Lie algebras and their root systems
A case study in the classification of Lie algebras

Joshua Ruiter

Calvin College Mathematics Colloquium
April 28, 2016
Historical background

The matrix algebra $\mathfrak{sl}(3, \mathbb{C})$ is the set of 3×3 matrices with complex entries and trace zero.

$$\mathfrak{sl}(3, \mathbb{C}) = \left\{ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} : a + e + i = 0 \right\}$$

This is a vector space, because:

- The zero matrix has trace zero.
- A scalar multiple of a traceless matrix is traceless.
- The sum of two traceless matrices is traceless.
The matrix algebra $\mathfrak{sl}(3, \mathbb{C})$ is the set of 3×3 matrices with complex entries and trace zero.

$$\mathfrak{sl}(3, \mathbb{C}) = \left\{ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} : a + e + i = 0 \right\}$$

This is a vector space, because:

- The zero matrix has trace zero.
- A scalar multiple of a traceless matrix is traceless.
- The sum of two traceless matrices is traceless.
Basis matrices

Definition

The matrix e_{ij} is a matrix with a one in the ijth place and zeroes elsewhere.

Usual basis for $\mathfrak{sl}(3, \mathbb{C})$:

$$\{e_{11} - e_{22}, e_{22} - e_{33}\} \cup \{e_{ij} : i \neq j\}$$

Direct sum expression for $\mathfrak{sl}(3, \mathbb{C})$:

$$\mathfrak{sl}(3, \mathbb{C}) = \text{span}\{e_{11} - e_{22}, e_{22} - e_{33}\} \oplus \bigoplus_{i \neq j} \text{span}\{e_{ij}\}$$
Basis matrices

Definition

The matrix e_{ij} is a matrix with a one in the ijth place and zeroes elsewhere.

Usual basis for $\mathfrak{sl}(3, \mathbb{C})$:

$$\{ e_{11} - e_{22}, e_{22} - e_{33} \} \cup \{ e_{ij} : i \neq j \}$$

Direct sum expression for $\mathfrak{sl}(3, \mathbb{C})$:

$$\mathfrak{sl}(3, \mathbb{C}) = \text{span}\{ e_{11} - e_{22}, e_{22} - e_{33} \} \oplus \bigoplus_{i \neq j} \text{span}\{ e_{ij} \}$$
Definition

The matrix e_{ij} is a matrix with a one in the ijth place and zeroes elsewhere.

Usual basis for $\mathfrak{sl}(3, \mathbb{C})$:

$$\{e_{11} - e_{22}, e_{22} - e_{33}\} \cup \{e_{ij} : i \neq j\}$$

Direct sum expression for $\mathfrak{sl}(3, \mathbb{C})$:

$$\mathfrak{sl}(3, \mathbb{C}) = \text{span}\{e_{11} - e_{22}, e_{22} - e_{33}\} \oplus \bigoplus_{i \neq j} \text{span}\{e_{ij}\}$$
Is it a ring?

We just determined that $\mathfrak{sl}(3, \mathbb{C})$ is closed under matrix addition. Is it closed under matrix multiplication?

\[
\begin{pmatrix}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
We just determined that $\mathfrak{sl}(3, \mathbb{C})$ is closed under matrix addition. Is it closed under matrix multiplication?

\[
\begin{pmatrix}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{pmatrix}
= \begin{pmatrix}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
A new binary operation

Definition

Let x, y be matrices. The **bracket** of x and y is $[A, B] := AB - BA$.

Proposition

Let A, B be matrices. Then $[A, B]$ has trace zero.

Proof.

From linear algebra, we know that $\text{tr}(AB) = \text{tr}(BA)$ and tr is linear. Hence $\text{tr}[A, B] = \text{tr}(AB - BA) = \text{tr}(AB) - \text{tr}(BA) = 0$. \qed

Corollary

$A, B \in \text{sl}(3, \mathbb{C}) \implies [A, B] \in \text{sl}(3, \mathbb{C})$
A new binary operation

Definition
Let x, y be matrices. The **bracket** of x and y is
\[
[A, B] := AB - BA.
\]

Proposition
Let A, B be matrices. Then $[A, B]$ has trace zero.

Proof.
From linear algebra, we know that $\text{tr}(AB) = \text{tr}(BA)$ and tr is linear. Hence $\text{tr}[A, B] = \text{tr}(AB - BA) = \text{tr}(AB) - \text{tr}(BA) = 0$. \[\square\]

Corollary
$A, B \in \text{sl}(3, \mathbb{C}) \implies [A, B] \in \text{sl}(3, \mathbb{C})$
Definition
Let x, y be matrices. The **bracket** of x and y is $[A, B] := AB - BA$.

Proposition

Let A, B be matrices. Then $[A, B]$ has trace zero.

