk` ⇐⇒ i 6= ` or j 6= k

So the assumption αij 6= −αk` in the theorem can be rephrased as assuming that i 6= ` or
j 6= k. Under this assumption,

αij + αk` 6∈ Φ ⇐⇒ i 6= ` and j 6= k

αij + αk` ∈ Φ ⇐⇒ (i 6= ` and j = k) or (i = ` andj 6= k)

So we can rewrite the commutator formula as

[eij(x), ek`(y)] =


In i 6= ` and j 6= k

ei`(εxy) i 6= ` and j = k (so αij + αk` = αi`)

ekj(εxy) i = ` and j 6= k (so αij + αk` = αkj)

In fact, when writing it this way we can actually specify when ε = 1 or ε = −1, but the sign
is not the most important thing here.

[eij(x), ek`(y)] =


1 i 6= ` and j 6= k

ei`(xy) i 6= ` and j = k (so αij + αk` = αi`)

ekj(−xy) i = ` and j 6= k (so αij + αk` = αkj)

This version is perhaps easier to understand, but it also hides the fact that Φ is really pulling
the strings behind this equation. To try and get a handle on the Chevalley commutator
formula, it helps to just do some concrete matrix computations by hand.

Example 2.13. Let n = 4, and take the roots α12 and α34. Let x, y ∈ R. Here are the
associated elementary matrices.

eα12(x) =


1 x

1
1

1

 eα34(y) =


1

1
1 y

1


Does the sum α12 + α34 belong to Φ? No, it does not. So according to the Chevalley
commutator formula,

[eα12(x), eα34(y)] = eα12(x) · eα34(y) · eα12(x)−1 · eα34(y)−1 = In
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or rearranging,
eα12(x) · eα34(y) = eα34(y) · eα12(x)

So while generally speaking, matrix multiplication is not commutative, it is commutative for
these particular matrices. Returning to the full commutator expression involving inverses,
remember that by Corollary 2.3, eα12(x)−1 = eα12(−x) and eα34(y) = −y. So at least the
inverses aren’t hard to compute. But this is still a potentially complicated product of four
matrices.

[eα12(x), eα34(y)] =


1 x

1
1

1




1
1

1 y
1




1 −x
1

1
1




1
1

1− y
1


If you want to appreciate the power of the Chevalley commutator formula, just multiply this
out by hand. It’s not terribly difficult, but you’ll see for yourself why this comes out to be
the identity matrix and appreciate the fact that in the future you can use this formula to
bypass that pen and paper calculation.

Example 2.14. Now let’s do an example where the sum is a root. So take α12 and α23, and
the sum is α13. So the Chevalley commutator formula says that

[eα12(x), eα23(y)] = eα13(εxy)

for some sign ε = ±1. I encourage you to work out the left hand side for yourself, and verify
that in this case ε = 1.

2.4 Summary

Let’s put everything together. We have our group GLn(R), diagonal subgroup D, pinning
maps eij, and root system Φ consisting of roots αij. Each of these pieces corresponds to a
part of a pinned butterfly specimen. We also have three equations relating different elements
together. First, the exponential formula tells us something about each individual pin.

eij(x) · eij(y) = eij(x+ y)

Second, the conjugation formula which relates a pinning map eij with D and the root αij.

d · eij(x) · d−1 = eij

(
αij(d)x

)
Finally, the Chevalley commutator formula relates two different pinning maps eij = eαij

and
ek` = eαk`

(assuming αij 6= −αk`) by expressing their commutator in terms of the root system
Φ (in particular, in terms of whether or not the sum αij + αk` belongs to Φ.)

[eαij
(x), eαk`

(y)] =

{
In αij + αk` 6∈ Φ

eαij+αk`
(εxy) αij + αk` ∈ Φ
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The conjugation and commutator formulas are why Φ is the DNA of the butterfly GLn(R).
Both equations are tightly connected to Φ, but you would not know it from just “looking at
the butterfly.” That is to say, if you study GLn(R) on a surface level, if you look at the left
hand side of these equations, it is not at all obvious that Φ is somehow connected to these
basic matrix computations. But as it turns out, the root system Φ is deeply connected to
these matrix computations.

3 Further explorations

Everything done here for the general linear group GLn(R) can be essentially repeated for
the special linear group SLn(R) (matrices of determinant 1). There is still the diagonal
subgroup (now only diagonal matrices of determinant 1), character functions (unchanged),
and elementary matrices (unchanged). Since the matrix eij(x) has determinant 1, all three
formulas discussed involve only matrices of determinant 1, except for the arbitrary diagonal
matrix d in the conjugation formula. But of course that formula is still true if you restrict
d to be diagonal with determinant 1, so nothing really changes there.

The root system Φ also does not change. In the general theory, this comes from the fact
that we have a short exact sequence

1→ SLn(R) ↪→ GLn(R)
det−→ R× → 1

where the left map is the inclusion, and the right map is the determinant. From this sequence,
we can see that SLn(R) is (isomorphic to) the quotient GLn(R)/R×, and from this and some
general theory it follows that the root systems of GLn(R) and SLn(R) have to be the same.

More generally, everything done here for GLn(R) can be done for GLn(R) (or SLn(R))
where R is any commutative ring with unity. If this seems excessively abstract, this means
it can be done for GLn(Z). The replacement for the nonzero real numbers R× is the group
of units of R, not the set of nonzero elements of R. For example, if R = Z, the set of units
is {±1}, so the diagonal subgroup of GLn(Z) consists of matrices with only ±1 along the
diagonal. For GLn(R), the diagonal subgroup, character functions, and elementary matrices
are all defined as above, and the exponential, conjugation, and commutator formulas still
hold. That is to say, when dealing with a ring R, the all the coefficients necessary to express
these formulas come from the original ring R.

The full scope of the butterfly analogy extends to a class of objects called “split reductive
algebraic groups.” Given such a group G, it has a maximal torus (analog of D), Borel
subgroups (analogs of U and L), characters of the maximal torus, pinning functions, and
a root system. There are analogs of the exponential formula expressing something about
pinning maps, the conjugation formula expressing a relationship between conjugation of
pinning functions by the maximal torus and roots, and a Chevalley commutator formula
expressing relationships between pinning functions controlled by the root system. Here is a
table relating some of the parts of GLn(R) to more general terminology used in books and
papers.
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General theory Specific case GLn(R)
Split reductive algebraic group GLn(R)
Maximal torus Diagonal subgroup D
Borel subgroups Upper/lower triangular subgroups U and L
Characters of the maximal torus Character functions αi
Pinning functions/root subgroup maps Pinning functions eij
Root system Root system Φ
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