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1 Presheaves

1.1 Defining presheaves

Definition 1.1. A presheaf F on a topological space X consists of the following data: For
each open set U ⊂ X, a set F(U), and for each inclusion of open sets V ⊂ U in X, a map
of sets ρUV : F(U)→ F(V ) such that

ρUU = IdU

for every open U ⊂ X, and if W ⊂ V ⊂ U then

ρUW = ρVWρ
U
V

F(U) F(V )

F(W )
ρUW

ρUV

ρVW

Remark 1.2. We can also formulate the previous definition more categorically. Let Op(X)
be the category whose objects are open subsets of X, and whose morphisms are just inclusion
maps. Then a presheaf on X is just a contravariant functor from Op(X) to the category of
sets.

Having written down this definition, we now realize that we can easily replace sets with
any category C. A presheaf on X with values in C is a contravariant functor from Op(X)
to C. Most often, C will be abelian groups, or rings, or modules over a ring.

Remark 1.3. We adopt the convention that our presheaf target category has a terminal
object T , and that if F is a presheaf, then F(∅) = T . Since most of the presheaves we
deal with will be presheaves of abelian groups, this is satisfied - the terminal object is the
trivial/zero group.

Definition 1.4. Let F be a presheaf onX with values in a concrete category C. The elements
of the set F(U) are called sections of F over U . The maps ρUV are called restriction maps.
The sections over X are called global sections, that is, F(X) is the set of global sections.

We often think of the sections (elements of F(U)) as functions from U to some space like a
ground field, and think of ρUV as literal restriction of functions, since this is the situation which
motivates the definition of a presheaf. We will give an example in a minute. Eventually, we
will see that in some sense such examples are universal.

1.2 Examples of presheaves

Example 1.5 (Presheaf of continuous functions). Let X, Y be topological spaces. We will
define the presheaf of Y -valued continuous functions. For U ⊂ X a nonempty open
set, define

F(U) = Homcts(U, Y ) = {φ : U → Y |φ is continuous}
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On the empty set, we take F(∅) = {∗}, the set with one element, since that is the terminal
object in the category of sets. For V ⊂ U both nonempty, we define the restriction map to
be

ρUV : F(U)→ F(V ) φ 7→ φ|V
If V is the empty set, then there is only one possible map from F(U) to F(V ), so that
determines the restriction map in that case. All of this makes F a presheaf on X with values
in the category of sets.

Example 1.6 (Constant presheaf). Let X be a topological space, and let E be a set. For
U ⊂ X open and nonempty, define F(U) = E. Set F(∅) = {∗}, the set with one element.
For V ⊂ U both nonempty, set ρUV = IdE, and define ρU∅ to be the unique map E → {∗}.
This defines a presheaf on X with values in the category of sets. It is called a constant
presheaf. Rather than think of sections φ ∈ F(U) = E as elements of E, it is often useful
to think of them as constant functions U → E.

Definition 1.7. Let X, Y be topological spaces. A function φ : X → Y is locally constant
if for every x ∈ X, there exists an open neighborhood U so that φ|U is constant.

Note that if X is a connected space, a function X → Y is locally constant if and only
if it is constant. However, if X is not connected, there are many locally constant functions
which are not (globally) constant.

Example 1.8 (Locally constant presheaf). Let X be a topological space, and let E be a set.
For U ⊂ X open and nonempty, define F(U) to be the set of locally constant maps U → E.
Define F(∅) = {∗}. Define restriction maps to be actual function restriction.

ρUV : F(U)→ F(V ) φ 7→ φ|V

This is a presheaf on X with values in the category of sets. It is called a locally constant
presheaf.

Example 1.9 (Presheaf of sections). Let X, Y be topological spaces, and π : Y → X a
continuous map. Recall that a section of π is a continuous map σ : X → Y such that
πσ = IdX . For an opent nonempty set U ⊂ X, define F(U) to be the set of sections of π on
U . That is,

F(U) = {σ : U → Y |σ is continuous, πσ = IdU}

As before, the empty set is sent to the singleton set, and the restriction maps ρUV are once
again given by restriction of functions. This is called the presheaf of sections of π.

Example 1.10 (Skyscraper presheaf). Let X be a topological space, and fix a point p ∈ X.
Let E be a set. For U ⊂ X open, define

F(U) =

{
E p ∈ U
{∗} p 6∈ U
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To define restriction maps, one needs to consider some cases. If p ∈ V ⊂ U , then we set
ρUV = IdE. If p is not in V , then there is only one possible map to F(V ), since it is the
singleton set; the map will either be E → {∗} if p ∈ U , or the identity map {∗} → {∗} if
p 6∈ U . This defines a presheaf on X, called the skyscraper presheaf. The name comes
from the fact that all of the data is “concentrated” at the point p, so in some sense the point
p “sticks out” like a skyscraper.

After defining stalks, we will be able to formulate this more precisely. In that language,
the stalk at p is E, and the stalk at every other point of the skyscraper presheaf is trivial.

1.3 Structure (pre)sheaf on a variety

We now have a long aside in order to develop a very important example of a presheaf coming
from algebraic geometry. The algebraic geometry is not the focus of this class, but this
example is foundational for why presheaves and sheaves are important, so it would be odd
to skip over it. For those in the know, we will build up to defining the structure sheaf of an
affine variety (or affine scheme, if you like).

Fix an algebraically closed field K, and let K[x1, . . . , xn] be the polynomial ring over K
in n variables.

1.3.1 Algebraic sets

Definition 1.11. Given an ideal I ⊂ K[x1, . . . , xn], the vanishing set of I is

V (I) = {(a1, . . . , an) ∈ Kn|f(a1, . . . , an) = 0 ∀f ∈ I}

Subsets of Kn of the form V (I) are called algebraic sets. They may also be called affine
varieties, although some people reserve the term “variety” for an irreducible algebraic set,
which we will define shortly.

Definition 1.12. One can check that the sets V (I) obey the needed properties to be a
collection of closed sets for a topology (someone tedious exercise, with some tricks involved).
The resulting topology on Kn is called the Zariski topology.

Remark 1.13. Alternatively, one may define the Zariski topology by defining a basis of
open sets. For f ∈ K[x1, . . . , xn], set

D(f) = Kn \ V (f) = {x ∈ Kn : f(x) 6= 0}

The set D(f) is called the principal open subset of f . It is clear from the way that we
defined the Zariski topology in terms of closed sets that this is open in the Zariski topology.
Instead of starting with the closed sets, one may instead define the sets D(f) as open, and
show that they satisfy the requirements to be a basis for a topology. The main thing to
prove is that

D(f) ∩D(g) = D(fg)
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and
Kn \ V (I) =

⋃
f∈I

D(f)

Taking them to be a basis generates the same topology as our definition of closed sets, though
this takes some working out.

Definition 1.14. Let X = V (I) ⊂ Kn be a Zariski closed set. The ideal of X is

I(X) = {f ∈ K[x1, . . . , xn] : f |X = 0}

Note that I(X) is an ideal, and that I ⊂ I(X) but they are not necessarily equal.1 In fact,
one can show that I(X) =

√
I, the radical of I, see the following statement of Hilbert’s

Nullstellensatz. √
I = {f ∈ K[x1, . . . , xn] : ∃m ∈ Z≥0 f

m ∈ I}

The coordinate ring of X, denoted K[X], is

K[X] = K[x1, . . . , xn]/I(X)

K[X] is also called the ring of regular functions on X, for reasons which we will shortly
explain. One can think of it as functions X → K which admit a polynomial representation.

Theorem 1.15 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field, and let
J ⊂ K[x1, . . . , xn] be an ideal. Then

I(V (J)) =
√
J

1.3.2 Irreducibility

Definition 1.16. A closed setX ⊂ Kn is irreducible ifX cannot be written asX = X1∪X2

with X1, X2 proper closed subsets of X.

Example 1.17. In K[x1, x2], let I = (x1x2). Then let

X = V (I) =
{

(a, 0), (0, b) ∈ K2 : a, b ∈ K
}

In terms of a picture, if we draw K2 as a Cartesian coordinate plane, X is the union of the
vertical and horizontal axes. X is NOT irreducible, since it can be written as the union

X = X1 ∪X2 = {(a, 0) : a ∈ K} ∪ {(0, b) : b ∈ K}

Also note that X1, X2 are closed, since X1 is the vanishing of the ideal (x1), and X2 is the
vanishing of the ideal (x2). However, X1 and X2 are irreducible.

Proposition 1.18. Let X ⊂ Kn be an algebraic set. The following are equivalent.

1For example, in K[x], take I = (x2). Then X = {0}, and I(X) = (x).
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1. X is irreducible.

2. I(X) is a prime ideal of K[x1, . . . , xn].

3. K[X] is an integral domain.

Proof. The equivalence of (2) and (3) is immediate. The work is just in (1) ⇐⇒ (2). We’ll
leave it to you.

Remark 1.19. The ring K[x1, . . . , xn] is Noetherian, so an algebraic set X ⊂ Kn can
be written uniquely as a finite union of irreducible algebraic sets, called the irreducible
components of X. This just relies on some basic point-set topology and commutative
algebra, nothing too fancy.

1.3.3 Rational functions

Throughout this section, we fix an irreducible algebraic set X.

Definition 1.20. Let X be an irreducible algebraic set, with regular functions (coordinate
ring) K[X]. Since K[X] is an integral domain, we may form its fraction field, which we
denote K(X). This it the field of rational functions on X.

K(X) =
{g
h

: g, h ∈ K[X], h 6= 0
}

We can view an element f = g
h
∈ K(X) as a function with values in K, and domain some

subset of X. The issue is that while h cannot be identically the zero function, it may be zero
at some points. Note that while we may write f = g

h
in may different ways (by multiplying

by p
p

for example), the value in K does not depend on the representation, provided the
denominator does not vanish.

Definition 1.21. A rational function f ∈ K(X) is defined at x ∈ X if there exists a
representation f = g

h
such that h(x) 6= 0.

Definition 1.22. The domain of f ∈ K(X) is the set of x ∈ X so that f is defined at x.
It is denoted Dom(f). It is a (Zariski) open subset of X, because

Dom(f) =
⋃
f= g

h

(
D(h) ∩X

)
Each principal open subset D(h) is open, so D(h)∩X is open in X, so the union is open in
X.
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1.3.4 Defining the structure sheaf

Finally we can define the structure sheaf on an irreducible affine variety, a.k.a irreducible
algebraic set.

Definition 1.23. Let X ⊂ Kn be closed and irreducible. For U ⊂ X nonempty and open,
define

OX(U) = {f ∈ K(X) : f is defined at all points x ∈ U}

On the empty subset, we take OX(∅) = {∗}. For V ⊂ U , if f ∈ K(X) is defined at all points
of U , then it is also defined at all points of V . So we take the restriction map to just be the
inclusion map.

ρUV : OX(U) ↪→ OX(V )

This gives a presheaf on X, with values in the category of commutative rings.2 It is called the
structure presheaf on X. Once we have discussed sheaves, we will call it the structure
sheaf on X, since it is in fact a sheaf.

Proposition 1.24. Let X be an irreducible algebraic set. The global sections of the structure
sheaf is the coordinate ring of X. That is,

OX(X) = K[X]

Proof. The inclusion K[X] ⊂ OX(X) is clear, we just need the reverse inclusion.
Let f ∈ OX(X). Then for every x ∈ X, there exist gx, hx ∈ K[X] with f = gx

hx
and

hx(x) 6= 0. So fhx = gx.
Now let J ⊂ K[X] be the ideal generated by all such hx for x ∈ X. By Hilbert’s

Nullstellensatz, I(V (J)) =
√
J . By definition of J , V (J) = ∅, so I(V (J)) = K[X], thus

K[X] =
√
J . In particular, 1 ∈

√
J , so there exists j ∈ J such that jn = 1 for some n ∈ Z≥0.

But J is an ideal, so if j ∈ J , then jn = 1 ∈ J , hence 1 ∈ J .Then we can write 1 as

1 = p1hx1 + · · ·+ prhxr

with xi ∈ X and pi ∈ K[X]. Now multiply by f .

f = p1hx1f + · · ·+ prhxrf = p1gxr + · · ·+ prgxr

The right hand side is clearly in K[X], so f ∈ K[X].

This concludes our discussion of the structure sheaf of an affine variety for the moment,
though we will return to it briefly later.

2Rational functions U → K can be added and multiplied without introducing “poles” (points where the
denominator vanishes). There is some checking to do that the choice of representative doesn’t matter.
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1.4 Morphisms of presheaves

Definition 1.25. Let X be a topological space, and let F ,G be presheaves on X with values
in the same category C. A morphism of presheaves φ : F → G is a natural transformation
of functors. Explicitly, this means that for U ⊂ X open, there is a morphism (in C)

φU : F(U)→ G(U)

such that the following diagram commutes for every chain of open sets V ⊂ U ⊂ X.

F(U) G(U)

F(V ) G(V )

φU

ρUV (F) ρUV (G)

φV

Remark 1.26. If we fix a topological space X, and a category C, then presheaves on X with
values in C form a category. The objects are presheaves, and the morphism are as defined
above. This category is denoted PSh(X, C), or often just written PSh(X), usually implying
that C is the category of abelian groups.

Definition 1.27. Let F ,G be presheaves of abelian groups on X, and let φ : F → G be a
morphism of presheaves. For U ⊂ V ⊂ X, we extend the commutative diagram given by φ
to the kernels.

kerφU F(U) G(U)

kerφV F(V ) G(V )

φU

ρUV (F) ρUV (G)

φV

Then by a simple diagram chase, we observe that

ρUV (F)(kerφU) ⊂ kerφV

So we can complete the diagram.

kerφU F(U) G(U)

kerφV F(V ) G(V )

ρUV (F)

φU

ρUV (F) ρUV (G)

φV

This allows us to define the kernel presheaf of φ. On open sets U ⊂ X, we define

K(U) = kerφU

By the previous discussion, the restriction maps ρUV associated to F give maps K(U)→ K(V )
whenever V ⊂ U . The presheaf K is called the kernel presheaf of φ.
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Definition 1.28. Let φ : F → G be a morphism of presheaves (on X, values in C). In
analogy with the above, we define the image presheaf of φ. For U ⊂ V ⊂ X open sets, we
have the diagram

F(U) imφU G(U)

F(V ) imφV G(V )

φU

ρUV (F) ρUV (G)

φV

Then by a diagram chase, we find that

ρUV (G)(imφU) ⊂ imφV

So we can complete our previous diagram.

F(U) imφU G(U)

F(V ) imφV G(V )

φU

ρUV (F) ρUV (G) ρUV (G)

φV

The image presheaf of φ is the presheaf I defined by

I(U) = imφU

with restriction maps given by ρUV (G). By the discussion above, ρUV (G) maps into φV when
it needs to, so this does define a presheaf.

Remark 1.29. In the category of presheaves, kernels and images are both equally valid
constructions, and have no significant issues or subtleties. However, we will see that in
the category of sheaves, kernels are much better behaved than images, for whatever reason.
To be more precise, the kernel presheaf is a sheaf, while the image presheaf fails the sheaf
axioms. To remedy this, we will utilize sheafification. This is all to be discussed in more
detail much later.

Definition 1.30. A subpresheaf of a presheaf F is a subobject in the category PSh(X).
Alternatively, it is a presheaf K with a morphism of presheaves φ : K → F so that for every
U ⊂ X open, the map φU : K(U)→ F(U) is injective.

It actually takes some proving to show that these two notions agree, and it involves some
subtle category theory, but we’ll skim over all of that. The Stacks project has a thorough
proof of this https://stacks.math.columbia.edu/tag/00V5.

Example 1.31. Let φ : F → G be a morphism of presheaves. The kernel presheaf is a
subpresheaf of F , and the image presheaf is a subpresheaf of G.
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2 Sheaves

2.1 Defining sheaves

Before defining sheaves, we give an important motivating example.

Example 2.1. Let X be a topological space, and consider the presheaf of continuous func-
tions from X to another topological space, say R for simplicity.

F(U) = Homcts(U,R)

If U1, U2 ⊂ X are open, and f1 : U1 → R and f2 : U2 → R are sections (continuous maps),
and the maps f1, f2 agree on the overlap, that is,

f1|U1∩U2 = f2|U1∩U2

then there is a unique continuous function f : U1 ∪ U2 → R formed by “gluing” f1 and f2.
That is,

f |U1 = f1 f |U2 = f2

As a memorable slogan, we summarize all of this by saying that “continuous functions can
be glued together.”

The previous example shows that a presheaf of continuous functions on X has a lot more
structure than just being a presheaf. The restriction maps interact very well with overlaps
and unions in a way that allows forming new sections out of other sections by “gluing.”

Not only can new sections be formed by gluing, but the resulting section is unique, and
this uniqueness aspect is nearly as important as the existence of such a section. The definition
of a sheaf captures these properties in a bit more abstraction.

Definition 2.2. Let F be a presheaf on X. F is a sheaf if for every open U ⊂ X and every
open covering

U =
⋃
α∈I

Uα

the following two conditions hold.

1. (Uniqueness) If there are sections s, t ∈ F(U) such that ρUUα(s) = ρUUα(t) for all α ∈ I,
then s = t.

2. (Gluing) Given a collection of sα ∈ F(Uα) for each α ∈ I such that they “agree on the
overlaps,” that is,

ρUαUα∩Uβ(sα) = ρ
Uβ
Uα∩Uβ(sβ)

for all α, β ∈ I, then there exists s ∈ F(U) such that ρUUα(s) = sα for all α ∈ I. (By
condition 1, such s is unique.)

12



Definition 2.3. A presheaf satisfying only condition (1) above is called a separated
presheaf.

Remark 2.4. For the moment, think of sections as functions. The uniqueness condition
says that if two functions s, t restrict to the same function “everywhere locally,” then they
are the same function “globally” on U . This matches our intuition of functions.

The gluing condition captures the gluing phenomenon we saw in the example, where two
functions that have the same restriction to every overlap can be glued together to give a
“global” function on U . When sections are not exactly functions, the intuition goes away,
but this is where the definition comes from.

Remark 2.5. If F is a presheaf of abelian groups, we can restate the uniqueness condition
as the following: If ρUUα(s) = 0 for all α ∈ I, then s = 0.