Proof.

From linear algebra, we know that $\text{tr}(AB) = \text{tr}(BA)$ and tr is linear. Hence $\text{tr}[A, B] = \text{tr}(AB - BA) = \text{tr}(AB) - \text{tr}(BA) = 0$. □

Corollary

$A, B \in \text{sl}(3, \mathbb{C}) \implies [A, B] \in \text{sl}(3, \mathbb{C})$
A new binary operation

Definition

Let \(x, y \) be matrices. The **bracket** of \(x \) and \(y \) is
\[
[A, B] := AB - BA.
\]

Proposition

Let \(A, B \) be matrices. Then \([A, B]\) has trace zero.

Proof.

From linear algebra, we know that \(\text{tr}(AB) = \text{tr}(BA) \) and \(\text{tr} \) is linear. Hence
\[
\text{tr}[A, B] = \text{tr}(AB - BA) = \text{tr}(AB) - \text{tr}(BA) = 0.
\]

Corollary

\(A, B \in \text{sl}(3, \mathbb{C}) \iff [A, B] \in \text{sl}(3, \mathbb{C}) \)
Proposition (Bracket is **alternating**)

*Let A be a matrix. Then $[A, A] = 0$.***

Proof.

$$[A, A] = A^2 - A^2 = 0$$

Proposition (Bracket is **antisymmetric**)

*Let A, B be matrices. Then $[A, B] = -[B, A]$.***

Proof.

$$[A, B] = AB - BA = -BA + AB = -(BA - AB) = -[B, A]$$

Corollary

*Let $A, B \in \text{sl}(3, \mathbb{C})$. Then $[A, B] = [B, A] \iff [A, B] = 0$.***
Properties of bracket (1)

Proposition (Bracket is alternating)

Let A be a matrix. Then $[A, A] = 0$.

Proof.

$[A, A] = A^2 - A^2 = 0$

Proposition (Bracket is antisymmetric)

Proof.

$[A, B] = AB - BA = -BA + AB = -(BA - AB) = -[B, A]$

Corollary

Let $A, B \in \text{sl}(3, \mathbb{C})$. Then $[A, B] = [B, A] \iff [A, B] = 0$.
Properties of bracket (1)

Proposition (Bracket is alternating)

Let A be a matrix. Then $[A, A] = 0$.

Proof.

$[A, A] = A^2 - A^2 = 0$

Proposition (Bracket is antisymmetric)

Proof.

$[A, B] = AB - BA = -BA + AB = -(BA - AB) = -[B, A]$

Corollary

Let $A, B \in \text{sl}(3, \mathbb{C})$. Then $[A, B] = [B, A] \iff [A, B] = 0$.
Properties of bracket (1)

Proposition (Bracket is alternating)

Let A be a matrix. Then $[A, A] = 0$.

Proof.

$[A, A] = A^2 - A^2 = 0$

Proposition (Bracket is antisymmetric)

Proof.

$[A, B] = AB - BA = -BA + AB = -(BA - AB) = -[B, A]$

Corollary

Let $A, B \in \mathfrak{sl}(3, \mathbb{C})$. Then $[A, B] = [B, A] \iff [A, B] = 0$.
Proposition (Bracket is **alternating**)
Let A be a matrix. Then $[A, A] = 0$.

Proof.
$[A, A] = A^2 - A^2 = 0$

Proposition (Bracket is **antisymmetric**)

Proof.
$[A, B] = AB - BA = -BA + AB = -(BA - AB) = -[B, A]$

Corollary
Let $A, B \in \text{sl}(3, \mathbb{C})$. Then $[A, B] = [B, A] \iff [A, B] = 0$.
Proposition (Bracket is \textit{bilinear})

Let A, B, C be matrices and let λ be a scalar. Then

$$[A + B, C] = [A, C] + [B, C]$$

$$[C, A + B] = [C, A] + [C, B]$$

$$[\lambda A, C] = [A, \lambda C] = \lambda [A, C]$$

Proof.

Apply the fact that matrix multiplication distributes over matrix addition and commutes with scalar multiplication.
Proposition (Bracket is **bilinear**)

Let A, B, C be matrices and let λ be a scalar. Then

$$[A + B, C] = [A, C] + [B, C]$$

$$[C, A + B] = [C, A] + [C, B]$$

$$[\lambda A, C] = [A, \lambda C] = \lambda [A, C]$$

Proof.

Apply the fact that matrix multiplication distributes over matrix addition and commutes with scalar multiplication.
Proposition (Jacobi identity)

Let A, B, C be matrices. Then

Proof.

Remember that matrix multiplication distributes over matrix addition. Expand all the terms out, get a lot of terms like ABC, and see that they all cancel in pairs.
Proposition (Jacobi identity)

Let A, B, C be matrices. Then

Proof.