Remark 2.6. We can extend the previous remark further. If F is a presheaf of abelian
groups, we can express both the uniqueness and gluing properties together as exactness of a
certain sequence, which we now describe. So let U ⊂ X be an open set, and

⋃
α∈I Uα be an

open cover of U . First, we have the product of all the restriction maps:

φ : F(U)→
∏
α∈I

F(Uα) s 7→
(
ρUUα(s)

)
The uniqueness condition is equivalent to φ being injective, which is equivalent to saying
that the following sequence is exact.

0 F(U)
∏
α∈I

F(Uα)
φ

Now consider the maps

ψ1 :
∏
α∈I

F(Uα)→
∏

(a,b)∈I×I

F(Ua ∩ Ub) (sα) 7→ (s̃α)

ψ2 :
∏
β∈I

F(Uβ)→
∏

(a,b)∈I×I

F(Ua ∩ Ub) (sβ) 7→ (ŝβ)

s̃α =

{
ρUαUa∩Ub(sα) a = α

0 a 6= α
s̃α ∈ F(Uα ∩ Ub)

ŝβ =

{
ρ
Uβ
Ua∩Ub(sβ) b = β

0 b 6= β
ŝβ ∈ F(Ua ∩ Uβ)

13



Now define ψ = ψ1 − ψ2. By construction,

kerψ =

{
(sα) ∈

∏
α∈I

F(Uα) : ψ1((sα)) = ψ2((sβ))

}

=

{
(sα) ∈

∏
α∈I

F(Uα) : (s̃α) = (ŝβ)

}

=

{
(sα) ∈

∏
α∈I

F(Uα) : s̃α = ŝβ whenever they are in the same set

}

The sections s̃α, ŝβ lie in the same set F(Ua ∩Ub) when a = α and b = β, in which case they

are equal when ρUαUa∩Ub(sα) = ρ
Uβ
Ua∩Ub(sβ). Thus

kerψ =

{
(sα) ∈

∏
α∈I

F(Uα) : ρUαUα∩Uβ(sα) = ρ
Uβ
Uα∩Uβ(sβ)

}

Thus kerψ = imφ if and only if F satisfies the gluing condition. Hence a presheaf F is a
sheaf if and only if the following sequence is exact.

0 F(U)
∏
α∈I

F(Uα)
∏

(α,β)∈I×I

F(Uα ∩ Uβ)
φ ψ

2.2 Examples of sheaves

Example 2.7. Let X, Y be topological spaces, and let F be the presehaf of Y -valued con-
tinuous functions on X.

F(U) = Homcts(U, Y )

Then F is a sheaf, for exactly the reasons discussed in the motivating example 2.1. Contin-
uous functions have the gluing property, and if two functions restrict to the same function
everywhere locally, they are the same globally.

Remark 2.8. A subpresheaf of a sheaf is always separated (satisfies the uniqueness condi-
tion), but need not satisfy gluing. Essentially, the glued section which always exists as a
section for the larger sheaf may fail to be a section for the subpresheaf. The next example
gives a case where gluing fails for a subpresheaf of a sheaf.

Example 2.9. Let F be the sheaf of R-valued continuous functions on X = R, and let G
be the subpresheaf of F consisting of bounded continuous functions.

F(U) = {f : U → R | f is continuous}
G(U) = {f : U → R | f is continuous and bounded}
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Then G is separated, but it does not satisfy the gluing axiom. For example, take U = X = R
with the open cover

R =
⋃
n∈Z

Un Un = (n− 1, n+ 1)

On each Un, G has the section fn : Un → R, x 7→ x. This is bounded since Un is bounded.
As F is a sheaf, there is a global section f : R→ R, x 7→ x, but this global section is not a
global section for G, since it is not bounded.

Example 2.10. The constant presheaf is usually not a sheaf. For example, let X be a
topological space containing at least two disjoint open sets U1, U2, so U1 ∩U2 = ∅. Let E be
a set with at least two elements, and let F be the constant presheaf on X with values in E.

F(U) =

{
E = constant functions U → E U 6= ∅
{∗} U = ∅

We will show that gluing fails for this presheaf. Take U = U1 ∪U2, with open cover given by
U1, U2. As E has at least distinct elements e1, e2, view e1 ∈ F(U1) and e2 ∈ F(U2). These
trivially agree on the overlap, because U1∩U2 = ∅ and F(∅) = {∗}. However, for any “global
section” e ∈ F(U) = E, we have

ρUU1
(e) = e1 ρUU2

(e) = e2

so there is no hope of finding a section on U which glues e1, e2.
More conceptually, if we view elements of F(U) as constant functions U → E, what is

going on in this example is that we are trying to take constant functions on U1, U2 with
different values and glue them to obtain a constant function on U1∪U2, which is impossible.
That is to say, a locally constant function need not be globally constant.

Example 2.11. In contrast with the previous example, if F is a presheaf of locally constant
functions (with values in some set E), then F is a sheaf.

Example 2.12. In at least one case, the presheaf of constant functions is a sheaf. Let X
be a space, and let F be the presheaf of abelian groups on X which takes the trivial group
for every open subset of X, including the empty set.

F(U) = {0}

There is only one possible way to define the restriction maps, since there is a unique map
from the trivial group to itself. So for any V ⊂ U ⊂ X, ρUV : F(U) → F(V ) is the zero
map/identity map from the trivial group to itself. This is a sheaf; all the axioms are basically
vacuous. It is called the zero sheaf on X.

Example 2.13. The skyscraper presheaf is a sheaf, as we now show. Let X be a topological
space, and fix p ∈ X, and let E be a set. Recall that the skyscraper sheaf is defined by

F(U) =

{
E p ∈ U
{∗} p 6∈ U

15



with restriction maps given either by the identity E → E or by the unique map E → {∗}
as necessary. Uniqueness is fairly trivial. If s, t ∈ F(U) have restrictions which agree
everywhere, then either s, t ∈ {∗}, in which case they have to be the same point, or s, t ∈ E
with IdE(s) = IdE(t), so either way s = t.

Gluing is also fairly trivial. If we have an open covering U =
⋃
α Uα, and sα ∈ Uα with

agreeing restrictions, there are two possibilities. If p 6∈ U , then all sα are the same point in
{∗}, so they trivially glue to the unique section on U . If p ∈ U , then some sα may be the
unique point of {∗}, but some may be points in E. Since they all have the same restriction,
any sα ∈ E must be the same value, so that common value is the resulting glued section on
U .

2.3 Structure sheaf on a variety

We now return to considering the structure presheaf on an algebraic variety, which we can
now prove is a sheaf. Let K be an algebraically closed field, and X ⊂ Kn an irreducible
(Zariski) closed subset. Recall that the structure presheaf was defined by

OX(U) = subring of K(X) of rational functions defined at all points of U

and restriction maps were just given by inclusion maps. Before we show it is a sheaf, note
that the following are equivalent.

1. X is irreducible.

2. Every nonempty open subset of X is dense.

3. Any two nonempty open subsets of X have nonempty intersection.

Proposition 2.14. Let X be an irreducible variety. Then OX is a sheaf.

Proof. Separatedness is clear. For gluing, let U ⊂ X be open and let U =
⋃
α Uα be an open

cover, and suppose we have sections fα ∈ OX(Uα) for which restrictions agree.

ρUαUα∩Uβ(fα) = ρ
Uβ
Uα∩Uβ(fβ) ∀α, β

By the equivalences above, any two Uα, Uβ have nonempty intersection, and the restriction
maps ρ are just inclusions, so the equation above says that fα = fβ inside OX(Uα ∩ Uβ)
for every pair α, β. That is, all of the fα are equal, with common value f . This rational
function f is defined on each Uα, so it is defined on all of U , so f ∈ OX(U) is the needed
global section.

Proposition 2.15. Let X be an irreducible variety, and OX the structure sheaf. If U =⋃
α Uα is an open subset of X, then

OX(U) =
⋂
α

OX(Uα)
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Proof. The inclusion ⊃ is obvious, since a rational function defined on all Uα is defined on
the union U . The reverse inclusion (⊂) is also easy, since if f ∈ OX(U) is defined on U , it
is defined on each Uα, so it lies in the intersection

⋂
αOX(Uα).

Remark 2.16. The previous proposition says that it suffices to determine the structure
sheaf OX on a basis for the Zariski topology on X. In fact, this is true in general - for any
sheaf, it is determined by the values on a basis.

Following the previous remark, we now determine OX on the principal open subsets. Recall
the notation

D(p) = Kn \ V (p) = {x ∈ Kn : p(x) 6= 0}

where p ∈ K[x1, . . . , xn] is some polynomial. We use the notation DX(p) = X ∩D(p) for the
principal open subset of X determined by p.

Proposition 2.17. Let X be an irreducible algebraic variety and let p ∈ K[x1, . . . , xn]. Then

OX(DX(p)) = K[X]p

where K[X]p denotes the localization of the ring K[X] at the set {1, p, p2, . . .}.

Proof. The inclusion K[X]p ⊂ OX(DX(p)) is obvious. The proof of the opposite inclusion is
basically a repeat of the proof of Proposition 1.24, but we include it anyway.

Let f ∈ OX(DX(p)). Then for every x ∈ DX(p), there exists a representation of f ,
f = gx

hx
with gx, hx ∈ K[X] with hx(x) 6= 0. Let I ⊂ K[X] be the ideal generated by all

hx, and let Y = VX(I). Then Y ∩ DX(p) = ∅, so Y ⊂ VX(p) = X \ Dx(p). That is to
say, p vanishes on all of Y , and p vanishes on all zeros of I. Hence p ∈

√
I by Hilbert’s

Nullstellensatz, so there exists d ∈ Z≥0 with pd ∈ I. So we may write pd as

pd = r1hx1 + · · · rthxt

with xi ∈ DX(p) and ri ∈ K[X]. Multiplying this by f , we obtain

fpd = r1hx1f + · · ·+ rthxtf = rxgx1 + · · ·+ rtgxt

The right hand side is in K[X], so we can divide by pd and see that f = g
pd

for some d ≥ 0,

that is, f ∈ K[X]p.

Example 2.18. Let X = K2, with coordinate ring K[X] = K[x, y]. Let Ux, Uy, Uxy be the
principal open subsets

Ux = DX(x) =
{

(a, b) ∈ K2 : a 6= 0
}

Uy = DX(y) =
{

(a, b) ∈ K2 : b 6= 0
}

Uxy = DX(xy) =
{

(a, b) ∈ K2 : ab 6= 0
}
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Geometrically, Ux and Uy are each a disjoint union of two open half planes, cut in half by
a missing axis, and Uxy is a disjoint union of four open quarter planes. This is compatible
with what Remark 1.13 tells us, that

Ux ∩ Uy = DX(x) ∩DX(y) = DX(xy) = Uxy

By Proposition 2.17,

OX(Ux) = K[X]x = K[x, x−1, y]

OX(Uy) = K[X]y = K[x, y, y−1]

OX(Uxy) = K[x, y]xy = K[x, y, (xy)−1]

We can also consider the open subset U0 = Ux ∩Uy = K2 \ {(0, 0)}. Using Proposition 2.15,

OX(U0) = OX(Ux) ∩ OX(Uy) = K[x, y, x−1] ∩K[x, yy−1] = K[x, y] = K[X]

This gives an interesting example of how the sections over a proper subset may be the same
as the global sections.

2.4 Morphisms of sheaves

Definition 2.19. A morphism of sheaves is just a morphism of the underlying presheaves.

Remark 2.20. Fix a topological space X and a category C. Sheaves on X with values
in C form a category with the morphisms described above, denoted Sh(X, C). Usually the
category C is understood (usually sets, or abelian groups, or rings) and we just write Sh(X).
Sh(X) is a full subcategory of PSh(X).

This will have to wait until much later in the course, but the big advantage of study-
ing Sh(X) instead of PSh(X) is that Sh(X) is an abelian category, while PSh(X) is not.
Eventually we will describe what this means, and give a proof.

Recall that earlier we defined the kernel and image presheaves of a morphism of presheaves
in Definition 1.27, in the case where the target category was abelian groups.

Lemma 2.21. Let φ : F → G be a morphism of sheaves of abelian groups, and let K be the
kernel presheaf. Then K is a sheaf.

Proof. We know that a subpresheaf of a sheaf is always separated, so K is separated. We
just need to show that gluing holds. Let U ⊂ X be an open set, with open cover U =

⋃
α Uα,

and suppose we have sα ∈ Uα so that they agree on the overlaps.

ρUαUα∩Uβ(sα) = ρ
Uβ
Uα∩Uβ(sβ) ∀α, β

(The restriction maps above are the restriction maps for K. These are effectively the same
as the restriction maps for F as well, restricted to the kernel of associated maps for φ.) By
the gluing property for F , there is a section s ∈ F(U) such that ρUUα(s) = sα for each α. We
just need to show that s ∈ K(U) = kerφU . This comes down to a diagram chase. For each
α, we have the following commutative diagram.
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K(U) = kerφU F(U) G(U)

K(Uα) = kerφUα F(Uα) G(Uα)

ρUUα (K)

φU

ρUUα (F) ρUUα (G)

φUα

To show that s ∈ K(U), we need to show that φU(s) = 0. Equivalently, we need to show
that φU(s) is zero “everywhere locally,” meaning ρUUα(G) ◦ φU(s) = 0 for each α. But this
follows immediately from the diagram above, since

ρUUα(G) ◦ φU(s) = φUα ◦ ρUUα(F)(s) = φUα(sα) = 0

since sα ∈ K(Uα) = kerφUα . Thus s ∈ K(U), so K satisfies gluing and is hence a sheaf.

Remark 2.22. The previous lemma raises the question - do other constructions work this
well? Are the image, cokernel, etc. presheaves also sheaves? It seems like things ought to
work out. Unfortunately, this is really the only one of those where it works out. In order
to remedy this and be sure that Sh(X) is a “good” category (has kernels, cokernels, images,
etc.) we need a tool called sheafification. (Here “good” just means abelian, more on that
much later.

2.5 First look at sheafification

In the following theorem, the word “morphism” at first appears ambiguous - is a morphism
in Sh(X) or in PSh(X)? However, we omit specifying, because it doesn’t actually matter. A
morphism of sheaves has no additional structure on top of being a morphism of presheaves.

Theorem 2.23. Let F be a presheaf on a space X. There exists a sheaf F+ and a morphism
θ : F → F+ with the following universal property. If φ : F → G is a morphism, then there
exists a unique morphism ψ : F → G making the following diagram commute.

F F+

G

θ

φ
ψ

Proof. Much later in the course.

Definition 2.24. The sheaf F+ of the previous theorem is called the sheafification of F .

Remark 2.25. A fuller statement of the previous theorem includes information about stalks,
but that will have to wait until after we define stalks.

Remark 2.26. As usual for universal properties, it follows immediately that F+ is unique
up to unique isomorphism.
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Remark 2.27. Let α : F → G be a morphism of presheaves, and let θF : F → F+ and
θG : G → G+ be the sheafifications with associated morphisms. By the universal property,
there is a unique morphism α+ : F+ → G+ making the following diagram commute.

F F+

G+

θF

θGα
α+

This diagram makes a lot more sense written as a square.

F G

F+ G+

α

θF θG

α+

That is to say, sheafification is not just an association on objects, but also induces morphisms.
So sheafification is a covariant functor S : PSh(X)→ Sh(X).

Remark 2.28. Let F be a presheaf with sheafification θF : F → F+ and let G be a sheaf.
The universal property gives a bijection

HomSh(X)(F+,G)→ HomPSh(X)(F ,G) ψ 7→ θFψ

This isomorphism is “natural,” meaning that it really comes from a natural isomorphism
of bifunctors. More concretely, it means that the following diagrams commute. Let H be
another presheaf on X, with sheafification θH : H → H+, and let α : F → H be a morphism,
and let α+ : F+ → H+ be the induced morphism on the sheafifications. Then the following
diagram commutes.

HomSh(X)(F+,G) HomPSh(X)(F ,G)

HomSh(X)(H+,G) HomPSh(X)(H,G)

ψ 7→θFψ
∼=

ψ 7→ψα+ ψ 7→ψα

ψ 7→θHψ
∼=

Similarly, if K is another sheaf, and β : G → K is a morphism, then the following diagram
commutes.

HomSh(X)(F+,G) HomPSh(X)(F ,G)

HomSh(X)(F+,K) HomPSh(X)(F ,K)

ψ 7→θFψ
∼=

ψ 7→βψ ψ 7→βψ

ψ 7→θFψ
∼=

Together, these commutative diagrams say that there is a natural isomorphism of bifunctors

HomSh(X)((−)+, ∗) ∼= HomPSh(X)(−, ∗)

The first diagram captures naturality in the first argument, and the second commutative
diagram captures naturality in the second argument. Another way to say this is using the
language of “adjoint” functors, which we describe next.
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Definition 2.29. Let A,B be categories and S : A → B, T : B → A be covariant functors.
S, T are adjoint if there is a natural isomorphism of bifunctors

HomB
(
S(−), ∗

) ∼= HomA
(
−, T (∗)

)
“Natural isomorphism of bifunctors” means that for every A ∈ Ob(A), B ∈ Ob(B), there is
an isomorphism

τAB : HomB(SA,B)→ HomA(A, TB)

with commutative diagram properties analogous to the previous remark. Specifically, if
f : A → A′ is a morphism in A and g : B → B′ is a morphism in B, then the following
diagrams commute.

HomB(SA′, B) HomA(A′, TB)

HomB(SA,B) HomA(A, TB)

HomB(SA,B) HomA(S, TB)

HomB(SA,B′) HomA(S, TB′)

τA′B
∼=

ψ 7→ψ◦Sf ψ 7→ψ◦f

τAB
∼=

τAB
∼=

ψ 7→g◦ψ ψ 7→Tg◦ψ

τAB′

∼=

Remark 2.30. Using the language above of adjoint functors, we can say more about the
isomorphism given by sheafification on hom sets. Let S : PSh(X)→ Sh(X) be the sheafifi-
cation functor, and let T : Sh(X)→ PSh(X) be the forgetful functor. Then S, T are adjoint.
This is the content of remark 2.28.
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3 Limits and colimits

At this point in the course, we take a break from discussing sheaves and presheaves to
do some general category theory. In particular, we need to develop definitions and basic
properties of limits and colimits, since these ideas are necessary to define and study stalks
of sheaves.

3.1 Direct limits

Definition 3.1. A filtered set is a set I with a relation ≤ which is reflexive and transitive,
with the additional property that for every i, j ∈ I, there exists k ∈ I with i ≤ k and j ≤ k.

Remark 3.2. Often one encounters the previous definition in the form where ≤ is taken to
be a partial ordering on I, but this includes the additional property that i ≤ j and j ≤ i
implies i = j. Since we want to use filtered sets in some situations where this property does
not hold, we leave it out of our definition. But it doesn’t really hurt anything either way.

Definition 3.3. A morphism of filtered sets is a set map f : I → J which preserves the
ordering, i.e. i ≤ j =⇒ f(i) ≤ f(j).

Definition 3.4. Let C be a category and I a filtered set. A direct system in C, also called an
inductive system, is a family of objects {Ai : i ∈ I} along with morphisms τ ji : Ai → Aj
whenever i ≤ j, such that τ ii = IdAi and whenever i ≤ j ≤ k, the following diagram
commutes.

Ai Aj

Ak

τ ji

τki
τkj

Definition 3.5. Let
{
Ai, τ

i
j : i ∈ I

}
and

{
Bj, σ

i
j : j ∈ J

}
be directed systems (over possibly

different filtered sets) with values in the same category C. A morphism of directed systems
is a morphism ψ : I → J of filtered sets, along with a family of maps ψi : Ai → Bψ(i) such
that for every i ≤ j in I, the following diagram commutes.

Ai Bψ(i)

Aj Bψ(j)

ψi

τ ji σ
ψ(j)
ψ(i)

ψj

Definition 3.6. Let
{
Ai, τ

j
i

}
be a direct system in C. A direct limit of the system is an

object A = lim−→Ai with morphisms σi : Ai → A making the following diagrams commute
whenever i ≤ j,
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Ai Aj

A

τ ji

σi
σj

Additionally, A satisfies the following universal property. If B is any other object in C with
morphisms φi : Ai → B making the analogous triangles commute, i.e.

Ai Aj

B

τ ji

φi
φj

then there exists a unique map h : A→ B making the following diagram commute (for every
i ≤ j).

Ai Aj

A

B

σi

τ ji

φi

σj

φj
h

Remark 3.7. A morphism of directed systems induces a morphism (in the target category)
between the direct limit objects, in the following way. Suppose

{
Ai, τ

j
i

}
and

{
Bi, φ

j
i

}
are

directed systems over the respective filtered sets I, J , with values in a category C which has
direct limits. Let ψ : I → J, ψi : Ai → Bψ(i) be a morphism of directed systems. Let

A = lim−→Ai B = lim−→Bi

be the direct limits, with associated maps σi : Ai → A and θi : Bi → B. Then for i ≤ j in
I, we have the following commutative diagram.

Ai Aj

Bψ(i) A Bψ(j)

B

ψi

τ ji

σi σj

ψj

θψ(i) θψ(j)

Thus by the universal property, there exists a unique map h : A → B making the diagram
commute.
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Ai Aj

Bψ(i) A Bψ(j)

B

ψi

τ ji

σi σj

ψj

θψ(i)

h

θψ(j)

This map h is the map induced on the direct limits by the morphism ψ of directed systems.
We write this as h = lim−→ψ : lim−→Ai → lim−→Bi.

Remark 3.8. The previous construction of induced map on directed systems makes lim−→ into
a covariant functor from the category of directed systems (with values in a fixed category C)
to the category C.

3.2 Examples of direct limits

Proposition 3.9. Direct limits exist in the category of sets. More specifically, if
{
Ai, τ

j
i

}
i,j∈I

is a directed system of sets, the direct limit is

lim−→Ai =

(⊔
i∈I

Ai

)
/ ∼

where ∼ is an equivalence relation determined by a ∼ τ ji (a) for any a ∈ Ai.

Proof. Let
{
Ai, τ

j
i

}
be a directed system of sets, over the filtered set I. Define

Ã =
⊔
i∈I

Ai

Then define an equivalence relation on Ã as follows. For ai ∈ Ai and aj ∈ Aj, we say ai ∼ aj
if there exists k ∈ I with i, j ≤ k such that

τ ki (ai) = τ kj (aj)

More succinctly, for every ai ∈ Ai and every j such that i ≤ j, ai ∼ τ ji (ai) and τ ji (ai) ∼ ai.
It is clear that ∼ is reflexive and symmetric. Transitivity can be worked out in tedious detail
if necessary, but we omit it here. Hence ∼ is an equivalence relation. Now define

A = Ã/ ∼

There are obvious choices of maps σi : Ai → A, given by ai 7→ [ai], where [ai] is the
equivalence class of ai. We claim that A with these maps σi is a (the) direct limit of the
system

{
Ai, τ

j
i

}
. It suffices to verify the universal property. Suppose we have a set B with

maps φi : A→ B such that the following diagram commutes for every i ≤ j in I.
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Ai Aj

A

B

τ ji

σi

φi

σj

φj

Then define h : A → B by [ai] 7→ φi(ai). This is well defined, because of [ai] = [aj], then
there exists k with i, j ≤ k and τ ki (ai) = τ kj (aj). Applying φk : Ak → B to both sides of this,
we get

φi(ai) = φkτ
k
i (ai) = φkτ

k
j (aj) = φj(aj)

Thus h is well defined. From the definition of h, it is immediate that the following diagram
commutes.

Ai Aj

A

B

τ ji

σi

φi

σj

φj
h

It is also relatively immediate that h is unique. Any map t : A→ B making the left triangle
commute satisfies

φi(ai) = tσi(ai) = t[ai]

so it must be the same as our h.

Remark 3.10. Roughly the same construction as above works to show that direct limits
exist in the following categories: groups, abelian groups, modules over a ring R. In each
case, the part that changes the most is that disjoint union is replaced by the coproduct in
the appropriate category. So for example in abelian groups or modules, the coproduct is
direct sum, so the direct limit is

lim−→Ai =

(⊕
i

Ai

)
/ ∼

where the ∼ is roughly the same equivalence relation. In groups, the coproduct is the free
product, which is somewhat more complicated to work out usually.

In fact, the construction above generalizes to any abelian category with arbitrary coprod-
ucts (recall that an abelian category is required to have all finite coproducts, but may fail
to have infinite coproducts, which may be necessary to have some direct limits).

Example 3.11. We give an example which demonstrates that the ambient category has
a large impact on the direct limit, even using “the same” directed system. Consider the
directed system
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Z/2Z

Z/6Z Z/4Z

3 2

The number on the arrow indicates that the morphism is multiplication by that number, so
for example 3 : Z/2Z→ Z/6Z sends 1 to 3, and 2 to 6 = 0. The above is a directed system,
and we may consider it as a directed system in the category of abelian groups, or in the
category of groups. We will show that the direct limits are diffent depending on this choice
of perspective.

In the category of abelian groups, as we said the direct limit is a quotient of the direct
sum, so the direct limit is a quotient of Z/2Z⊕Z/4Z⊕Z/6Z. It is enough for this example
to note that it has finite order, ≤ 48.

In the category of groups, the direct limit is a quotient of the free product Z/2Z∗Z/4Z∗
Z/6Z, and one can work out that the free product in question is infinite, and quotiet subgroup
has infinite index, so that the resulting direct limit has infinite order. It is also relatively
easy to show that this direct limit is nonabelian. So in multiple ways, it cannot possibly be
the same as the direct limit in the category of abelian groups.

Example 3.12 (Union). In this example we realize the usual union of sets as a direct limit.
Suppose I is a totally ordered set and {Ai} is a directed system of sets, with all maps
τ ji : Ai → Aj just being inclusion maps. Then the direct limit is just the union.

lim−→Ai =
⋃
i∈I

Ai

Example 3.13 (Localization). In this example we realize the construction of localization of
a ring as a direct limit 3. Fix a commutative ring R, and for the sake of simplicity assume
R is an integral domain (this is not necessary, but without it we would have to deal with
many technicalities involving zero divisors).

Let S ⊂ R be a multiplicative subset, and for s ∈ S, let Rs be the localization of R at
the multiplicative set {1, s, s2, . . .}. The set S is filtered with respect to s ≤ t ⇐⇒ ∃u ∈
S, t = su 4. If s ≤ t, so there exists u with t = su, then s is a unit in Rt, and hence there is
a map

τ ts : Rs → Rt
a

sn
7→ aun

tn
=

a

sn

We also have maps R→ Rs, r 7→ r
1
, which are compatible with the τ maps in the sense that

the following diagrams commute for s ≤ t.

3I’m not entirely sure if this limit is in the category of rings, or of modules over R. Probably the latter.
4This particular example is why we don’t insist that our filtered sets be partially ordered, because in this

ordering S is not partially ordered. In particular, the property that fails is “antisymmetry,” that is, x ≤ y
and y ≤ x implies x = y.
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R

Rs Rt
τ ts

Thus the rings Rs with maps τ ts form a directed system. We claim that RS = lim−→Rs, but omit
the verification. (Recall that RS is the localization of R at all of S.) The maps associated
with the direct limit are just inclusions θS : Rs ↪→ RS, and the universal property is relatively
straightforward to verify, using the universal property of localizations.

3.3 Stalks of (pre)sheaves

Definition 3.14. Let X be a topological space, and let F be a presheaf on X with values in
a category C which has direct limits (such as sets, or abelian groups). Fix a point x. Define

U = {U ⊂ X : U is open, and x ∈ U}

Then partially order U by reverse inclusion, that is, U ≤ V if and only if U ⊃ V . Then U is
a filtered/directed set, and because F is a presheaf, we have maps

ρUV : F(U)→ F(V )

whenever U ≤ V (equivalently V ⊂ U). Thus

{F(U) : U ∈ U}

is a directed system with values in C. The stalk of F at the point x is the directed limit of
this system. It is denoted Fx.

Fx = lim−→
x∈U
F(U)

Remark 3.15. Suppose F is a presheaf of sets. How can we describe elements of the stalk
Fx? Recall that the direct limit is constructed as a disjoint union of the sets F(U), modulo
some equivalence relation. So an element φ ∈ Fx has a representative as a section f ∈ F(U),
and moreover two such sections f ∈ F(U), g ∈ F(V ) represent the same element φ in the
stalk Fx if and only if there is some smaller open set W to which the sections f, g have the
same restriction, that is, if

ρUW (f) = ρVW (g)

So intuitively speaking, an element of the stalk Fx is a “section” on a neighborhood of x,
except it’s identified with “similar” sections which agree on small neighborhoods of x. So
an element of Fx is sort of like a germ of a function at x. In the case where F is a sheaf of
continuous functions, then the stalk Fx is literally germs of functions at x, as we will see in
examples soon.
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Example 3.16 (Constant presheaf). Let X be a space and E a set, and F be the constant
presheaf with value E (or think of F as the presheaf of constant-valued functions in E.)

F(U) =

{
E U 6= ∅
{∗} U = ∅

with the obvious restriction maps. Then the stalk any any point x ∈ X is E, since the
directed system of F(U) for x ∈ U is just a directed system where every F(U) = E and
every map is the identity map. (The set {∗} is not involved, since x 6∈ ∅.)

Example 3.17. As a particular example of a constant presheaf, let F be the zero sheaf.
Then the stalks Fx are all zero (that is, the trivial group).

The next example pairs well as a contrast with the constant presheaf, and will we see shortly
that they are very importantly related.

Example 3.18 (Locally constant (pre)sheaf). Let X be space and E a set, and F be the
locally constant presheaf with values in E.

F(U) = {locally constant functions U → E}

Then we claim that for x ∈ X, the stalk Fx is isomorphic to E. Why is this? Intuitively
speaking, germs of locally constant functions are determined by the value at x.

More precisely, f ∈ F(U) and g ∈ F(V ) are both sections with x ∈ U ∩ V , and they
represent the same element of the stalk Fx, then f, g coincide (as functions) on some open
neighborhood of x, so in particular, f(x) = g(x). Conversely, if f(x) = g(x), then because
f, g are locally constant there exists a neighborhood W of x so that f |W = g|W , which is to
say,

ρUW (f) = ρVW (g)

meaning that f, g represent the same element of the stalk Fx. All this to say, f ∼ g in Fx if
and only if f(x) = g(x). Hence there is a map

Fx → E [f ] 7→ f(x)

which is well defined and injective, by the preceding discussion. It is also clearly surjective,
since any e ∈ E is the image of the class of a constant function with value e. Thus Fx ∼= E.

Remark 3.19. We will see later that the locally constant sheaf with values in E is the
sheafification of the constant sheaf with values in E. The fact that in the preceding two
examples, these two sheaves have isomorphic stalks at every point (meaning for x ∈ X, the
stalk of the locally constant sheaf is the same as the stalk of the constant sheaf, not that they
are the same for different points), is a general phenomenon. That is to say, sheafification
does not change stalks (up to isomorphism).
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Example 3.20 (Skyscraper sheaf). Let X be a space, E be a set, and fix p ∈ X. Let F be
the skyscraper sheaf at p.

F(U) =

{
E p ∈ U
{∗} p 6∈ U

with the obvious restriction maps. Then the stalk at p is Fp ∼= E, basically by the same
argument as with the constant sheaf.

However, for x 6= p, the stalk Fx depends on the topological properties of X. If x ∈ {p}
(x is in the closure of the point p), then every open neighborhood of p contains x, then
Fx ∼= E, since every neighborhood of x has F(U) = E.

On the other hand, if x 6∈ {p}, then there exists an open neighborhood of x which does
not contain p. In this case, the directed system which determines Fx includes the set {∗} as
one of the sets (probably many), so Fx ∼= {∗}.

Remark 3.21. From the previous example, the lesson is that stalks often capture informa-
tion about “separation of points,” in a topological sense. If two points are so “close” together
that they share all the same neighborhoods, then they will have the same stalk. This doesn’t
come up too often in useful topological spaces, but an example is something like the real line
with two origins (see https://ncatlab.org/nlab/show/line+with+two+origins or other
sources).

In particular, such a phenomenon means the space is not Hausdorff, but even most non-
Hausdorff spaces don’t have such strange “non-separated points.” For example, the Zariski
topology on an affine variety is far from being Hausdorff, but at least such spaces do not
have pairs of “non-separated points.”

Example 3.22 (Structure sheaf of a variety). Let K be an algebraically closed field, and
X ⊂ Kn an Zariski-closed subset, a.k.a. X is an affine variety. We defined the structure
sheaf OX previously, and computed various aspects of it. Now we compute the stalk OX,x
for a point x ∈ X.

If U ⊂ X is an open neighborhood of x, and f ∈ OX(U), then f is a rational function
on X which is defined on U . In particular, f is defined at x. Conversely, if f is defined at
x, we can write f as f = g

h
with g, h ∈ K[X] and h(x) 6= 0. So f is defined on the principal

open subset
DX(h) = {p ∈ X : h(p) 6= 0}

Thus
OX,x = lim−→

x∈U
OX(U) = {rational functions on X, defined at x}

We can describe this more algebraically, using localization. Let mx ⊂ K[X] be the ideal
of functions that vanish at x. Since K[X]/mx

∼= K, mx is a maximal ideal. By definition,
f ∈ K[X] is defined at x is we can write f = g

h
with h(x) 6= 0, which is to say, h 6∈ mx. Thus

OX,x is all rational functions with denominator not in mx. That is,

OX,x = K[X]mx
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(Recall that the localization at a prime ideal means localizing at the complement of the
prime ideal, so things outside of mx get inverted.) Note that we can also take the direct
limit over just principal open sets containing x,

OX,x = lim−→
x∈U
OX(U) = lim−→

p∈X,x∈DX(p)

OX(DX(p))

Using this description and our previous knowledge that OX(DX(p)) = K[X]p, we can fit all
of this together as

OX,x = K[X]mx = lim−→
x∈DX(p)

OX(DX(p)) = lim−→
x∈DX(p)

K[X]p

This isn’t saying anything new, just confirming things in different ways.

Remark 3.23. A morphism of presheaves induces a morphism on the stalks in a formal
categorical way, which we now describe. Let φ : F → G be a morphism of presheaves on X,
for simplicity assume it is a presheaf of sets. Then for every V ⊂ U ⊂ X open sets, we have
a commutative diagram

F(U) G(U)

F(V ) G(V )

φU

ρUV (F) ρUV (G)

φV

By considering such diagrams as U ranges over open neighborhoods of a fixed point x ∈ X,
we get a morphism of directed systems

{F(U) : x ∈ U} → {G(U) : x ∈ U}

This morphism of direct systems induces a morphism on the direct limits, which are the
respective stalks.

φx : Fx → Gx

Remark 3.24. The previous remark has signification consequences for the sheafification
functor, as we will see later. If F is a presheaf and θ : F → F+ is the sheafification, then θ
induces a morphism on stalks

θx : Fx → F+
x

Later we will prove that θx is always an isomorphism for every x ∈ X. That is to say, a
presheaf and its sheafification have naturally isomorphic stalks.

3.4 Inverse limits

Basically, to get inverse limits, take all the definitions for direct limits and reverse all of the
arrows.

30



Definition 3.25. Let C be a category and I a filtered set. An inverse system in C indexed
by I is a family of objects {Si|i ∈ I} in C and morphisms

πji : Sj → Si i ≤ j

such that πii = IdSi and the following diagram commutes whenever i ≤ j ≤ k.

Sk Si

Sj

πki

πkj πji

Remark 3.26. We leave it to the reader to formulate the definition of a morphism of
inverse systems. It is identical to the definition of morphism of directed systems, with
arrows reversed.

Definition 3.27. Let
{
Si, π

j
i

}
be an inverse system in C, indexed by a filtered set I. An

inverse limit of the system is an object S with morphissm γi : S → Si such that the
following diagrams commute for every i ≤ j in I,

S

Sj Si

γj γi

πji

and such that S is universal in this diagram. Explicitly, that means that if T is any object
with morphisms ψi : T → Si making the analogous triangle as above commute, then there
exists a unique morphism h : T → S making the following diagram commute.

T

S

Sj Si

h
ψj ψi

γj γi

πji

When S exists, we write S = lim←−Si.

Remark 3.28. As with directed systems, a morphism of inverse systems induces a morphism
on the inverse limits, provided the limits exist. This is essentially a consequence of the
universal property.

Remark 3.29. If an inverse limit exists, it is unique up to isomorphism. This is an imme-
diate consequence of the universal property.
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Proposition 3.30. Inverse limits exist in the category of sets.