Remember that matrix multiplication distributes over matrix addition. Expand all the terms out, get a lot of terms like ABC, and see that they all cancel in pairs.
Brackets of basis matrices

Definition

The *Kronecker delta* function is the function

\[\delta_{ij} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases} \]

Lemma

\[[e_{ij}, e_{kl}] = \delta_{jk} e_{il} - \delta_{il} e_{kj} \]
Brackets of basis matrices

Definition

The **Kronecker delta** function is the function

\[
\delta_{ij} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
\]

Lemma

\[
[e_{ij}, e_{kl}] = \delta_{jk} e_{il} - \delta_{il} e_{kj}
\]
Definition

A **Lie algebra** is a vector space L over a field F with a bilinear form $[\cdot, \cdot] : L \times L \to L$ that satisfies $[x, x] = 0$ and $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$ for $x, y, z \in L$.

As a consequence of this definition, the bracket must be antisymmetric.
Brief excursion: connection to Lie groups

Definition

\[\text{SL}(3, \mathbb{C}) = \{ A \in M(3, \mathbb{C}) : \det A = 1 \} \]

\[
\begin{align*}
\alpha(t) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & t^2 + 1 & t^3 + 2t \\ 0 & t & t^2 + 1 \end{pmatrix} \\
\alpha(0) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
\det(\alpha(t)) &= 1 \implies \alpha(t) \in \text{SL}(3, \mathbb{C}) \\
\alpha'(t) &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2t & 3t^2 + 2 \\ 0 & 1 & 2t \end{pmatrix} \\
\alpha'(0) &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} \\
\text{tr}(\alpha'(0)) &= 0 \implies \alpha'(0) \in \text{sl}(3, \mathbb{C})
\end{align*}
\]
Brief excursion: connection to Lie groups

Definition

\[\text{SL}(3, \mathbb{C}) = \{ A \in M(3, \mathbb{C}) : \det A = 1 \} \]

\[\alpha(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t^2 + 1 & t^3 + 2t \\ 0 & t & t^2 + 1 \end{pmatrix} \quad \alpha(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[\det(\alpha(t)) = 1 \implies \alpha(t) \in \text{SL}(3, \mathbb{C}) \]

\[\alpha'(t) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2t & 3t^2 + 2 \\ 0 & 1 & 2t \end{pmatrix} \quad \alpha'(0) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} \]

\[\text{tr}(\alpha'(0)) = 0 \implies \alpha'(0) \in \text{sl}(3, \mathbb{C}) \]
Brief excursion: connection to Lie groups

Definition

\[\text{SL}(3, \mathbb{C}) = \{ A \in M(3, \mathbb{C}) : \det A = 1 \} \]

\[
\alpha(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t^2 + 1 & t^3 + 2t \\ 0 & t & t^2 + 1 \end{pmatrix} \quad \alpha(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

\[\det(\alpha(t)) = 1 \implies \alpha(t) \in \text{SL}(3, \mathbb{C}) \]

\[
\alpha'(t) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2t & 3t^2 + 2 \\ 0 & 1 & 2t \end{pmatrix} \quad \alpha'(0) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}
\]

\[\text{tr}(\alpha'(0)) = 0 \implies \alpha'(0) \in \text{sl}(3, \mathbb{C}) \]
Brief excursion: connection to Lie groups

Definition

$$\text{SL}(3, \mathbb{C}) = \{ A \in M(3, \mathbb{C}) : \det A = 1 \}$$

$$\alpha(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t^2 + 1 & t^3 + 2t \\ 0 & t & t^2 + 1 \end{pmatrix} \quad \alpha(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\det(\alpha(t)) = 1 \implies \alpha(t) \in \text{SL}(3, \mathbb{C})$$

$$\alpha'(t) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2t & 3t^2 + 2 \\ 0 & 1 & 2t \end{pmatrix} \quad \alpha'(0) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\text{tr}(\alpha'(0)) = 0 \implies \alpha'(0) \in \text{sl}(3, \mathbb{C})$$
Brief excursion: connection to Lie groups

Definition

\[\text{SL}(3, \mathbb{C}) = \{ A \in M(3, \mathbb{C}) : \det A = 1 \} \]

\[\alpha(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t^2 + 1 & t^3 + 2t \\ 0 & t & t^2 + 1 \end{pmatrix} \quad \alpha(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[\det(\alpha(t)) = 1 \implies \alpha(t) \in \text{SL}(3, \mathbb{C}) \]

\[\alpha'(t) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2t & 3t^2 + 2 \\ 0 & 1 & 2t \end{pmatrix} \quad \alpha'(0) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} \]

\[\text{tr}(\alpha'(0)) = 0 \implies \alpha'(0) \in \text{sl}(3, \mathbb{C}) \]
Definition

Let V, W be vector spaces. A **linear map** is a function $\phi : V \to W$ such that $\phi(av_1 + v_2) = a\phi(v_1) + \phi(v_2)$.