Proof. Let
{
Si, π

j
i

}
be an inverse system of sets. Consider

S̃ =
∏
i∈I

Si

with projection maps
γ̃i : S̃ → Si

Define
S =

{
(si) ∈ S̃|πji (sj) = si, ∀i ≤ j

}
with projection maps γi = γ̃i|S : S → Si. We claim that S with the maps γi is an inverse
limit of the system. The verification of various commutative diagrams and the universal
property are all straightforward.

Remark 3.31. Even when it exists, the inverse limit may display somewhat “pathological”
behavior, in the sense that the constructed set S may be empty. See the following example.

Example 3.32. Let I = N = {1, 2, 3 . . .} with the usual ordering. For i ∈ I, let Si = N,
and for i ≤ j set

πji : Si → Sj n 7→ n+ (j − i)

Since i ≤ j, j − i ∈ Z≥0, so the map πji does land in N. This is an inverse system, but we
claim that the inverse limit is the empty set. Let S = lim←−Si, and suppose (si) ∈ lim←−Si. Set

n = s1 ∈ S1. By definition of πji ,

πn+1
1 (sn+1) = sn+1 + n+ 1− 1 = sn+1 + n

On the other hand, because (si) ∈ lim←−Si, it has the property that

πn+1
1 (sn+1) = s1 = n

Hence sn+1 + n = n so sn+1 = 0. But 0 6∈ N, so this is impossible. Thus lim←−Si contains no
sequences, it is empty.

Remark 3.33. The previous example shows that while inverse limits of sets always exist,
they don’t always behave that well. The next proposition shows that under certain condi-
tions, the inverse limit is not empty, although the proof is more complicated than you would
think.

Proposition 3.34. Let I be a filtered set and
{
Si, π

j
i

}
an inverse system of nonempty finite

sets over I. Then lim←−Si is not empty.
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Proof. Give each Si the discrete topology, so it is compact. By Tychonoff’s theorem, S̃ =∏
i∈I Si is compact in the product topology. For each j ∈ I, set

Tj =
{

(si) ∈ S̃|πji (sj) = si,∀i ≤ j
}

Note that Tj is not empty, because we can take sj ∈ Sj and set si := πji (si) for all i ≤ j and
take sk ∈ Sk arbitrary for the other sets.

We claim Tj is closed in S̃ (in the product topology). We will show the complement

is open by taking an arbitary element of S̃ \ Tj and finding an open neighborhood for it.

Suppose s = (si) ∈ S̃ \ Tj. Then by definition of Tj, there exists i ∈ I with i ≤ j such that
πji (sj) 6= si. Then define for k ∈ I,

Vk =


{si} k = i

{sj} k = j

Sk k 6= i and k 6= j

Then the following set W is an open subset of S̃, by definition of the product topology.

W =
∏
k∈I

Vk

Also, W is an open neighborhood of s = (si), and W ∩ Tj = ∅. Thus the complement of Tj
is open, so Tj is closed.

Note that if i ≤ j, then Tj ⊃ Ti. So since I is filtered, any finite intersection of the Tj
is nonempty. Since S̃ is compact, and any finite intersection of the Tj is nonempty, by a
standard result in point-set topology 5 ⋂

j∈I

Tj 6= ∅

Also, it is clear that S = lim←−Si =
⋂
j Tj, hence the inverse limit is not empty.

Remark 3.35. The previous proposition generalizes to the following: an inverse limit of
nonempty compact Hausdorff spaces is nonempty.

Definition 3.36. Let I be a filtered set and
{
Ai, π

j
i

}
an inverse system indexed by I. A

subset J ⊂ I is cofinal if for all i ∈ J , there exists j ∈ J with i ≤ j.

Remark 3.37. If
{
Ai, π

j
i

}
i,j∈I is an inverse system indexed by I and J ⊂ I is cofinal, then{

Ai, π
j
i

}
i,j∈J is also an inverse system, and there is a natural isomorphism

lim←−
i∈I

Ai ∼= lim←−
i∈J

Ai

given by projection. Intuitively speaking, the inverse limit is sometimes determined by what
happens on a subset J of the indexing set I, so one can “throw away” the unimportant
indices and still get the same limit.

5Topology: A First Course by Munkres, Theorem 26.9
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Remark 3.38. A filtered set I can be thought of as a small category, whose objects are the
elements of I, and whose morphisms are given by the ≤ relation. That is, if i ≤ j, there is
unique morphism i → j, along with the necessary identity arrows. In this way, an inverse
system is a functor from I to C.

3.4.1 Inverse limits of groups

Remark 3.39. Inverse limits exist in the category of groups. The construction is basically
the same as in the category of sets, except that all the maps involved are group homomor-
phisms instead of arbitrary set maps.

Also, it is clear that the inverse limit of groups is always nonempty, since the inverse
limit group must have an identity element. However, it may still be the trivial group.

Definition 3.40. An inverse limit of finite groups is called a profinite group.

If G = lim←−Gi is profinite with each Gi finite, then giving each Gi the discrete topology
gives a topology to G as a subspace of the product space. This topology on G is in general
not discrete, but it is compact, Hausdorff, and totally disconnected. These are all pretty
immediate from basic point-set topological facts.

What is more interesting is the converse: a topological group G is profinite if and only
if it is compact, Hausdorff, and totally disconnected. The converse is harder to prove, and
not useful for this course, so we skip over the details.

Remark 3.41. An important application of inverse limits of groups is the generalization of
Galois theory for finite field extensions to Galois theory for infinite field extensions. Let L/K
be a finite field extension. In finite Galois theory, the main theorem is an inclusion-reversing
correspondence

{subgroups of Gal(L/K)} ←→ {intermediate subfields K ⊂ F ⊂ L}
H ←→ LH

Gal(L/F )←→ F

As stated, this does not generalize to the case where L/K is a field extension of infinite
degree. However, the Galois group Gal(L/K) is a profinite group:

Gal(L/K) ∼= lim←−Gal(F/K)

where in the inverse limit F ranges over all finite Galois extensions of K. This induces a
topology on Gal(L/K), and using this topology, the main theorem of Galois theory general-
izes to an inclusion-reversing correspondence

{closed subgroups of Gal(L/K)} ←→ {intermediate subfields K ⊂ F ⊂ L}
H ←→ LH

Gal(L/F )←→ F

This theorem is not even possible to state without using the topology on Gal(L/K), which
really comes from the process of forming the inverse limit.
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3.4.2 Inverse limits in sheaf theory

The next goal is to discuss extending a sheaf from a basis to arbitrary open subsets. The
main tool for this will be inverse limits.

To be a bit more precise, consider space X with a sheaf of sets F . Let B be a basis for the
topology on X, meaning B is a collection of open sets such that any open subset U ⊂ X is
a union of elements of B, and B is stable under finite intersections. The goal is to show that
if U ⊂ X is any open subset, then F(U) is determined entirely by values of F on elements
of the basis B, and not only F(U) is determined, but restriction maps are also determined.

We do this as follows. Consider an arbitrary open subset U ⊂ X, and define

U = {V ∈ B : V ⊂ U}

We order U by inclusion, meaning V2 ≤ V1 ⇐⇒ V2 ⊂ V1. Then U is a partially ordered
set. Note that U is not necessarily filtered, meaning given V1, V2 there may not exist V3 with
V1, V2 ≤ V3. However, this does not cause any problems for whether our limit will exist. The
collection

{F(V ) : V ∈ U}

is an inverse system with respect to the restriction maps of F , meaning for V2 ≤ V1, we have

ρV1V2 : F(V1)→ F(V2)

As noted, the fact that U lacks one part of the filtered set property does not actually matter,
the inverse limit still exists.

lim←−
V ∈U
F(V )

Proposition 3.42. Let X,F , U,U be as above. Then there is a natural map

F(U)→ lim←−
V ∈U
F(V )

which is an isomorphism.

Proof. For V2 ⊂ V1 ⊂ U with V1, V2 ∈ U , the restriction maps ρ fit into the following
commutative diagram.

F(U)

F(V1) F(V2)

ρUV1
ρUV2

ρ
V1
V2

Thus by the universal property of the inverse limit, there exists a unique map τ : F(U) →
lim←−F(V ) fitting into the following commutative diagram.
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F(U)

lim←−F(V )

F(V1) F(V2)

ρUV1
ρUV2

τ

ρ
V1
V2

The arrows coming out of lim←−F(V ) are the canonical maps associated with the inverse limit.
Now we use the sheaf axioms to show that τ is an isomorphism. We know that U is the
union over U ,

U =
⋃
V ∈U

V

First we prove injectivity of τ . Suppose we have s, t ∈ F(U) such that τ(s) = τ(t). Since the
previous diagram commutes, ρUV (s) = ρUV (t) for all V ∈ U . Hence by the separation axiom
for F , s = t. Hence τ is injective.

Now we prove surjectivity of τ . Let (aV ) ∈ lim←−F(V ), and recall our description of the
inverse limit as a subset of the direct product,

lim←−F(V ) =

{
(aV ) ∈

∏
V ∈U

F(V )|ρV1V2(aV1) = aV2 , whenever V2 ⊂ V1

}
Let V1, V2 ∈ U . Since the basis is closed under finite intersections, V1 ∩ V2 ∈ U also, hence

ρV1V1∩V2(aV1) = aV1∩V2 = ρV2V1∩V2(aV2)

Thus by the gluing axiom, there exists a ∈ F(U) such that ρUVi(a) = aVi , hence τ(a) = (aVi).
Thus τ is surjective.

Remark 3.43. The previous proposition shows that the sections of a sheaf F are determined
entirely by its sections and restriction maps on a basis of open sets, and inverse limits were
the key tool to make the connection. One useful aspect of this is that often one may define a
sheaf by prescribing only the values on a basis, and then extending uniquely using this fact.

Remark 3.44. If F is just a presheaf but not necessarily a sheaf, the same use of the
universal property above will give a map F(U) → lim←−F(V ), it will just not necessarily be
an isomorphism.

Remark 3.45. The previous result showed that a sheaf F has sections on an arbitrary open
set U determined (as an inverse limit) by the sections F(V ) for V ranging over a basis for
the topology on X, along with restriction map data for the basis. It is also true that the
restriction maps for F (outside the basis) are determined by defining F and its restriction
maps on a basis, as follows. Given U2 ⊂ U1 ⊂ X two arbitrary open sets with one contained
in the other, consider

Ui = {V ∈ B | V ⊂ Ui}
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for i = 1, 2. There is an obvious embedding U2 ↪→ U1, which gives a morphism of inverse
systems

{F(V ) : V ∈ U1} → {F(V ) : V ∈ U2}

which induces a map on the inverse limits

lim←−
V ∈U1
F(V )→ lim←−

V ∈U2
F(V )

This map is concretely describable in terms of the direct product, but we leave that to the
reader to work out. The important fact, which we also omit verification for, is that the
following diagram commutes.

F(U1) F(U2)

lim←−V ∈U1 F(V ) lim←−V ∈U2 F(V )

ρ
U1
U2

∼= ∼=

The horizontal map on the bottom is the map just described, and the vertical maps are the
isomorphisms of Proposition 3.42. In this way, defining F on a basis determines F on all
open subsets, along with restriction morphisms everywhere.

3.5 General categorical limits

Definition 3.46. Let C, I be categories (usually I is a small category). A diagram of
shape I in C is a functor F : I → C. For objects i of I, the objects F(i) are called vertices
of F , and for a morphism φ : i→ j in I, the morphisms F(φ) are called edges of F .

Example 3.47. Let C, I be any categories and A an object of C. The constant diagram
cA : I → C is defined by cA(i) = A for every object i of I, and cA(φ) = IdA for every
morphism φ of I.

Remark 3.48. Fix categories I, C, and let A,B be objects in C. Given a morphism θ : A→
B in C, there is an obvious choice for induced natural transformation θ̃ : cA → cB, described
concretely as follows. For each object i ∈ I, θ̃ : cA(i) → cB(i) is just θ : A → B, which
clearly makes the diagram below commute for any morphism φ : i→ j in I.

cA(i) = A cA(j) = A

cB(i) = B cB(j) = B

cA(φ)=IdA

θ̃(φ)=θ θ̃(φ)=θ

cB(φ)=IdB

Example 3.49. Let I be the finite category depicted below.
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• •

• •
with the identity arrows not depicted. Then a diagram of shape I in C is a commutative
square in C.

A B

C D

It must commute because in I, going around the square on the top or bottom must be equal
to the unique arrow along the diagonal.

Definition 3.50. Let F : I → C be a diagram of shape I, and let A be an object of C. A
natural transformation γ : cA → F is called a cone over F with tip A.

We explain the imagery behind the word “cone.” A natural transformation γ : cA → F
means that for every morphism φ : i→ j in I, there is a commutative square

A A

F(i) F(j)

IdA

γi γj

F(φ)

Collapsing the redundant identity arrow here, we write it as

A

F(i) F(j)

γi γj

F(φ)

So visually speaking, a natural transformation cA → F just means to look at the whole
image of F , and then for every object an arrow γi : A → F(i), such that all such triangles
commute. Thinking of F(I) as some sort of “base space,” this can be visualized as a cone,
with the object A sitting at the point. Hence the terminology “cone with tip A.”

Definition 3.51. Let F : I → C be a diagram of shape A, and let A be an object of C. A
natural transformation F → cA is called a cocone under F with tip A.

Definition 3.52. Let F : I → C be a diagram of shape I. An object X of C is a limit of
F , denoted X = lim←−I F or X = limI F if there exists a natural transformation γ : cX → F
such that given any object Y of C and a natural transformation γ′ : cY → F , there exists
a unique morphism τ : Y → X such that γ′ = γ ◦ τ̃ , where τ̃ : cY → cX is the natural
transformation induced by τ .

Alternatively, we may phrase this in terms of cones over F . X is a limit of F if there
exists a cone σ over F with tip X such that for any cone σ̃′ over F with tip Y , then there
exists a unique morphism τ : Y → X such that the induced morphism τ̃ : cY → cX satisfies
γ′ = γ ◦ τ̃ .
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Definition 3.53. Let F : I → C be a diagram of shape I. An object A of C is a col-
imit or direct limit of F , denoted A = lim−→I

F or A = colimI F if there exists a natural
transformation σ : F → cA such that given any object B of C and a natural transformation
σ′ : F → cB, there exists a unique morphism θ : A → B such that for the corresponding
natural transformation θ̃ : cA → cB we have σ′ = θ̃ ◦ σ.

Alternatively, we can phrase this in terms of cocones. A is a colimit of F if there exists a
cocone σ under F with tip A such that for any cocone σ′ under F with tip B, there exists a
unique morphism θ : A→ B such that the induced morphism θ̃ : cA → cB satisfies σ′ = θ̃◦σ.

Remark 3.54. Let F : I → C be a diagram of shape I. There is a category whose objects
are cones over F . Given two cones γ : cA → F , η : cB → F , a morphism between them in
this category is a morphism θ : A → B whose induced morphism θ̃ : cA → cB makes the
following diagram commute.

cA cB

F

θ̃

γ η

Similarly, there is a category whose objects are cocones under F . If γ′ : F → ca, η
′ : F → cB

are cocones, a morphism between them is given by a morphism θ : A → B whose induced
morphism θ̃ : cA → cB makes the following diagram commute.

F

cA cB

γ′ η′

θ̃

Using the language of these categories, we can give our last formulation of the definition of
limits and colimits. A limit of a diagram F : I → C (if it exists) is the terminal object in the
category of cones over F . A colimit of F (if it exists) is the initial object in the category
of cocones under F .

3.5.1 Realizing common categorical constructions as limits

In this section, we try to demonstrate that limits and colimits are not merely abstraction
for the sake of abstraction. They include many very important categorical constructions as
special cases, so they unify a lot of ideas in category theory.

Example 3.55 (Initial and terminal objects as limits). Let I be the empty set, and view
I as an “empty category” which has no objects and no morphisms. Let C be any category.
Then there is a unique diagram of shape I in C, the “empty diagram” in C.

The limit may of this diagram may or may not exist, but if it exists, it is an object X in C
such that for every object Y , there is a unique morphism Y → X, that is, X is the terminal
object of C. Dually, the colimit of the empty diagram, if it exists, is the initial object in C.
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Example 3.56 (Inverse and direct limits as general limits). Let I be a filtered set, viewed
as a category with morphisms given by i→ j when i ≤ j. For any category C, a (covariant)
functor F : I → C is a directed system {F(i) : i ∈ I} and a contravariant functor G : I → C
gives an inverse system {G(i) : i ∈ I} in C.

In this situation, the limit of F , if it exists, is the direct limit of the system F(i). Dually,
if the limit of G exists, it is the inverse limit of the system G(i).

lim−→
I

F ∼= lim−→
i∈I
F(i) lim←−

I

G ∼= lim←−
i∈I
G(i)

Remark 3.57. The previous example shows how one might generalize the notion of direct
and inverse limits, by loosening the description of the indexing set I. Instead of a filtered
set I, one can take any small category I, and a functor I → C, and define the generalized
direct limit over I as the limit of the functor I → C.

Example 3.58 (Products and coproducts as limits). Let I be a discrete category 6 Then
a diagram F : I → C of shape I is just a collection of objects {F(i) : i ∈ Ob(I)} with no
morphisms. The limit of F , if it exists, is an object lim←−F of C with the property that there
exists morphisms

γi : lim←−F → F(i)

for each i ∈ Ob(I), such that if B is an object of C with maps

γ′i : B → F(i)

then there is a unique morphisms τ : B → lim←−F such that γ′i = γi ◦ τ . That is to say, if
lim←−F exists, it is the product.

lim←−F
∼=
∏
i∈I

F(i)

Dually, the colimit of F , if it exists, is the coproduct in C.

lim−→F
∼=
⊔
i∈I

F(i)

The next goal is to show that limits and colimits can also realize the categorical notion of
equalizers. Since these are not as well known, first we define equalizers and give an example
of another important concept, the kernel as an equalizer.

Definition 3.59. Let C be a category, and let f, g : X → Y be morphisms in C. The
equalizer of f and g is an object E and a morphism e : E → X making the following
diagram commute,

6A category is discrete if the only morphisms are identity arrows.
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X

E Y

X

fe

e g

and such that E, e are universal in this diagram. Concretely, that means that for any object
Z with a morphism h : Z → X such that the analogous diagram commutes,

X

Z Y

X

fz

z g

then there exists a unique morphisms θ : Z → E making the following diagram commute.

X

Z E Y

X

f

θ

z

z

e

e g

Example 3.60 (Kernel as equalizer). Let C be the category of abelian groups, and let
f : A → B be a homomorphism of abelian groups. We also have the zero morphism
0 : A→ B. The equalizer of f and 0 is the kernel of f . More precisely, the object E is the
subobject of A which is ker f , and the map e : ker f → A is the inclusion map. We leave it
to the reader to check the universal property.

Example 3.61 (Equalizers as limits). Let I be the finite category

• •

We have omitted the obvious identity arrows. Let F : I → C be a diagram of shape I in a
cateogory C. That is, F is a parallel pair of morphisms

A B
f

g

A cone over this diagram consists of an object C in C and morphisms h : C → A and
k : C → B making the following diagram commute, meaning fh = gh = k.
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C

A B

h k

f

g

Thus a cone is entirely determined by the morphism h : C → A, and any morphism h : C →
A satisfying fh = gh gives a cone. Thus, the limit lim←−F , if it exists, is the terminal object
in the category of cones over F with this property, which is precisely the equalizer of f and
g.

Example 3.62 (Fiber product/pullback as limit). Let I be the finite category

•

• •

A diagram of shape I in C is a pair of morphisms with common target object.

A

C B

f

g

A cone over F is an object D with morphisms D → A and D → C and D → B, making
suitable commutative diagrams. Basically, the morphisms all make commutative triangles,
so it is sufficient that D → A → B and D → C → B both agree with D → B. That is
to say, a cone over F is simply an object D with maps to A and C making a commutative
square as below.

D A

C B

f

g

A limit of F , if it exists, is an object D as above with morphisms as above, such that D is
the terminal object with this property. This is known as the fiber product of f and g, also
known as the pullback. It is usually written as

lim←−F = A×B C

This notation is unfortunate, since it leaves the morphisms f, g out, which are critically
important. However, it is standard notation, so we should get used to it.

Example 3.63 (Concrete description of fiber product in the category of sets). We describe
the fiber product concretely in the category of sets. The same construction will work for
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groups, abelian groups, modules over a ring, and topological spaces. Given f : A → B and
g : C → B, the fiber product is

A×B C = {(a, c) ∈ A× C : f(a) = g(c)}

with the obvious choice of maps to A and B given by projection onto the first or second
coordinate, respectively.

Example 3.64 (Pushouts as colimits). Let I be the finite category

• •

•

The discussion for fiber products basically repeats. Give a diagram F : I → C of shape I, a
colimit of F , if it exists, coincides with the usual notion of a pushout of a diagram of this
shape.

C A

B D

f

g

Example 3.65 (Concrete description of pushout in the category of topological spaces). Let
C be the category of topological spaces. Consider a diagram of the shape considered above.

Z X

Y

f

g

The pushout always exists in this category, and it is described concretely as the “gluing” of
X and Y along Z (more precisely, gluing along the images of Z via f and g).

X tZ Y = (X t Y )/ ∼

where f(z) ∼ g(z) for all z ∈ Z. The maps from X and Y to the glued space are the obvious
ones, given by sending an element x ∈ X or y ∈ Y to its equivalence class in (X t Y )/ ∼

Z X

Y X tZ Y

f

g

Even more concretely, if Z is a single point space Z = {z0}, then the pushout is the wedge
sum of X and Y at the points which are the respective images of z0.
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Example 3.66 (Concrete description of pushout in the category of groups). Consider a
diagram in the category of groups

F G

H

g

h

The pushout of the diagram is the free product of G and H “with amalgamation.” That is,

G ∗F H = (G ∗H)/K

where G∗H is the free product of G and H, and K is the smallest normal subgroup containing
all elements of the form g(x)f(x)−1 for x ∈ F .

F G

H G ∗F H

g

h

Remark 3.67. The previous two examples explain (to some extent) why the free product of
groups with amalgamation arises in the Seifert-Van Kampen theorem, which relates the fun-
damental group of a union of topological spaces to the fundamental groups of the individual
spaces.

One some level, SVK just says that given a pushout diagram in the category of pointed
topological spaces, applying the fundamental group functor π1 gives a pushout diagram in
the category of groups, so “of course” the resulting fundamental group is a free product with
amalgamation. There is more to the story; SVK is not a purely formal result of abstract
nonsense, but this is an important aspect of the story.

3.5.2 Representable and adjoint functors

Let I, C be categories. Suppose for the remainder of the following discussion that I, C are
such that all diagrams F : I → C have a colimit. (This occurs, for example, if C is the
category of sets and I is small, so it is not an unreasonable assumption.)

Remark 3.68. Suppose F ,F ′ : I → C are diagrams of shape I in C. A natural transfor-
mation η : F → F ′ induces a morphism on the limits, lim←− η : lim←−F → lim←−F

′. This is just a
formal consequence of the universal property defining limits.

Definition 3.69. The functor category CI is the category whose objects are functors
(diagrams) F : I → C and whose morphisms are natural transformations. By the preceding
remark, we may view lim←− as a functor

lim←− : CI → C F 7→ lim←−F
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and uses the preceding remark to induce morphisms. On the other hand, for any object A
in C, there is the constant diagram cA : I → C, and for any morphism θ : A → B there is
the induced natural transformation θ̃ : cA → cB. We may think of this as a functor

∆ : C → CI A 7→ cA

Remark 3.70. Fix an object B in C. By definition of the universal property of colimits,
we have a correspondence between homomorphisms (in C) from lim←−F to B and natural
transformations F → cB. Every natural transformation F → cB = ∆B corresponds to a
unique morphism lim←−F → B, and vice versa. That is, there is a bijection (of sets)

HomC
(
lim←−F , B

) ∼= HomCI (F , cB = ∆B)

Moreover, this bijection is “natural,” in the sense that a morphism η : F → F ′ or a morphism
φ : B → B′ each make the respective diagram below commute.

HomC
(
lim←−F , B

)
HomCI (F ,∆B) HomC

(
lim←−F , B

)
HomCI (F ,∆B)

HomC
(
lim←−F

′, B
)

HomCI (F ′,∆B) HomC
(
lim←−F , B

′) HomCI (F ,∆B′)

∼= ∼=

ψ 7→φ◦ψ ψ 7→(∆φ)◦ψ

∼=

ψ 7→ψ◦lim←− η ψ 7→ψ◦η

∼=

The fact that this isomorphism is natural means that lim←− and ∆ are respectively left and
right adjoint functors to each other.

Remark 3.71. Given a functor/diagram F : I → C as above, consider the functor

F : C → Set B 7→ HomCI (F ,∆B)

Using the previous natural isomorphism, we can also write F as

F : C → Set B 7→ HomC
(
lim←−F , B

)
That is to say, F is naturally isomorphic to the functor HomC

(
lim←−F ,−

)
, which means that

F is a representable functor, with representing object lim←−F .
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4 Stalks of sheaves

We return from our venture into abstraction to slightly less abstract matters. At least, if
you consider sheaves and stalks to be less abstract than the previous discussion of natural
isomorphisms and such. Our goal is to use stalks to extract “global” information about
sheaves and morphisms of sheaves, since in general sheaves have a lot of local structure but
getting a handle on “global” considerations is much more difficult.

Remark 4.1. Let X be a topological space and F be a presheaf of sets on X. Let Fx be
the stalk of F at x ∈ X, recalling that

Fx = lim−→
x∈U
F(U)

By definition of direct limit, for each open neighborhood U of x, we have a map

ρUx : F(U)→ Fx

This behaves in many ways like a restriction map for F , which is why we use the same
notation ρ. In particular, if the set {x} is open, then the stalk Fx may be identified with
F({x}), and the faux restriction map ρUx may be identitified with the bonafide restriction
map ρU{x}.

If F is merely a presheaf, the maps ρUx defined above do not behave all that well. However, if
F satisfies the sheaf axioms, they behave very nicely, as captured in the following proposition.

Proposition 4.2. Let F be a sheaf of sets on a space X. Let U ⊂ X be an open set. The
map ∏

x∈U

ρUx : F(U)→
∏
x∈U

Fx s 7→
(
ρUx (s)

)
is injective.

Proof. Suppose we have two sections s, t ∈ F(U) such that their images are the same under
this map. That is, ρUx (s) = ρUx (t) for all x ∈ U . This equalit is in Fx, and by our previous
concrete descriptions of the stalk and what it means for elements of the stalk to be equal,
ρUx (s) = ρUx (t) means that there is an open neighborhood Ux ⊂ U such that

ρUUx(s) = ρUUx(t)

Since this holds for each x ∈ U , U is covered by such neighborhoods.

U =
⋃
x∈U

Ux

Then by the separation axiom of sheaves (which F has), s, t agree everywhere locally so they
agree globally, which is to say, s = t in F(U).
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Recall that if we have a morphism of of presheaves φ : F → G and fix x ∈ X, then φ induces
morphisms φx : Fx → Gx on stalks in such a way that the following diagram commutes
whenever x ∈ U .

F(U) G(U)

Fx Gx

φU

ρUx (F) ρUx (G)

φx

Corollary 4.3. Let φ1, φ2 : F → G be morphism of presheaves on X, where G is a sheaf. If
the induced morphisms on stalks agree for every x ∈ X, that is,

φ1,x = φ2,x

then φ1 = φ2.

Proof. To show that two morphisms φ1, φ2 of presheaves are equal, we need to show that
for every open set U ⊂ X, the morphisms φ1,U and φ2,U are equal as maps F(U) → F(G).
Let s ∈ F(U). Using the commutative square right above this corollary, and our hypothesis
that φ1,x = φ2,x, we have

ρUx (G)
(
φ1,U(s)

)
= φ1,U

(
ρUx (F)(s)

)
= φ2,U

(
ρUx (F)(s)

)
= ρUx (G)

(
φ2,U(s)

)
Then using the fact that G is a sheaf and Proposition 4.2, the fact that these agree for all x
shows that φ1,U(s) = φ2,U(s). That is, φ1 = φ2.

Proposition 4.4. Let φ : F → G be a morphism of presheaves on X, with F a sheaf. The
following are equivalent.

1. The induced maps on stalks φx : Fx → Gx are injective for all x ∈ X.

2. The maps φU : F(U)→ G(U) are injective for all U ⊂ X open.

Before we go on to the proof, it is worth remarking that the “expected” analog of the above
involving surjectivity is false. Essentially, the failure comes down to the failure of the image
presheaf to be a sheaf. We will hopefully give concrete examples later.

Proof. First, we suppose all of the induced maps φx on stalks are injective. Let U ⊂ X be
an open set. We need to show that φU is injective. Let s, t ∈ F(U) such that φU(s) = φU(t).
Then for any x ∈ U , we have

φx

(
ρUx (F)(s)

)
= ρUx (G)

(
φU(s)

)
= ρUx (G)

(
φU(t)

)
= φx

(
ρUx (F)(t)

)
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Since φx is injective, this shows that ρUx (F)(s) = ρUx (F)(t). Then by Proposition 4.2, it
follows that s = t. Hence φU is injective.

Now for the converse, we assume that all maps φU are injective. Fix x ∈ X, and let
sx, tx ∈ Fx such that φx(sx) = φx(tx). Choose a neighborhood U of x. Then we know that
sx, tx ∈ Fx both have a representative in F(U), call them su, tu. That is,

sx = ρUx (F)(su) tx = ρUx (F)(tu)

Then

φx(sx) = φx

(
ρUx (F)(su)

)
= ρUx (G)

(
φU(su)

)
φx(tx) = φx

(
ρUx (F)(tu)

)
= ρUx (G)

(
φU(tu)

)
That is, φU(su), φU(tu) ∈ G(U) are respectively representatives for φx(sx), φx(tx). Since
φU(su) and φU(tu) represent the same element of the stalk, there is a neighborhood V ⊂ U
of x such that

ρUV

(
φU(sU)

)
= ρUV

(
φU(tu)

)
Since φ is a morphism of presheaves,

φV (su) = ρUV φU(su) = ρUV φU(tu) = φV (tu)

By hypothesis, φV is injective, so su = tu. Then

sx = ρUx (F)(su) = ρUx (F)(tu) = tx

so sx = tx. Hence φx is injective, as claimed.

4.1 Exactness properties of limits

Definition 4.5. Let I be a filtered set, and suppose we have three directed systems of
abelian groups, all indexed by I.

A =
{
Ai, τ

j
i (A)

}
B =

{
Bi, τ

j
i (B)

}
C =

{
Bi, τ

j
i (C)

}
Let φ : A → B and ψ : B → C be morphisms of directed systems. Recall that this means
that for each i ∈ I, we have morphisms φi : Ai → Bi and ψi : Bi → Ci, and for every i ≤ j
we have the following commutative diagram.

Ai Bi C

Aj Bj Cj

φi

τ ji (A)

ψi

τ ji (B) τ ji (C)

φj ψj
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We say A → B → C is an exact sequence of directed systems if for each i, the sequence
Ai → Bi → Ci is exact.

Remark 4.6. We describe concretely the description of the induced map on direct systems
for the category of abelian groups. Let A → B be a morphism of directed systems, with
maps φi : Ai → Bi. Recall that

lim−→Ai =

(⊔
i∈I

Ai

)
/ ∼

lim−→Bi =

(⊔
i∈I

Bi

)
/ ∼

where the relation ∼ is given by ai ∼ τ ji (A)(ai). The induced map is

lim−→φi : lim−→Ai → lim−→Bi [ai] 7→ [φi(ai)]

Proposition 4.7. If A→ B → C is an exact sequence of directed systems, then the induced
sequence lim−→Ai → lim−→Bi → lim−→Ci is exact.

Proof. Let Φ = lim−→φi : lim−→Ai → lim−→Bi and Ψ = lim−→ψi : lim−→Bi → lim−→Ci be the induced
maps on the direct limits. The fact that im Φ ⊂ ker Ψ is routine to check, so we omit it.
The reverse inclusion is more interesting, so we include a proof.

Let b ∈ ker Ψ. Then it has a representative bi ∈ Bi for some fixed i ∈ I, and ψi(bi) = 0
in Ci, so ψi(bi) is a representative for the zero element of lim−→Ci. So there exists j ∈ I with
i ≤ j such that

τ ji (C)
(
ψi(bi)

)
= 0

Then using our commutative diagram (the fact that Ψ is a morphism of directed systems),
we have

ψjτ
j
i (B)(bi) = τ ji (C)ψi(bi) = 0

That is, τ ji (B)(bi) ∈ kerψj. By exactness of Ai → Bi → Ci, kerψj = imφj, so there exists
aj ∈ Aj such that φj(aj) = τ ji (B)(bi). Let a ∈ limAi be the image of aj. Then

Φ(a) = Φ[aj] = [φj(aj)] = [τ ji (B)(bi)] = [bi] = b

Thus ker Ψ ⊂ im Φ, which completes the proof.

Remark 4.8. In contrast with the previous result, the analogous statement about inverse
limits is not quite true. The inverse limit functor is “half exact,” that is, exact on one side,
and suitable hypotheses on the inverse systems can make the resulting sequence exact. The
curious reader can look up the Mittag-Leffler condition to learn more.
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Definition 4.9. Let F ,G,H be presheaves of abelian groups on a space X. Let φ : F →
G, ψ : G → H be morphisms of presheaves. We say the sequence

F φ−→ G ψ−→ H

is an exact sequence of presheaves if for each U ⊂ X the sequence

F(U)
φU−→ G(U)

ψU−→ H(U)

is exact (in the category of abelian groups).

Corollary 4.10. If

0→ F φ−→ G ψ−→ H → 0

is a short exact sequence of presheaves of abelian groups on X 7, then the induced sequence
on stalks is exact for every x ∈ X.

0→ Fx
φx−→ Gx

ψx−→ Hx → 0

Proof. This is immediate from Proposition 4.7 and the definitions.

Definition 4.11. A sequence of sheaves of abelian groups on X is exact (in the category
of sheaves) if the sequence of stalks is exact for every x ∈ X.

Remark 4.12. The previous definition introduces some unfortunate ambiguity. When given
a sequence of sheaves, one may regard it as a sequence of sheaves or as a sequence of
presheaves. It is exact as a sequence of presheaves if the corresponding sequences on sections
over U ⊂ X are all exact for all U ⊂ X open. It is exact as a sequence of sheaves if the
corresponding sequences on stalks at x ∈ X are exact for all x ∈ X.

Thankfully, by Corollary 4.10, at least one of these implies the other. If it is exact
as presheaves, then it is exact as sheaves. However, the reverse implication is NOT true.
A sequence of sheaves may be exact as a sequence of sheaves, but not as a sequence of
presheaves.

However, a sequence of sheaves which is exact as a sequence of sheaves is at least partially
exact as a sequence of presheaves. This is made more precise in Theorem 4.15 below, which
says that if a sequence of sheaves is exact as a sequence of sheaves, it is at least left exact as
a sequence of presheaves.

However, it does (in general) fail to be right exact as a sequence of presheaves. This is
the entire motivation for sheaf cohomology, to study the failure of this right exactness by
extending such a sequence to the right to a long exact sequence, utilitizing derived functors
and so on. Also see Remark 4.15 below for further discussion.

Definition 4.13. A morphism of sheaves F → G is an isomorphism if it has a two sided
inverse (which is a morphism of sheaves).

7In the above sequence, zero refers to the zero presheaf, which is the constant sheaf with values in the
trivial group.
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Remark 4.14. An immediate consequence of the previous definitions is that a morphism of
sheaves is an isomorphism if and only if it is an isomorphism on all stalks.

Theorem 4.15. Let
0→ F φ−→ G ψ−→ H → 0

be a short exact sequence of sheaves of abelian groups on a space X. Then for every open
set U ⊂ X, the sequence

0→ F(U)
φU−→ G(U)

ψU−→ H(U)

is exact.

Proof. First, we prove exactness at the F(U) term. By assumption, all the maps on stalks
φx : Fx → Gx are injective. By Proposition 4.4, this implies that φU is injective for every
open U ⊂ X. This proves exactness at F(U).

Now we prove exactness at the G(U) term. Let K be the kernel presheaf of ψ, defined
by K(U) = kerψU . From previous work, we know K is a sheaf, not just a presheaf. By
construction, we have an exact sequence of presheaves

0→ K → G ψ−→ H

Hence by Corollary 4.10, we have an exact sequence on stalks for every x ∈ X.