For each $x \in \mathfrak{sl}(3, \mathbb{C})$, we can associate to x a map from $L \to \mathbb{C}$ by $y \to [x, y]$. This map associated to x is called $\text{ad } x$.

Proposition

For $x \in \mathfrak{sl}(3, \mathbb{C})$, $\text{ad } x$ *is linear.*

Proof.

Follows from linearity of the bracket in the 2nd entry.
Linear maps and ad \(x \)

Definition

Let \(V, W \) be vector spaces. A **linear map** is a function \(\phi : V \to W \) such that \(\phi(av_1 + v_2) = a\phi(v_1) + \phi(v_2) \).

For each \(x \in \text{sl}(3, \mathbb{C}) \), we can associate to \(x \) a map from \(L \to \mathbb{C} \) by \(y \to [x, y] \). This map associated to \(x \) is called ad \(x \).

Proposition

For \(x \in \text{sl}(3, \mathbb{C}) \), ad \(x \) is linear.

Proof.

Follows from linearity of the bracket in the 2nd entry.
Linear maps and ad x

Definition

Let V, W be vector spaces. A **linear map** is a function $\phi : V \to W$ such that $\phi(av_1 + v_2) = a\phi(v_1) + \phi(v_2)$.

For each $x \in \mathfrak{sl}(3, \mathbb{C})$, we can associate to x a map from $L \to \mathbb{C}$ by $y \to [x, y]$. This map associated to x is called $\text{ad } x$.

Proposition

For $x \in \mathfrak{sl}(3, \mathbb{C})$, $\text{ad } x$ *is linear.*

Proof.

Follows from linearity of the bracket in the 2nd entry.
Definition

Let \(V, W \) be vector spaces. A **linear map** is a function \(\phi : V \to W \) such that \(\phi(av_1 + v_2) = a\phi(v_1) + \phi(v_2) \).

For each \(x \in \mathfrak{sl}(3, \mathbb{C}) \), we can associate to \(x \) a map from \(L \to \mathbb{C} \) by \(y \to [x, y] \). This map associated to \(x \) is called ad \(x \).

Proposition

For \(x \in \mathfrak{sl}(3, \mathbb{C}) \), ad \(x \) **is linear**.

Proof.

Follows from linearity of the bracket in the 2nd entry.
The subalgebra of diagonal matrices

\[H = \left\{ \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix} : d_1 + d_2 + d_3 = 0 \right\} \subset \mathfrak{sl}(3, \mathbb{C}) \]

Proposition

Let \(A, B \in H \). Then \([A, B] = 0\), hence \([A, B] \in H\).

Proof.

\(A, B \) are diagonal, so \(AB = BA \), so \([A, B] = AB - BA = 0\).

Definition

A subalgebra of a Lie algebra \(L \) is a vector subspace \(H \) that is closed under the bracket \((x, y \in H \implies [x, y] \in H)\).
The subalgebra of diagonal matrices

\[H = \left\{ \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix} : d_1 + d_2 + d_3 = 0 \right\} \subset \text{sl}(3, \mathbb{C}) \]

Proposition

Let \(A, B \in H \). Then \([A, B] = 0\), hence \([A, B] \in H\).

Proof.

\(A, B \) are diagonal, so \(AB = BA \), so \([A, B] = AB - BA = 0\).

Definition

A subalgebra of a Lie algebra \(L \) is a vector subspace \(H \) that is closed under the bracket \((x, y \in H \implies [x, y] \in H\)).
The subalgebra of diagonal matrices

\[H = \left\{ \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix} : d_1 + d_2 + d_3 = 0 \right\} \subset \text{sl}(3, \mathbb{C}) \]

Proposition

Let \(A, B \in H \). Then \([A, B] = 0\), hence \([A, B] \in H\).

Proof.

\(A, B \) are diagonal, so \(AB = BA \), so \([A, B] = AB - BA = 0\). \(\square \)

Definition

A subalgebra of a Lie algebra \(L \) is a vector subspace \(H \) that is closed under the bracket \((x, y \in H \implies [x, y] \in H)\).
The subalgebra of diagonal matrices

\[H = \left\{ \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix} : d_1 + d_2 + d_3 = 0 \right\} \subset \text{sl}(3, \mathbb{C}) \]

Proposition

Let \(A, B \in H. \) Then \([A, B] = 0\), hence \([A, B] \in H\).

Proof.

\(A, B \) are diagonal, so \(AB = BA \), so \([A, B] = AB - BA = 0\).

Definition

A **subalgebra** of a Lie algebra \(L \) is a vector subspace \(H \) that is closed under the bracket \((x, y \in H \implies [x, y] \in H)\).
Ideals: $sl(3, \mathbb{C})$ is simple

Definition

An **ideal** of a Lie algebra L is a vector subspace I such that for $x \in L$, $a \in I$, $[x, a] \in I$.

Note that every ideal is a subalgebra, but not every subalgebra is an ideal.

Proposition

$sl(3, \mathbb{C})$ is simple, that is, it has no nonzero proper ideals.

Definition

A Lie algebra L is **semisimple** if it can be written as a direct sum of simple Lie algebras.
Ideals: \(\mathfrak{sl}(3, \mathbb{C}) \) is simple

Definition

An **ideal** of a Lie algebra \(L \) is a vector subspace \(I \) such that for \(x \in L, a \in I, [x, a] \in I \).

Note that every ideal is a subalgebra, but not every subalgebra is an ideal.

Proposition

\(\mathfrak{sl}(3, \mathbb{C}) \) is simple, that is, it has no nonzero proper ideals.

Definition

A Lie algebra \(L \) is **semisimple** if it can be written as a direct sum of simple Lie algebras.
Ideals: $\mathfrak{sl}(3, \mathbb{C})$ is simple

Definition

An **ideal** of a Lie algebra L is a vector subspace I such that for $x \in L$, $a \in I$, $[x, a] \in I$.

Note that every ideal is a subalgebra, but not every subalgebra is an ideal.

Proposition

$\mathfrak{sl}(3, \mathbb{C})$ is simple, that is, it has no nonzero proper ideals.

Definition

A Lie algebra L is **semisimple** if it can be written as a direct sum of simple Lie algebras.
Sketch of proof that $\mathfrak{sl}(n, \mathbb{C})$ is simple

Suppose I is a nonzero proper ideal with $\nu \neq 0$, $\nu \in I$. Let

$$\nu = \sum_{i \neq j} c_{ij} e_{ij} + \sum_{i=1}^{n} d_i e_{ii}$$

where $c_{ij}, d_i \in \mathbb{C}$. Then

$$\begin{align*}
[e_{kl}, [e_{kl}, \nu]] &= -2c_{lk}^l e_{kl} \\
[e_{kl}, \nu] &= (d^l - d^k) e_{kl}
\end{align*}$$

From this it follows that $e_{ij} \in I$ for some $i \neq j$. One can then show that if an ideal of $\mathfrak{sl}(n, \mathbb{C})$ contains some e_{ij}, then $I = \mathfrak{sl}(n, \mathbb{C})$.

Joshua Ruiter
Lie algebras and their root systems
Suppose \(I \) is a nonzero proper ideal with \(\nu \neq 0, \nu \in I \). Let

\[
\nu = \sum_{i \neq j} c_{ij} e_{ij} + \sum_{i=1}^{n} d_i e_{ii}
\]

where \(c_{ij}, d_i \in \mathbb{C} \). Then

\[
[e_{kl}, [e_{kl}, \nu]] = -2c_{lk} e_{kl}
\]

\[
[e_{kl}, \nu] = (d^l - d^k) e_{kl}
\]

From this it follows that \(e_{ij} \in I \) for some \(i \neq j \). One can then show that if an ideal of \(\mathfrak{sl}(n, \mathbb{C}) \) contains some \(e_{ij} \), then \(I = \mathfrak{sl}(n, \mathbb{C}) \).
Sketch of proof that $\mathfrak{sl}(n, \mathbb{C})$ is simple

Suppose I is a nonzero proper ideal with $\nu \neq 0$, $\nu \in I$. Let

$$\nu = \sum_{i \neq j} c_{ij} e_{ij} + \sum_{i=1}^{n} d_i e_{ii}$$

where $c_{ij}, d_i \in \mathbb{C}$. Then

$$[e_{kl}, [e_{kl}, \nu]] = -2c_{lk} e_{kl}$$

$$[e_{kl}, \nu] = (d^l - d^k)e_{kl}$$

From this it follows that $e_{ij} \in I$ for some $i \neq j$. One can then show that if an ideal of $\mathfrak{sl}(n, \mathbb{C})$ contains some e_{ij}, then $I = \mathfrak{sl}(n, \mathbb{C})$.
Suppose I is a nonzero proper ideal with $v \neq 0, v \in I$. Let

$$v = \sum_{i \neq j} c_{ij} e_{ij} + \sum_{i=1}^{n} d_{i} e_{ii}$$

where $c_{ij}, d_{i} \in \mathbb{C}$. Then

$$[e_{kl}, [e_{kl}, v]] = -2c^{lk} e_{kl}$$
$$[e_{kl}, v] = (d^{l} - d^{k})e_{kl}$$