0→ Kx → Gx
ψx−→ Hx

In particular, Kx = kerψx for every x. We also know that the composition ψφ : F → H is
zero as a morphism of presheaves, hence (ψφ)x = ψxφx = 0 as morphisms on stalks. Since H
is a sheaf, by Proposition 4.3 this implies that ψφ = 0, meaning for any U ⊂ X, (ψφ)U = 0.
Thus

φU (F(U)) ⊂ K(U) = kerψU

That is, we have a morphism of presheaves

φ̃ : F → K
(
φ̃
)
U

= φU : F(U)→ K(U)

Since the original sequence is an exact sequence of sheaves, we have an exact sequence on
stalks

0→ Fx
φx−→ Gx

ψx−→ Hx → 0

that is, Fx = kerψx. Hence the morphism φ̃ induces isomorphism on all stalks,(
φ̃
)
x

: Fx
∼=−→ Kx

Since it is a morphism of sheaves which induces isomorphisms on all stalks, it is an isomor-
phism of sheaves. Thus

0→ F(U) ∼= K(U)→ G(U)→ H(U)

is exact, as claimed.
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Remark 4.16. An exact sequence of sheaves 0→ F → G → H → 0 does not, in general, give
a full exact sequence on sections 0→ F(U)→ G(U)→ H(U)→ 0. The map G(U)→ H(U)
is not always surjective. This may fail even for the case X = U , that is, it may fail for global
sections. We will give an example later.

Remark 4.17. The failure of exactness on the right in this exact situation motivates the
definition of sheaf cohomology. We will define this more rigorously later, but the general idea
is to define functors H i(X,−) with i ≥ 0 from sheaves of abelian groups on X to abelian
groups in such a way that given a short exact sequence of sheaves (of abelian groups on X)
0→ F → G → H → 0, we get an induced long exact sequence

0→ H0(X,F)→ H0(X,G)→ H0(X,H)→ H1(X,F)→ H1(X,G)→ H1(X,H)→ H2(X,F)→ · · ·

where H0(X,F) = F(X), H0(X,G) = G(X), H0(X,H) = H(X). For those who already
know something about derived functors, the functors H i(X,−) will be the right derived
functors of the “global sections” functor F 7→ F(X).

Remark 4.18. Despite the fact that G(U)→ H(U) may fail to be surjective in the situation
above, by definition of exactness of a sequence of sheaves, we know that the morphisms
Gx → Hx are surjective for every x ∈ X. So we may still say a litte about what is going on.

Given U ⊂ X open with h ∈ H(U), there may not be g ∈ G(U) such that ψU(g) = h,
but for any x ∈ U , we can consider the class represented by h in the stalk Hx (recall Hx is
a direct limit over a system involving H(U), which we denote hx = ρUx (h). Since the map
ψx : Gx → Hx is surjective, there exists gx ∈ Gx such that ψx(gx) = hx. We may then choose
a representative g ∈ G(Ux) for gx, where Ux ⊂ U is a neighborhood of x. That is,

ψxρ
U
x (g) = ψx(gx) = hx = ρUx (h)

Hence ψU(g) and h represent the same element of the stalk Hx. Another way to think about
this is that by definition of what it means for two sections to represent the same element of
the stalk, there is a neighborhood Vx ⊂ Ux such that the restrictions of h and ψUx(g) are
equal. That is,

ρUVx(H)(h) = ρUxVx (H)
(
ψUx(g)

)
= ψVx

(
ρUxVx (G)(g)

)
Summarizing, given h ∈ H(U), there exists a neighborhood V with x ∈ V ⊂ U and a section
s ∈ G(V ) such that

ψV (s) = ρUV (h)

When ψU : G(U) → H(U) has this property, we say that ψU is locally surjective. More
broadly, this property of ψ is called local surjectivity.

Example 4.19 (Concrete failure of surjectivity on sections). We give a specific example of a
short exact sequence of sheaves where the right term of global sections fails to be surjective.
Let X be an open subset of C, and let O be the sheaf of holomorphic functions on X. That
is, for U ⊂ X, O(U) is the C-algebra of holomorphic functions U → C. The restriction maps
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are literal function restrictions. This makes O a sheaf on X. (O is called the structure
sheaf on X.)

Let C be the sheaf of locally constant functions on X, that is, C(U) is the C-algebra
of locally constant functions U → C. Once again, restriction maps are literal function
restrictions. C is in fact a sheaf.

Let ψ : O → O be the morphism of sheaves defined by ψU : O(U)→ O(U) where ψU is
the differentiation operator d

dz
. That is, ψU(f) = df

dz
. This gives a morphism of sheaves, and

C is exactly the kernel sheaf. Then we claim that we have an exact sequence of sheaves

0→ C → O ψ−→ O → 0

Exactness at the first two terms is reasonably plausible and not terribly complicated, so we’ll
just justify exactness at the right side. That is, we will justify that each morphism on stalks
ψx : Ox → Ox is surjective.

Given any open neighborhood U of x, and a holomorphic function g : U → C, we just need
to find a smaller neighborhood of x on which g has an antiderivative. We can always find a
small neighborhood Ux of x which is simply-connected, and then using theorems of Cauchy
and Morrera, a holomorphic function on a simply-connected region has an antiderivative.
That is, there exists f ∈ O(Ux) such that df

dz
= ψUx(f) = ρUUx(g). Thus ψx is surjective.

If X is a simply-connected region, then the same argument as above shows that OX :
O(X)→ O(X) is surjective. However, if X is not simply-connected, then there are holomor-
phic functions on X which do not possess a global antiderivaitve. For example, take X to
be the punctured plane, and consider f(z) = 1

z
. By various results in complex analysis, this

does not have a global antiderivative, so in this situation, O(X)→ O(X) is NOT surjective,
even though all of the maps on stalks are surjective. Hence the induced sequence on sections
need not be exact at the right side.

Definition 4.20. A sheaf F on X is flasque or flabby if the restriction maps ρUV : F(U)→
F(V ) are surjective for all V ⊂ U ⊂ X. Equivalently, the maps ρXU : F(X) → F(U) are
surjective for all U ⊂ X.

Example 4.21. A skyscraper sheaf is flasque.

Remark 4.22. For those who know something about derived functors, we are going to show
that flasque sheaves are acyclic objects with respect to the global sections functor.

Theorem 4.23. Let
0→ F φ−→ G ψ−→ H → 0

be a short exact sequence of sheaves of abelian groups on X.

1. If F is flasque, then all induced sequences on sections are exact.

0→ F(U)
φU−→ G(U)

ψU−→ H(U)→ 0

2. If F and G are flasque, then H is also flasque.
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Proof. To prove (1), it suffices to prove that the sequence on global sections is exact. We
already know it is exact on the left, so we just need to show that ψX : G(X) → H(X) is
surjective. This will be a somewhat convoluted argument involving Zorn’s lemma.

Take an arbitrary global section t ∈ H(X), and let x ∈ X. By assumtion, the map
on stalks ψx : Gx → Hx is surjective, so there exists a neighborhood U of x and a section
s ∈ G(U) such that ψU(s) = ρXU (H)(t). Our goal is to show that we can choose U = X, in
which case we have found a global section s so that ψX(x) = t.

Consider all pairs (U, s) with U an open neighborhood of x, and s ∈ G(U) such that
ψU(s) = ρXU (H)(t). Let S be the set of all such pairs. We then partially order S by
“inclusion,” meaning that (U1, s1) ≤ (U2, s2) whenever U1 ⊂ U2 and ρU2

U1
(s2) = s1. In order

to apply Zorn’s lemma to S, we need to show that every chain in S has an upper bound.
Suppose we have a chain in S,

(U1, s2) ≤ (U2, s2) ≤ · · ·

This has an upper bound given by (U, s) where

U =
⋃
i

Ui

and s ∈ G(U) is the section obtained by gluing all of the si. This gluing is possible because
ρUiUj(si) = sj by definition of ≤ in S.

Hence we may apply Zorn’s lemma to S, to conclude that there is a maximal element
(U, sU). Now our goal is to prove that the maximal element is (U = X, sU) so that s is a
global section for G which maps to our given section t ∈ H(X). In order to prove that X
is the maximal subset, we will prove that anything other than X cannot be maximal, by
extending it to a larger open subset of X.

To that end, suppose U ⊂ X and U 6= X, where (U, sU) is the maximal element of S.
Then choose x ∈ X \ U . By local surjectivity of ψ, there exists an open neighborhood V of
x and a section sV ∈ G(V ) such that ψV (sV ) = ρxV (H)(t). Then

ψU∩V

(
ρUU∩V (G)(sU)− ρVU∩V (G)(sV )

)
= ρXU∩V (H)(t)− ρXU∩V (H(t) = 0

By left exactness of the sequence on sections, this means that

ρUU∩V (G)(sU)− ρVU∩V (G)(sV ) ∈ kerψU∩V = imφU∩V = φU∩V (F(U ∩ V )

Since F is flasque, ρVU∩V : F(V ) → F(V ∩ U) is surjective, so there exists r ∈ F(V ) such
that

φU∩V ρ
V
U∩V (r) = ρUU∩V (G)(sU) = ρVU∩V (G)(sv)

Now set s′V = SV + φV (r). By construction, s′V agrees with sU on the intersetion, i.e.

ρVU∩V (s′V ) = ρVU∩V (sU)
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Hence we may glue s′V , sU to obtain a section sU∪V ∈ G(U ∪ V ). Thus

(U ∪ V, sU∪V )

is an element of S, which is strictly bigger than (U, sU). This contradicts maximality of
(U, sU). So we reject the possibility that U 6= X, and conclude that X = U and s ∈ G(U) is
a global section which satisfies ψX(s) = t. This finishes the proof of part (1).

Now we prove part (2). This would be entirely obvious after developing a bit of sheaf
cohomology, but we can also prove it by a straightforward diagram chase. Let U ⊂ X be
open. Then we have the following commutative diagram with exact rows. (The rows are
exact on the right because F is flasque.)

0 F(X) G(X) H(X) 0

0 F(U) G(U) H(U) 0t

ρXU (F)

φX

ρXU (G)

ψX

ρXU (H)

φU ψU

We need to show that ρXU (H) is surjective, and we know that ρXU (G) is surjective. Choose
t ∈ H(U), then lift to an element of G(U), then lift to an element of G(X), then take the
image of this lift under ψX . This element maps (under ρXU (H)) to t.

4.2 Summary of definitions of exactness

Since the various definitions and results about exactness for presheaves and sheaves have
lots of subtle differences, we summarize them here as a reference. Fix a space X. U denotes
an open subset of X and x denotes a point in X.

Exact sequence of presheaves ⇐⇒ Exact sequence on sections on every U
Exact sequence of presheaves =⇒ Exact sequence on stalks at every x
Exact sequence of presheaves =⇒ Exact sequence of sheaves
Exact sequence of sheaves ⇐⇒ Exact sequence on stalks at every x
Exact sequence of sheaves =⇒ Left exact sequence on sections on every U
Exact sequence of sheaves,

with left sheaf flasque =⇒ Exact sequence on sections on every U

We give another graphic to represent the same information. Let F ,G,H be presheaves on
X, and F+,G+,H+ sheaves on X.

0→ F → G → H → 0 exact ⇐⇒ 0→ F(U)→ G(U)→ H(U)→ 0 exact ∀U
0→ F → G → H → 0 exact =⇒ 0→ Fx → Gx → Hx → 0 exact ∀x
0→ F → G → H → 0 exact as presheaves =⇒ 0→ F → G → H → 0 exact as sheaves
0→ F+ → G+ → H+ → 0 exact ⇐⇒ 0→ F+

x → G+
x → H+

x → 0 exact ∀x
0→ F+ → G+ → H+ → 0 exact =⇒ 0→ F+(U)→ G+(U)→ H+(U) exact ∀U
0→ F+ → G+ → H+ → 0 exact, F+ flasque =⇒ 0→ F+(U)→ G+(U)→ H+(U)→ 0 exact ∀U
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I think the one thing that remains consistently confusing is that saying “0→ F+ → G+ →
H+ → 0 is exact” is ambiguous, in the case where they are sheaves. Is it meant that it is exact
in the category of sheaves, or in the category of presheaves? Both are possible interpretations,
since every sheaf is an object in the category of presheaves, and every morphism of sheaves
is a morphism in the category of presheaves.

The convention demanded by the definitions is that this only means that the sequence
is exact in the category of sheaves, since in general, an exact sequence of sheaves does NOT
make an exact sequence on sections, which would have to be the case if it were exact as
a sequence of presheaves. On the other hand, an exact sequence of presheaves, if all the
presheaves are sheaves, is an exact sequence of sheaves.

Another way to phrase this is that being exact as a sequence of presheaves is a stronger
requirement than being exact as a sequence of sheaves.

4.3 Epimorphisms

This section spends some time to justify the slightly asymmetrical definitions of exactness
of sequences for sheaves and presheaves. Essentially, the justification is in the fact that the
definitions as given coincide with more general categorical notions, primarily in terms of
epimorphisms.

Definition 4.24. A morphism f : X → Y in a category C is an epimorphism if for any
two morphisms g1, g2 : Y → Z we have the implication

g1f = g2f =⇒ g1 = g2

Example 4.25. In the category of abelian groups, a morphism is an epimorphism if and
only if it surjective. We give a proof of this fact. It is clear that a surjective morphism
is an epimorphism. Conversely, suppose f : X → Y is an epimorphism, and consider
Z = Y/f(X) = coker f , and the following maps.

X Y Z = Y/f(X)
f π

0

where π is the quotient map and 0 is the zero map. Suppose f is not surjective. Then π, 0
are not the same map, bu πf = 0f , contradicting the epimorphism property. Hence f is
surjective.

Lemma 4.26. Let X be a space, and F ,G be presheaves of abelian groups on X. A morphism
of presheaves φ : F → G is surjective as a morphism of presheaves if and only if it is an
epimorphism in the category of presheaves.

Proof. This is essentially the same proof as for abelian groups. Consider the cokernel presheaf

cokerφ = C C(U) = G(U)/φU(F(U))

and repeat the argument of the previous example.
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This is the point where we can finally explain why “surjective as a morphism of sheaves”
is not defined in the same way that “surjective as a morphism of presheaves” is defined.
Recall that a morphism of presheaves is surjective if the maps on open sets are surjective,
but a morphism of sheaves is surjective (as a morphism of sheaves) if the maps on stalks
are surjective. If we had defined a morphism of sheaves to be surjective if the maps on open
sets were surjective, then the previous lemma would not generalize to sheaves, because the
cokernel presheaf is not in general a sheaf.

Because the cokernel presehaf is not in general a sheaf, we need to instead look at the
sheafification of the cokernel presheaf.

Proposition 4.27. Let X be a space, and let F ,G be sheaves of abelian groups on X. Let
φ : F → G be a morphism of sheaves. Let C be the cokernel presheaf on φ, and let θ : C → C+

be the sheafification of C. The following are equivalent.

1. φ is an epimorphism in the category of sheaves.

2. C+ is the zero sheaf.

3. φ is surjective as a morphism of sheaves (all induced maps on stalks are surjective).

Proof. First, we prove (2) ⇐⇒ (3). First, recall that the zero sheaf has stalks which
are trivial, and all stalks being trivial forces a sheaf to be the zero sheaf. By definition of
exactness for presheaves, we have an exact sequence of presheaves

F φ−→ G → C → 0

which induces an exact sequence on stalks

Fx
φx−→ Gx → Cx → 0

Also recall that the sheafification map θ induces isomorphisms on all stalks, θx : Cx → C+
x .

So if φ is surjective as a morphism of sheaves, all φx are surjective, hence all Cx are zero,
hence all C+ are zero, hence C+ is the zero sheaf. This proves (3) =⇒ (2). Conversely,
if C+ is zero, then all stalks are zero, and φx is surjective for every x, which is to say, φ is
surjective as a morphism of sheaves. This proves (2) =⇒ (3).

Now we prove that (2), (3) together imply (1). Consider morphisms of sheaves g1, g2 :
G → H such that g1φ = g2φ. To prove φ is an epimorphism, we need to show g1 = g2.
Considering the morphisms on stalks, we get that for any x ∈ X,

g1,xφx = g2,xφx

By (3), φx is surjective, so g1,x = g2,x. Since G,H are sheaves, by Corollary 4.3 g1 = g2.
Hence φ is an epimorphism, proving (1).

Finally, we prove (1) =⇒ (3), which completes the equivalence. Let φ be an epimor-
phism. Suppose to the contrary that for some x0 ∈ X, the induced map on stalks φx0 is not
surjective. Consider the diagram
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F G C C+φ π

0

θ

where π is the canonical quotient map with πU : G(U) → C(U) = G(U)/φ(F(U)) being the
quotient map, and zero refers to the map which is the zero map on each G(U). It is clear
that

θ ◦ π ◦ φ = θ ◦ 0 ◦ φ

Since φ is an epimorphism, it follows that θ ◦ π = θ ◦ 0. In particular, on the stalks at x0,
we get

θx0 ◦ πx0 = θx0 ◦ 0x0

Since θx0 is an isomorphism, πx0 = 0x0 . This implies that φx0 is surjective, which is a
contradiction. So we conclude that φ is surjective as a morphism of sheaves. Thus (1) =⇒
(3).

4.4 Image presheaf

We start by recalling the definition which we introduced earlier.

Definition 4.28. Let φ : F → G be a morphism of sheaves. The image presheaf is the
presheaf on X given by

I(U) = φU(F(U))

It is a subpresheaf of G, meaning the restriction maps are induced by the restriction maps
for G.

Since we are more interested in sheaves than presheaves, we would like it if the image presheaf
was always a sheaf. Unfortunately, this is not generally the case, as demonstrated in the
following example.

Example 4.29 (Failure of image presheaf to be a sheaf). Let X ⊂ C be an open subset
which is not simply-connected. Let O be the sheaf of holomorphic functions on X, and let
φ : O → O be the differentiation operator.