From this it follows that $e_{ij} \in I$ for some $i \neq j$. One can then show that if an ideal of $\mathfrak{sl}(n, \mathbb{C})$ contains some e_{ij}, then $I = \mathfrak{sl}(n, \mathbb{C})$.
Sketch of proof that $\mathfrak{sl}(n, \mathbb{C})$ is simple

Suppose I is a nonzero proper ideal with $\nu \neq 0$, $\nu \in I$. Let

$$\nu = \sum_{i \neq j} c_{ij} e_{ij} + \sum_{i=1}^n d_i e_{ii}$$

where $c_{ij}, d_i \in \mathbb{C}$. Then

$$[e_{kl}, [e_{kl}, \nu]] = -2c_{lk} e_{kl}$$
$$[e_{kl}, \nu] = (d^l \neq d^k) e_{kl}$$

From this it follows that $e_{ij} \in I$ for some $i \neq j$. One can then show that if an ideal of $\mathfrak{sl}(n, \mathbb{C})$ contains some e_{ij}, then $I = \mathfrak{sl}(n, \mathbb{C})$.
Let h be the diagonal matrix with entries d_1, d_2, d_3. Then

$$\text{ad } h(e_{ij}) = [h, e_{ij}] = he_{ij} - e_{ij}h = d_i e_{ij} - d_j e_{ij} = (d_i - d_j)e_{ij}$$

Definition

A linear map $\phi : V \to V$ is **diagonalizable** if there is a basis of V consisting of eigenvectors for ϕ.

Specifically, $\text{ad } h$ is diagonalizable.
Let h be the diagonal matrix with entries d_1, d_2, d_3. Then

$$\text{ad } h(e_{ij}) = [h, e_{ij}] = h e_{ij} - e_{ij} h = d_i e_{ij} - d_j e_{ij} = (d_i - d_j)e_{ij}$$

Definition

A linear map $\phi : V \rightarrow V$ is **diagonalizable** if there is a basis of V consisting of eigenvectors for ϕ.

Specifically, $\text{ad } h$ is diagonalizable.
Proposition (Lemma 16.7)

Let $x_1, \ldots, x_k : V \rightarrow V$ be diagonalizable linear transformations. There is a basis of V the simultaneously diagonalizes all x_i if and only if each pair x_i, x_j commutes.

Application: If h_1, h_2, \ldots, h_k are diagonal elements of $\mathfrak{sl}(3, \mathbb{C})$, then $\text{ad } h_1, \text{ad } h_2, \ldots, \text{ad } h_k$ are all simultaneously diagonalized in the usual basis, so they all pairwise commute.
Let $h = \text{diag}(d_1, d_2, d_3)$, and let $L_{ij} = \text{span}\{e_{ij}\}$. Based on our computations so far, we have

$$H \subset \{x \in \text{sl}(3, \mathbb{C}) : \text{ad} h(x) = 0, \text{ for all } h \in H\}$$

$$L_{ij} \subset \{x \in \text{sl}(3, \mathbb{C}) : \text{ad} h(x) = (d_i - d_j)x, \text{ for all } h \in H\}$$

Actually, we can replace \subset with $=$, this takes a bit more work. Define $\epsilon_i : H \rightarrow \mathbb{C}$ by $\epsilon_i(\text{diag}(d_1, d_2, d_3)) = d_i$. Then we can rewrite this as

$$L_{ij} = \{x \in \text{sl}(3, \mathbb{C}) : \text{ad} h(x) = (\epsilon_i - \epsilon_j)(h)x, \text{ for all } h \in H\}$$

This makes L_{ij} a root space with associated root $(\epsilon_i - \epsilon_j)$.
Let $h = \text{diag}(d_1, d_2, d_3)$, and let $L_{ij} = \text{span}\{e_{ij}\}$. Based on our computations so far, we have

\[
H \subset \{ x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad} \, h(x) = 0, \text{ for all } h \in H \}
\]
\[
L_{ij} \subset \{ x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad} \, h(x) = (d_i - d_j)x, \text{ for all } h \in H \}
\]

Actually, we can replace \subset with $=$, this takes a bit more work. Define $\epsilon_i : H \rightarrow \mathbb{C}$ by $\epsilon_i(\text{diag}(d_1, d_2, d_3)) = d_i$. Then we can rewrite this as

\[
L_{ij} = \{ x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad} \, h(x) = (\epsilon_i - \epsilon_j)(h)x, \text{ for all } h \in H \}
\]

This makes L_{ij} a root space with associated root $(\epsilon_i - \epsilon_j)$.
Let $h = \text{diag}(d_1, d_2, d_3)$, and let $L_{ij} = \text{span}\{e_{ij}\}$. Based on our computations so far, we have

$$H \subset \{x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad } h(x) = 0, \text{ for all } h \in H\}$$

$$L_{ij} \subset \{x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad } h(x) = (d_i - d_j)x, \text{ for all } h \in H\}$$

Actually, we can replace \subset with $=$, this takes a bit more work. Define $\epsilon_i : H \to \mathbb{C}$ by $\epsilon_i(\text{diag}(d_1, d_2, d_3)) = d_i$. Then we can rewrite this as

$$L_{ij} = \{x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad } h(x) = (\epsilon_i - \epsilon_j)(h)x, \text{ for all } h \in H\}$$

This makes L_{ij} a root space with associated root $(\epsilon_i - \epsilon_j)$.
Let $h = \text{diag}(d_1, d_2, d_3)$, and let $L_{ij} = \text{span}\{e_{ij}\}$. Based on our computations so far, we have

$$H \subset \{x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad} h(x) = 0, \text{ for all } h \in H\}$$

$$L_{ij} \subset \{x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad} h(x) = (d_i - d_j)x, \text{ for all } h \in H\}$$

Actually, we can replace \subset with $=$, this takes a bit more work.

Define $\epsilon_i : H \to \mathbb{C}$ by $\epsilon_i(\text{diag}(d_1, d_2, d_3)) = d_i$. Then we can rewrite this as

$$L_{ij} = \{x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad} h(x) = (\epsilon_i - \epsilon_j)(h)x, \text{ for all } h \in H\}$$

This makes L_{ij} a root space with associated root $(\epsilon_i - \epsilon_j)$.
Let $h = \text{diag}(d_1, d_2, d_3)$, and let $L_{ij} = \text{span}\{e_{ij}\}$. Based on our computations so far, we have

$$H \subset \{ x \in \text{sl}(3, \mathbb{C}) : \text{ad}\, h(x) = 0, \text{ for all } h \in H\}$$

$$L_{ij} \subset \{ x \in \text{sl}(3, \mathbb{C}) : \text{ad}\, h(x) = (d_i - d_j)x, \text{ for all } h \in H\}$$

Actually, we can replace \subset with $=$, this takes a bit more work. Define $\epsilon_i : H \to \mathbb{C}$ by $\epsilon_i(\text{diag}(d_1, d_2, d_3)) = d_i$. Then we can rewrite this as

$$L_{ij} = \{ x \in \text{sl}(3, \mathbb{C}) : \text{ad}\, h(x) = (\epsilon_i - \epsilon_j)(h)x, \text{ for all } h \in H\}$$

This makes L_{ij} a root space with associated root $(\epsilon_i - \epsilon_j)$.
Let $h = \text{diag}(d_1, d_2, d_3)$, and let $L_{ij} = \text{span}\{e_{ij}\}$. Based on our computations so far, we have

$$H \subset \{x \in \text{sl}(3, \mathbb{C}) : \text{ad} \ h(x) = 0, \text{ for all } h \in H\}$$

$$L_{ij} \subset \{x \in \text{sl}(3, \mathbb{C}) : \text{ad} \ h(x) = (d_i - d_j)x, \text{ for all } h \in H\}$$

Actually, we can replace \subset with $=$, this takes a bit more work. Define $\epsilon_i : H \to \mathbb{C}$ by $\epsilon_i(\text{diag}(d_1, d_2, d_3)) = d_i$. Then we can rewrite this as

$$L_{ij} = \{x \in \text{sl}(3, \mathbb{C}) : \text{ad} \ h(x) = (\epsilon_i - \epsilon_j)(h)x, \text{ for all } h \in H\}$$

This makes L_{ij} a **root space** with associated **root** $(\epsilon_i - \epsilon_j)$.
Definition

A **root** is a linear map $\alpha : H \to \mathbb{C}$ such that

$$\{ x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad } h(x) = \alpha(h)x \text{ for all } h \in H \}$$

is a nonzero subspace of $\mathfrak{sl}(3, \mathbb{C})$.

Definition

A **root space** is a nonzero subspace of $\mathfrak{sl}(3, \mathbb{C})$ of the form

$$\{ x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad } h(x) = \alpha(h)x \text{ for all } h \in H \}$$

where $\alpha : H \to \mathbb{C}$ is a linear map.
Definition

A **root** is a linear map $\alpha : H \to \mathbb{C}$ such that

$$\{ x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad} \, h(x) = \alpha(h)x \text{ for all } h \in H \}$$

is a nonzero subspace of $\mathfrak{sl}(3, \mathbb{C})$.