φU : O(U)→ O(U) f 7→ df

dz

Then we see that the sections of the image presheaf, I(U) = φ(O(U)) is the C-algebra
of holomorphic functions on U which have an antiderivative on U . Since X is not simply
connected, there exist holomorphic functions on X which do not possess an antiderivative.
Let f : X → C be such a function. However, it is possible to cover X by simply connected
neighborhoods,

X =
⋃
α

Uα

Then set fα = f |Uα . Since Uα is simply connected, by various powerful theorems in complex
analysis, fα has an antiderivative on Uα. It is then possible to glue the holomorphic functions
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fα to obtain a holomorphic function on X, namely f , using the fact that O is a sheaf. But
by construction, f is a section of the image presheaf I(X). So I does NOT have the gluing
property, hence it is not a sheaf.

Definition 4.30. For a morphism of sheaves φ : F → G, the inclusion of the image presheaf
i : I ↪→ G factors through the sheafification I+, by the universal property of sheafification.

I G

I+

i

θ
i+

Since i is injective (as a morphism of presheaves), i+ is injective (as a morphism of sheaves
and/or presheaves). The sheaf I+ is the image sheaf of φ. It is a subsheaf of G.

Remark 4.31. Let φ : F → G be a morphism of sheaves, and I the image presheaf and I+

the image sheaf. By construction of I, the sequence

F φ−→ I → 0

is an exact sequence of presheaves, so the induced sequence on stalks is also exact.

Fx
φx−→ Ix → 0

Since θx gives an isomorphism Ix ∼= I+
x , we get an exact sequence

Fx
θx◦φx−−−→ I+

x → 0

Hence φx : Fx → Gx is surjective if and only if I+
x → Gx is surjective.

Corollary 4.32. A morphism φ : F → G of sheaves of abelian groups on X is surjective if
and only if the image sheaf coincides with G.

Proof. Following the discussion in the previous remark, φx is surjective for all x if and only
if I+

x → Gx is surjective for all x, so φ is surjective as a morphism of sheaves if and only
if I+ and G have isomorphic stalks everywhere, which happens if and only if I+ and G are
isomorphic as sheaves.
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5 Sheafification

We have already stated the main result/universal property/existence of sheafification, and we
have already been using it without reservation, but we have not given a proof/construction
of this result. The goal of this section is to do that. Given a presheaf F on X, the strategy
is to construct a topological space E with a local homeomorphism π : E → X with the
following properties.

1. The fiber π−1(x) = Ex is isomorphic to the stalk Fx.

2. For U ⊂ X open, let Γ(U, π) be the set of continuous sections s : U → E of π, meaning
πs = IdU . We want Γ(−, π) to be a sheaf on X.

In the end, the sheaf Γ will be the sheafification F+. The space E constructed along the
way is known as the étale space of the presheaf F .

5.1 Local homeomorphisms

First, in order to motivate the construction, we start with some generalities about local
homeomorphisms. Most of the proofs will be omitted.

Definition 5.1. A map π : E → X of topological paces is a local homeomorphism
if for every e ∈ E, there exist open neighborhoods Oe ⊂ E and Ux = Uπ(e) ⊂ X with
e ∈ Oe, x ∈ Ux such that

π|Oe : Oe → Ux

is a homeomorphism.

Example 5.2. Let X be any space, and U ⊂ X a proper open subset. The inclusion U ↪→ X
is a local homeomorphism.

Example 5.3. Recall that a covering map is a surjective continuous map π : E → X such
that for every x ∈ X, there exists a neighborhood U of x such that the preimage of U under
π is a disjoint union of homeomorphic copies of U . More precisely,

π−1(U) =
⊔
α

Vα

and for each α, π|Vα : Vα → U is a homoeomorphism. A covering map is an example of a
local homeomorphism. Note that not every local homeomorphism is a covering space, as the
previous example of a simple inclusion shows.

Definition 5.4. Let X be a topological space. A pair (E, π) of a space E and a local
homeomorphism π : E → X is a étale space over X. In this situation, E is called the
total space, and X is called the base space.
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Definition 5.5. Let π : E → X be a continuous map, and let U ⊂ X be an open subset. A
section of π over U is a continuous map s : U → E such that πs = IdU . The set of all such
sections is denoted Γ(U, π).

Proposition 5.6. Let π : E → X be a local homeomorphism, and let Ex = π−1(x) be the
fiber over x. Then

1. π is an open map.

2. E is the union of the fibers,

E =
⋃
x∈X

π−1(x) =
⋃
x∈X

Ex

and each fiber Ex is discrete under the subspace topology.

3. If s1 : U1 → E and s2 : U2 → E are sections such that there is a point x ∈ U1∩U2 ⊂ X
with s1(x) = s2(x), then there exists an open neighborhood V of x such that s1|V = s2|V .

4. For any U ⊂ X open and any section s : U → E, the image s(U) is open in E, and

homeomorphic to U , via s. That is, s =
(
π|s(U)

)−1
.

5. Sets of the form s(U) where U ranges over open subsets of X and s ranges over sections
of U form a basis of the topology on E. Philosophically, the topology on E is determined
by the topology on X and sections of π.

Proof. This is all just point-set topology, which is not the focus of this class. See a resource
such as Munkres book on topology.

Proposition 5.7. Let π : E → X be a local homeomorphism. Define

F(U) = Γ(U, π)

and for V ⊂ U ⊂ X open subsets define

ρUV : F(U)→ F(V ) s 7→ s|V

Then F is a sheaf of sets on X. Moreover, for each x ∈ X, the stalk Fx is isomorphic to
(in bijeciton with) the stalk Ex = π−1(x).

Before we get to the proof, note that the important part of the previous proposition is the
isomorphism Fx ∼= Ex. The fact that F is a sheaf is not so profound, it is mostly obvious.
In fact, F is a sheaf if π is any continuous map; it need not be a local homeomorphism. The
important and interesting part is the fact that π being a local homeomorphism gives a lot
of structure to the stalks.
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Proof. First we verify that F is a sheaf. Note that F is a subpresheaf of the sheaf of
continuous E-valued functions on X, so we know automatically that F is separated. To
prove gluing, note that it is always possible to glue sections to obtain a continuous map, it
just suffices to show that the resulting glued function is a section. Let U ⊂ X be open, and
take an open cover,

U =
⋃
α

Uα

and suppose we have sections sα ∈ Γ(Uα, π) = F(Uα). We glue them together to obtain a
continuous map s : U → E using the gluing property for continuous functions. Since sα is a
section of π, we know πsα = IdUα for each α, so for x ∈ Uα,

πs(x) = πs|Uα(x) = x

Thus πs = IdU , so s is a section. Hence F is a sheaf. Now we prove the statement regarding
stalks. Let x ∈ X, and define

ηU : F(U) = Γ(U, π)→ Ex s 7→ s(x)

We want to use the maps ηU to induce a map on the direct limit η : Fx → Ex. That is, we
want to define

η : Fx = lim−→
x∈U
F(U)→ Ex [s] 7→ s(x)

To verify that this is well defined, we need to check that if s1, s2 are sections with [s1] = [s2],
then s1(x) = s2(x). Suppose we have sections s1 : U1 → E and s2 : U2 → E which represent
the same element in the stalk Fx. Then we know that there is a neighborhood of x on which
s1, s2 agree; in particular, s1(x) = s2(x). Hence η is well defined.

We claim that η is a bijection. First we prove η is surjective. Because π is a local
homeomorphism, lgiven e ∈ Ex = π−1(x), we can find open neighborhoods Oe of e and Ux
of x = π(e) such that

π|Oe : Oe → Ux

is a homoemorphism. Then
(π|Oe)

−1 : Ux → Oe

is a section of π, and

η
[
(π|Oe)

−1] = (π|Oe)
−1 (x) = (π|Oe)

−1 (π(e)) = e

Hence η is surjective. Now we prove η is injective. Suppose two elements of the stalk have
the same value under η, η[s1] = η[s2]. Then s1(x) = s2(x). By part (3) of Proposition 5.6,
there is an open neighborhood of x on which s1, s2 agree. That is, [s1] = [s2]. Thus η is
injective. This completes the required bijection

Fx ∼= Ex
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5.2 Étale space of a presheaf

In order to construct the sheafification of a presheaf, we start by constructing the étale space
of the presheaf, which is basically reverse engineered by examining the proof of the previous
proposition. We know that if we have a local homeomorphism π : E → X gives a sheaf
whose stalks are precisely the fibers, so we take a presheaf F and start by constructing a
space E and map π : E → X such that the fibers are the stalks Fx.

Definition 5.8. Let X be a topological space, and let F be a presheaf of sets on X. The
étale space of F is

E =
⊔
x∈X

Fx

We define a map π : E → X by sending all points in the stalk Fx to the point x.

By definition, we now have a space E and a map π : E → X which captures sufficient
information about the stalks, that is, the (set-theoretic) fibers of π are precisely the stalks of
F . However, E as yet has no topology, so it doesn’t even make sense to ask if π is continuous,
let alone whether π is a local homeomorphism. The next goal is to remedy this, by equipping
E with a topology which makes π a (continuous) local homeomorphism.

To define the topology on E, we again reverse the process of our previous work. We
previously noted that if π : E → X is a local homeomorphism, then the sets s(U) for U ⊂ X
open and s ∈ Γ(U, π) give a basis for the topology on U . So now we follow that prompting,
and define the topology on E in this way.

Proposition 5.9. Let F be a presheaf of sets on a space X, and let π : E → X be the étale
space of F . For U ⊂ X open and s ∈ F(U), define

s̃ : U → E x 7→ ρUx (s) ∈ Fx ⊂ E

Then

1. The sets s̃(U) for U ⊂ X open and s ∈ F(U) form a basis for a topology on E.

2. Giving E the above topology makes π : E → X a local homeomorphism, and each
s̃ : U → E is a continuous section of π.

Proof. It is clear that E is covered by such sets s̃(U), since an element of the stalk Fx is of
the form ρUx (s) for some U ⊂ X, s ∈ F(U).

E =
⋃
U⊂X
s∈F(U)

s̃(U)

In order to show that the sets s̃(U) can form a basis, we need to show that an intersection of
two such sets contains a third such set. In fact, we will show that the intersection is anothe
set of this form.
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Consider two arbitrary alleged basis sets for E; namely, take arbitrary open subsets
U1, U2 ⊂ X and sections s1 ∈ F(U1), s2 ∈ F(U2), and consider the intersection s̃1(U1) ∩
s̃2(U2).

s̃1(U1) ∩ s̃2(U2) = {e ∈ E : ∃x1 ∈ U1, x2 ∈ U2 such that e = s̃1(x1) = s̃2(x2)}

The condition that
ρU1
x1

(s1) = s̃1(x1) = s̃2(x2) = ρU2
x2

(s2)

only makes sense when they are all in the same stalk, which is to say, when x1 = x2, so we
use x to denote this common value (note that x ∈ U1 ∩U2). It is also clear that if s̃1(x) = e,
then π(e) = x. So we may rewrite the intersection as

s̃1(U1) ∩ s̃2(U2) = {e ∈ E : ∃x ∈ U1 ∩ U2 such that x = π(e) = s̃1(x) = s̃2(x)}
= {s̃1(x) : x ∈ U1 ∩ U2, s̃1(x) = s̃2(x)}

Now define
U =

{
x ∈ U1 ∩ U2 : ρU1

x (s1) = s̃1(x) = s̃2(x) = ρU2
x (s2)

}
We claim that U is open in X. If y ∈ U , then by definition of equality in stalks, there exists
an open neighborhood V with x ∈ V ⊂ U such that s1|V = s2|V . All we care about is that
x has an open neighborhood inside of U , which proves U is open. Now define s ∈ F(U) by
s = ρUU1

(s1). We claim that
s̃1(U1) ∩ s̃2(U2) = s̃(U)

which will finish the proof of (1).

s̃(U) = {s̃(x) : x ∈ U}
=
{
ρUx ρ

U1
U (s1) : x ∈ U

}
=
{
ρU1
x (s1) : x ∈ U1 ∩ U2, s̃1(x) = s̃2(x)

}
= {s̃1(x) : x ∈ U1 ∩ U2, s̃1(x) = s̃2(x)}
= s̃1(U1) ∩ s̃2(U2)

This finishes the proof of (1). Now we prove (2). Using (1), the sets s̃(U) cover E and form
a basis for the topology, and it is immediate that πs̃ = IdU . Thus π is an open map and the
restriction of π to s̃(U) is a bijection. We also need to verify that π is continuous, which we
do now. Let U ⊂ X be open. Then

π−1(U) =
⋃
x∈U

Fx

Each e ∈ Fx is of the form e = ρVx (s) for some V ⊂ U open and some s ∈ F(V ), so this can
be rewritten as

π−1(U) =
⋃
x∈U

Fx =
⋃

V⊂U open
s∈F(V )

s̃(V )
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Each s̃(V ) is open by definition, hence π−1(U) is open, hence π is continuous. Using what
we said before, π is open and gives a continuous and open bijection between s̃(U) and U , for
U ⊂ X arbitrary and open. Hence π is a local homeomorphism.

All that remains is to verify that s̃ is a continuous section of π. We already know it is a
set-theoretic section of π, and the maps s̃ : U → s̃(U) and π|s̃(U) : s̃(U)→ U are inverse, so
the fact that π is open means s̃ is continuous.

Before we can get to the main result of sheafification, we need one somewhat techni-
cal/categorical lemma regarding “functoriality” of the étale space.

Lemma 5.10 (Functoriality of étale space). Let φ : F → G be a morphism of presheaves on
X. Let

πF : EF → X πG : EG → X

be the respective étale spaces. Then φ induces a continuous map

φ̃ : EF → EG e 7→ φπF (e)(e) ∈ Gx

Another way to say the above is that if e ∈ Fx ⊂ EF , then φ̃(e) = φx(e). Also, the following
diagram commutes.

EF EG

X

πF

φ̃

πG

Proof. The final commutative diagram is obvious from the definition of φ̃, all that we need
to verify is that φ̃ is continuous. It suffices to show that the preimage (under φ̃) of a basic
open set of EG is open in EF . To fix notation, for s ∈ F(U) or t ∈ G(U), define

s̃ : U → EF s̃(x) = ρUx (F)(s)

t̂ : U → EG t̂(x) = ρUx (G)(t)

Let t̂(U) ⊂ EG be a basic open subset. Then

φ̃−1
(
t̂(U)

)
=
{
e ∈ EF : φ̃(e) ∈ t̂(U)

}
=
{
e ∈ EF : φπF (e)(e) ∈ t̂(U)

}
=
{
e ∈ EF : ∃x ∈ U such that φπF (e)(e) = t̂(x) in Gx

}
=
{
e ∈ EF : ∃x ∈ U such that φπF (e)(e) = ρUx (G)(t) in Gx

}
=
{
e ∈ EF : φπF (e)(e) = ρUπF (e)(G)(t) in Gx

}
In order to show this is open, given e ∈ φ̃−1(t̂(U)), it suffices to show that there is a basic open

subset of EF containing e contained in φ̃−1(t̂(U)). Let e ∈ φ̃−1(t̂(U)), and let x = πF(e) ∈ X.
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By the above, x ∈ U . Choose a section s ∈ F(U) representing e, that is, ρUx (F)(s) = e.
Then we have φU(s) ∈ G(U), and because φ is a morphism of presheaves,

ρUx (G)
(
φU(s)

)
= φx

(
ρUx (F)(s)

)
= φx(e) = ρUx (G)(t)

we see that φ(s), t represent the same element of the stalk Gx. Then by definition of equality
of elements of stalks, there is an open neighborhood V ⊂ U of x = πF(e) on which φU(s), t
agree.

ρUV (G)
(
φU(s)

)
= ρUV (G)(t)

Now let s′ = ρUV (F)(s). We claim that that s̃′(V ) is the required basic open subset of EF
containing e which is contained in φ̃−1(t̂(U)). It is clear that e ∈ s̃′(V ), and that s̃′(V ) is

open, we just need to show s̃′(V ) ⊂ φ̃(t̂(U)). To see this, take an arbitrary element y ∈ V
and consider ρVy (F)(s′) ∈ s̃′(V ) ⊂ EF . We want to show φ̃(ρVy (F)(s′)) ∈ t̂(U).

φ̃
(
ρVy (F)(s′)

)
= φy

(
ρVy (F)(s′)

)
= φy

(
ρVy (F) ◦ ρUV (F)(s)

)
= ρVy (G)

(
φV
(
ρUV (F)(s)

))
= ρVy (G) ◦ ρUV (G)(φU(s))

= ρVy (G)
(
ρUV (G)(t)

)
= ρUy (G)(t)

This last line is clearly an element in t̂(U), so we are done.

Remark 5.11. Another way to rephrase the previous lemma is that the assignment F 7→ EF
is a covariant functor from the category of presheaves on X to the category of étale spaces
over X, where objects are pairs (E, π) with π : E → X a local homeomorphism, and
morphisms are morphisms over X.

E : PSh(X)→ {étale spaces over X} F 7→ (EF , πF)

There is some mild verification to check that this respects compositions and the identity, but
these are relatively obvious.

5.3 Sheafification - main result

We have already stated the main fact of sheafification, although at that point we had not
yet developed the language of stalks, so this formulation will be more complete. More
significantly, now that we have developed results about the étale space of a presheaf, we can
prove the theorem.
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Theorem 5.12 (Existence of sheafification). Let F be a presheaf of sets on a topological
space X. There exists a sheaf F+ on X and a morphism of presheaves θ : F → F+ such
that

1. For every x ∈ X, the induced map on stalks θx : Fx → F+
x is a bijection.

2. If G is a sheaf and φ : F → G is a morphism of presheaves, then φ factors uniquely
through F+. Explicitly, there exists a unique morphism of sheaves ψ : F+ → G making
the following diagram commute.

F F+

G
φ

θ

ψ

Before the proof, we make a few observations/remarks/interpretations.

1. The condition that θx be a bijection says that F+ is “as close as possible” to F .

2. The universal property (condition 2) implies that F+ is unique up to isomorphism.

3. Either of the two conditions implies that θ is an isomorphism if and only if F is already
a sheaf.

Proof. Let π : E → X be the étale space of F . We will define F+ to be the sheaf of
continuous sections of π.

F+(U) = Γ(U, π) = {s : U → E | πs = IdU , s is continuous}

We know from a general example that this gives a sheaf, so we already know F+ is a sheaf.
We will define the morphism θ by

θU : F(U)→ F+(U) s 7→ s̃

recalling that s̃ : U → E is defined by x 7→ ρUx (s). There are several things to show:

1. θ defined by the maps θU on sections gives a morphism of presheaves.