Definition

A **root space** is a nonzero subspace of $\mathfrak{sl}(3, \mathbb{C})$ of the form

$$\{ x \in \mathfrak{sl}(3, \mathbb{C}) : \text{ad} \, h(x) = \alpha(h)x \text{ for all } h \in H \}$$

where $\alpha : H \to \mathbb{C}$ is a linear map.
Root space decomposition

Proposition

$\Phi = \{\epsilon_i - \epsilon_j : i \neq j\}$ is the entire set of roots for $\mathfrak{sl}(3, \mathbb{C})$.

Recall:

$\mathfrak{sl}(3, \mathbb{C}) = \text{span}\{e_{11} - e_{22}, e_{22} - e_{33}\} \oplus \bigoplus_{i \neq j} \text{span}\{e_{ij}\}$

Now that we have the language of roots, we can write this as

$\mathfrak{sl}(3, \mathbb{C}) = H \oplus \bigoplus_{i \neq j} L_{ij} = H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha}$

This is called the root space decomposition.
Root space decomposition

Proposition

\[\Phi = \{ \epsilon_i - \epsilon_j : i \neq j \} \] is the entire set of roots for \(\mathfrak{sl}(3, \mathbb{C}) \).

Recall:

\[
\mathfrak{sl}(3, \mathbb{C}) = \text{span}\{e_{11} - e_{22}, e_{22} - e_{33}\} \oplus \bigoplus_{i \neq j} \text{span}\{e_{ij}\}
\]

Now that we have the language of roots, we can write this as

\[
\mathfrak{sl}(3, \mathbb{C}) = H \oplus \bigoplus_{i \neq j} L_{ij} = H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha}
\]

This is called the root space decomposition.
Proposition

Φ = \{ε_i - ε_j : i \neq j\} is the entire set of roots for \(sl(3, \mathbb{C}) \).

Recall:

\[sl(3, \mathbb{C}) = \text{span}\{e_{11} - e_{22}, e_{22} - e_{33}\} \oplus \bigoplus_{i \neq j} \text{span}\{e_{ij}\} \]

Now that we have the language of roots, we can write this as

\[sl(3, \mathbb{C}) = H \oplus \bigoplus_{i \neq j} L_{ij} = H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha} \]

This is called the root space decomposition.
A **root system** is a subset R of a real inner-product space E satisfying:

(R1) R is finite, it spans E, and it does not contain 0.
(R2) If $\alpha \in R$, then the only scalar multiples of α in R are $\pm \alpha$.
(R3) If $\alpha \in R$, then the reflection s_α permutes R.
(R4) If $\alpha, \beta \in R$, then $2(\alpha, \beta)/(\beta, \beta) \in \mathbb{Z}$.

Proposition

Let L be a complex semisimple Lie algebra, and let Φ be a set of roots of L. Then Φ is a root system.
A root system is a subset R of a real inner-product space E satisfying:

(R1) R is finite, it spans E, and it does not contain 0.
(R2) If $\alpha \in R$, then the only scalar multiples of α in R are $\pm \alpha$.
(R3) If $\alpha \in R$, then the reflection s_α permutes R.
(R4) If $\alpha, \beta \in R$, then $2(\alpha, \beta)/(\beta, \beta) \in \mathbb{Z}$.

Proposition

Let L be a complex semisimple Lie algebra, and let Φ be a set of roots of L. Then Φ is a root system.
Root diagram for $\mathfrak{sl}(3, \mathbb{C})$

$\alpha = \epsilon_1 - \epsilon_2 \quad \beta = \epsilon_2 - \epsilon_3$
Theorem (Cartan)

Up to isomorphism, there is just one complex semisimple Lie algebra for each root system.

Theorem (Cartan)

*With five exceptions, every finite-dimensional simple Lie algebra over \(\mathbb{C} \) is isomorphic to one of the classical Lie algebras \(\mathfrak{sl}(n, \mathbb{C}) \), \(\mathfrak{so}(n, \mathbb{C}) \), and \(\mathfrak{sp}(2n, \mathbb{C}) \).

The five exceptional Lie algebras are known as \(\mathfrak{e}_6 \), \(\mathfrak{e}_7 \), \(\mathfrak{e}_8 \), \(\mathfrak{f}_4 \), and \(\mathfrak{g}_2 \).
Theorem (Cartan)

Up to isomorphism, there is just one complex semisimple Lie algebra for each root system.

Theorem (Cartan)

With five exceptions, every finite-dimensional simple Lie algebra over \mathbb{C} is isomorphic to one of the classical Lie algebras $\text{sl}(n, \mathbb{C})$, $\text{so}(n, \mathbb{C})$, and $\text{sp}(2n, \mathbb{C})$.

The five exceptional Lie algebras are known as e_6, e_7, e_8, f_4, and g_2.