2. θx gives a bijection on stalks.

3. F+, θ satisfy the universal property.

First, we verify that θ is a morphism of sheaves, which requires commutativity of the following
diagram for V ⊂ U ⊂ X open sets. The map ρ̃UV is the restriction map associated with the
sheaf F+, which is just literal function restriction, since F+ is a sheaf of continuous functions.
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F(U) F+(U)

F(V ) F+(V )

θU

ρUV ρ̃UV

θV

Let s ∈ F(U). The image (either way around the square) in F+(V ) is a continuous section
V → E, so to check that the images are equal we evaluate them on an arbitrary element
x ∈ V .

ρ̃UV θU(s)(x) = ρ̃UV (s̃)(x) = s̃|V (x) = s̃(x) = ρUx (s)

θV ρ
U
V (s)(x) = ρVx ρ

U
V (s) = ρUx (s)

These are equal, so the diagram commutes, so θ is a morphism of presheaves. Now we verify
that θx is a bijection on stalks. Previously, we showed that we have a bijection

F+
x
∼= π−1(x) = Fx

which is induced by
σUx : F+(U)→ Fx t 7→ t(x)

and then passing to the direct limit. We claim that this bijection is in fact induced by θ,
which follows if we can show commutativity of the following diagram.

F(U) F+(U)

Fx F+
x

θU

ρUx σUx

θx

This is commutative because for s ∈ F(U), we have

σUx θU(s) = σUx (s̃) = s̃(x) = ρUx (s) = θxρ
U
x (s)

Hence θx is a bijection on stalks. Finally, we need to prove the universal property, which is
essentially a consequence of Lemma 5.10. Let G be a sheaf, and φ : F → G be a morphism
of presheaves. Using the lemma, φ induces a continuous map φ̃ on the étale spaces.

E = EF EG

X

φ̃

π=πF πG

In particular, for U ⊂ X open, φ+
U is given by

φ+
U : Γ(U, πF) = F+(U)→ Γ(U, πG) = G+(U) s̃ 7→ φ̃s̃

We then have the following commutative diagram, where θG is the analogous morphism of
presheaves defined as we defined θ = θF for F .
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F(U) G(U)

F+(U) G+(U)

φU

θ=θF θG

φ+U

This commutes because for s ∈ F(U) and x ∈ U , we have

θ+
U θF(s)(x) = θ+

U (s̃)(x) = φ̃s̃(x) = φ̃ρUx (F)(s) = φxρ
U
x (F)(s)

θGφU(s)(x) = φ̃U(s)(x) = ρUx (G)φU(s) = φxρ
U
x (F)(s)

Because the above square commutes, the corresponding square of morphisms of presheaves
commutes (depicted below).

F G

F+ G+

φ

θF θG

φ+

Since G is a sheaf and θG is a morphism of sheaves which induces bijections on all stalks (by
previous parts of this proof), θG is an isomorphism of sheaves. Hence θ−1

G φ+ : F+ → G is
the required morphism making the triangle commute.

F F+

G
φ

θ

ψ=θ−1
G φ+

Finally, we need to check that this morphism is unique. Suppose ψ, ψ′ : F+ → G are two
morphisms of sheaves which make the diagram commute. Then they also make the induced
diagram on stalks commutes for each x ∈ X.

Fx F+

Gx
φx

θx

ψx,ψ′x

Since θx is a bijection, ψx and ψ′x are both determined by φx, that is, ψx = ψ′x = φxθ
−1
x . Since

ψ, ψ′ are morphisms of sheaves which induce all the same morphisms on stalks, they must
be the same. This completes the proof of uniqueness, which finishes proving the universal
property.

Remark 5.13. It is possible, in priniciple, to describe the sheafification of a presheaf without
explicit use of the étale space, although the construction then appears very strange and
unmotivated on a first reading. For such a description, see Hartshorne’s book on algebraic
geometry.
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Remark 5.14. One of the more useful concrete details to come out of the previous proof
is that we do not merely have an existence statement about sheafification, but we have a
concrete construction in terms of the étale space. A further consequence of this the following:
given any sheaf F , by uniqueness F is isomorphic to its own sheafification, so F is isomorphic
to the sheaf of continuous sections of its étale space. That is to say, we can think of any sheaf
F on a space X as a sheaf of continuous sections of some local homeomorphism π : E → X.

Example 5.15 (Sheafification of the constant presheaf). Let X be a space and S be a set.
Let F be the constant sheaf on X with values in S, so

F(U) =

{
constant functions U → S U 6= ∅
{∗} U = ∅

When U is not empty, we have an obvious identification of the constant functions U → S
with elements of S, though we prefer to think of them as constant functions for this example.
The restriction maps are literal function restriction. Recall that for x ∈ X, the stalk Fx is
in bijection with S, via

Fx → S [f ] 7→ f(x)

where [f ] is the class in the stalk of a (constant) function f : U → S. The étale space of F
is

E =
⊔
x∈X

Fx

which we identify with X × S via⊔
x∈X

Fx → X × S s ∈ Fx 7→ (x, s)

How can we describe the topology on the étale space then? We claim that it corresponds
to the product topology on X × S, after giving S the discrete topology. Recall that a basic
open set for the topology on E. is one of the form s̃(U) for some U ⊂ X and s ∈ F(U).

s̃(U) =
{
ρUx (s) = s : x ∈ U

}
Under the correspondence between E and X × S above, this corresponds to

{(x, s) ∈ X × S : x ∈ U} = U × {s}

That is, the basis of s̃(U) for the topology on E corresponds to the basis for the topology on
X×S given by sets U×{s} where s ∈ S, which is precisely a basis for the product topology.
So we henceforth identify the étale space with X × S, and note that the associated map of
the étale space is just the projection

π : X × S → X (x, s) 7→ x
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Now how can we describe the sheafification F+? Concretely, we described the sections as
continuous sections of π.

F+(U) = Γ(U, π) = {σ : U → X × S | σ is continuous, and πσ = IdU}

The second condition says that σ has the form

σ : U → X × S σ(x) = (x, f(x))

where f : U → S is some function. The fact that σ needs to be continuous places some
restrictions on f , which we now describe. For σ to be continuous, it is equivalent that the
preimage of a basic open subset V × {s} is open in X, where V ⊂ U is open in X.

σ−1(V × {s}) = {x ∈ X : σ(x) = (x, f(x)) ∈ V × {s}}
= {x ∈ X : x ∈ U ∩ V, f(x) = s}
= {x ∈ U ∩ V : f(x) = s}

Let W = σ−1(V ×{s}). By the above, W is open in X if and only if for every x ∈ W , there
is an open neighborhood of x such that f is constant (with value s) on that neighborhood.
That is, W is open if and only if f is locally constant. Thus σ is continuous if and only if f
is locally constant. To sum up the previous discussion, there is a bijection

Γ(U, π)→ {locally constant functions U → S}

σ =
(
x 7→ (x, f(x))

)
7→ f : U → S

Thus the sheafification F+ is the sheaf of locally constant functions on X with values in S.

Corollary 5.16. Let F ,G be sheaves (of abelian groups) on X. Let πF : EF → X, πG :

EG → X be the respective étale spaces. Suppose we have a homeomorphism φ̃ : EF → EG
over X.

EF EG

X

πF

φ̃

πG

Then F ,G are isomorphic as sheaves.

Proof. First note that the fact that φ̃ is map over X means that we have maps

φx = φ̃|Fx : Fx → GX

for every x ∈ X. Since φ̃ is a homeomorphism, each φx is an isomorphism. So F ,G have
isomorphic stalks everywhere. As we have seen in an example, this is not sufficient to get an
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isomorphism, but it does say that as long as we have a morphism of sheaves inducing these
maps on stalks, that will be an isomorphism (of sheaves).

Following the proof of the sheafification result, since F ,G are already sheaves, we have
isomorphisms of sheaves

F ∼= Γ(−, πF) G ∼= Γ(−, πG)

where Γ(U, πF) is the group of continuous sections of πF on U . That is, we may identify F(U)
with Γ(U, πF) and likewise for G. Next, we will define a morphism of sheaves Γ(−, πF) →
Γ(−, πG). For U ⊂ X, define

ψU : Γ(U, πF)→ Γ(U, πG) s 7→ φU(s) = φ̃ ◦ s

It is clear that φ̃ ◦ s maps from U to EG and is continuous, we just need to verify that it is
a section of πG. It is basically immediate from the fact that φ̃ is a map over X.

πG ◦ ψU(s) = πG ◦ φ̃ ◦ s = πF ◦ s = IdU

After some verification that these ψU are compatible with restriction maps, we see that these
ψU give a morphism of sheaves ψ : F = Γ(−, πF) → G = Γ(−, πG). Now we claim tha the
induced map on stalks ψx : Fx → Gx is exactly φx, which will complete the proof.

Given e ∈ Fx, to compute ψx(e), we take a representing section s ∈ Γ(U, πF) where U is
some neighborhood of x, then restrict the image of ψU(s) to the stalk Gx. Since Γ(−, πF) is
a sheaf of continuous functions, choosing such s just means choosing s such that s(x) = e,
and restricting to the image in the stalk just means evaluating a function at the point x.
Hence

ψx(e) = ψU(s)|x = (φ̃ ◦ s)|x = φ̃(s(x)) = φ̃(e) = φx(e)

Thus the morphism of sheaves ψ induces isomrphisms φx on all stalks, so it is an isomorphism.

Remark 5.17. In the language of Lemma 5.10 and the proceeding remark, the previous
corollary says that the functor

E : PSh(x)→ {étale spaces over X} F 7→ (EF , πF)

has the following property: the restriction of E to the full subcategory of sheaves is functor
which is “injective on objects.” That is, consider

E : Sh(X)→ {étale spaces over X} F 7→ (EF , πF)

If EF ∼= EG (over X, then F ∼= G.

Next, we want to describe how to extend the main sheafification result to the case where F
is a presheaf of abelian groups. First, we introduce some terminology. This is not exactly
standard, but we will only use it for a short while anyway.
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Definition 5.18. A local homeomorphism π : E → X is an étale space of abelian groups
if

1. Each fiber π−1(x) is an abelian group.

2. The maps

E ×X E → E (e1, e2) 7→ e1 + e2

E → E e 7→ −e

are continuous. 8

Remark 5.19. Let F be a presheaf of abelian groups. Recall that the stalks Fx are then
abelian groups. Let

E =
⊔
x∈X

Fx

be the (set-theoretic) étale space of F , with the usual projection π. Then π : E → X is an
étale space of abelian groups.

Remark 5.20. Given an étale space of abelian groups, the continuous sections Γ(U, π) is
a an abelian group by pointwise addition, so the sheaf F+ they define is a sheaf of abelian
groups. Hence the sheafification of a presheaf of abelian groups is a sheaf of abelian groups.

8E ×X E is the fiber product of E and E over X, utilizing the maps π. Concretely,

E ×X E = {(e1, e2) ∈ E × E : π(e1) = π(e2)}
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6 Čech cohomology

The next major topic is Čech cohomology. This is the first step towards sheaf cohomology.
Sheaf cohomology is probably easier to define, and more general, but lacks the computability
of Čech cohomology, so we start there. Eventually, we will get to Leray’s theorem, which
establishes an isomorphism between Čech cohomology and sheaf cohomology, under some
assumptions.

6.1 The Mittag-Leffler problem

In order to motivate the strange definition of Čech cohomology, we start by describing how
it arises somewhat naturally from the Mittag-Leffler problem, which comes from complex
analysis. Here is the setup for the problem:

Let X be a Riemann surface (a one-dimensional complex manifold), and let E ⊂ X be a
closed, discrete set. For a ∈ E, let Ua be a neighborhood of a which is homeomorphic to C,
and let

za : Ua → C
be a homeomorphism (sometimes za is called a “local coordinate” at a), and normalize za so
that za(a) = 0. Let

pa(z) = cmz
−m
a + cm−1z

−m+1
a + · · ·+ c2z

−2
a + c1z

−1
a

be a polynomial in z−1
a with no constant term. We think of pa as the “principal part” or

“Laurent part” of za. Then the question is as follows.

Mittag-Leffler problem: Under the setup above, does there exist a meromorphic function
f : X → C which is holomorphic outside of E, and such that for each a ∈ E, the function

f(za)− pa(za)

(on Ua) has a removable singularity at a? Roughly speaking, is it possible to find a global
meromorphic function with specificed poles (the set E) and specified principal parts (the
polynomials pa) at each pole?

We will see in a moment how to translate this question into a “cohomological condition,”
which leads to the definition of Čech cohomology. Before going on, we should mention that
Mittag-Leffler himself proved that the question above has the answer “yes” in the case where
X is an open subset of C, and later other people extended this work to an arbitrary non-
compact Riemann surface X.

Now we transition to a general discussion of the Mittag-Leffler problem, retaining all of the
setup above.

Choose an open cover U = {Ui}i∈I of X such that for each i, Ui ∩ E is either empty or
a single point ai. Then choose functions fi : Ui → C such that fi is either holomorphic, or
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has a single pole ai ∈ Ui ∩ E. Note that by construction, ai 6∈ Uj for i 6= j. In particular,
no intersection Ui ∩ Uj contains any pole for any fi. That is, we are choose fi to have the
specified principal parts near ai.

Now, we want to “glue” the functions fi to obtain a meromorphic function f on X. If
we knew that for all i, j,

fi|Ui∩Uj
?
= fj|Ui∩Uj

then we would be able to glue to obtain f , but the above may fail. However, under certain
circumstances, it may be possible to modify each fi by a holomorphic function in order to
get this compatibility. That is, we seek holomorphic functions hi : Ui → C such that

(fi + hi)|Ui∩Uj = (fj + hj)|Ui∩Uj

Since hi is holomorphic, fi and fi + hi have the same principal part, so if we glue the fi + hi
to obtain a global meromorphic function, it will have the right poles and principal parts.
For i, j ∈ I, set tij = fi − fj, and rewrite the previous equation as

tij|Ui∩Uj = (fi − fj)|Ui∩Uj = (hj − hi)|Ui∩Uj

Assuming the hi exist, since tij = hj − hi on Ui ∩Uj, tij is holomorphic on that intersection.
It is clear also that

tij − tik + tjk = 0

on the triple intersection Ui∩Uj∩Uk. The equation above is hopefully reminiscent of previous
encounters with homology and cohomology. It is called a “cocycle condition.” This is what
we meant when we said we would translate the Mittag-Leffler problem into a cohomological
condition. We have now reduced the Mittag-Leffler problem to the following:

Cohomological Mittag-Leffler problem: Given meromorphic functions tij : Ui∩Uj → C
as above, which satisfy the cocycle condition

tij − tik + tjk = 0

when do there exist holomorphic functions hi : Ui → C such that tij = hj − hi on Ui ∩ Uj?
This leads into the definition of Čech cohomology. We will next define Čech cohomology
(just the first cohomology group), and then return to this interpretation of the Mittag-Leffler
problem.

6.2 Defining Čech cohomology

Definition 6.1. Let F be a presheaf of abelian groups on a topological space X. Let
U = {Ui}i∈I be an open cover of X. A Čech 1-cocycle with respect to U is a collection of
elements tij ∈ F(Ui ∩ Uj) for all i, j ∈ I such that

tij − tik + tjk = 0 on Ui ∩ Uj ∩ Uk
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To make the previous relation more precise, it should be written as

ρ
Ui∩Uj
Ui∩Uj∩Uk(tij)− ρ

Ui∩Uk
Ui∩Uj∩Uk(tik) + ρ

Uj∩Uk
Ui∩Uj∩Uk(tjk) = 0 in F(Ui ∩ Uj ∩ Uk)

We think of a Čech 1-cocycle {tij} as living in the direct product∏
i,j∈I

F(Ui ∩ Uj)

The set of Čech 1-cocycles forms a subgroup of this direct product. This subgroup is denoted

Ž1(U ,F)

Definition 6.2. Let F be a presheaf of abelian groups on a topological space X. Let
U = {Ui}i∈I be an open cover of X. A Čech 1-coboundary with respect to U is a
collection of elements tij ∈ F(Ui ∩ Uj) such that there exists a collection hi ∈ F(Ui) with
tij = hi − hj on Ui ∩ Uj. The group of coboundaries is denoted

B̌1(U ,F)

Remark 6.3. It is relatively easy to show that

B̌1(U ,F) ⊂ Ž1(U ,F)

To verify it directly, suppose tij = hi − tj. Then

tij − tik + tjk = hi − hj − (hi − hk) + hj − hk = 0

Definition 6.4. Let F , X,U be as above. The first Čech cohomology group of F with
respect to U is the quotient

Ȟ1(U ,F) =
Ž1(U ,F)

B̌1(U ,F)

Remark 6.5. Note that all of the above definitions are with reference to a fixed (but
arbitrary) open cover of X. It is quite undesirable to have such a dependence, since a
cohomology theory which gives different computations for different open covers would not
be a very good cohomology theory. We will address this issue a little later.

At this point, we can return to the Mittag-Leffler problem and give an equivalent formulation
as the vanishing of Ȟ1(U ,F) in a particular circumstance. To be a bit more specific, if
Ȟ1(U ,F) = 0 under the right setup, then the Mittag-Leffler problem has a positive solution.

Proposition 6.6. Let X be a Riemann surface, with E ⊂ X closed and discrete, and
U = {Ui}i∈I an open cover of X. Let O be the sheaf of holomorphic functions on X.
Suppose that for each i ∈ I, we have a function fi : Ui → C such that

1. Each fi is either holomorphic, or has a single pole at ai ∈ Ui ∩ E.
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2. For each i, j ∈ I, fi − fj is holomorphic on Ui ∩ Uj.

Assume that Ȟ1(U ,O) = 0. Then there exists a global meromorphic function f on X such
that (f − fi)|Ui is holomorphic for all i.

Proof. Given fi as in the statement, let tij = fi − fj. Then {tij} is an element of Ž1(U ,O),
by a simple calculation as in Remark 6.3. 9 Since Ȟ1(U ,O) = 0 by assumption, B̌1(U ,O) =
Ž1(U ,O), hence {tij} ∈ B̌1(U ,O), That is, there exist holomorphic functions hi ∈ O(Ui) for
all i such that

tij = hi − hj on Ui ∩ Uj
Rearranging this,

fi − hi = fj − hj on Ui ∩ Uj
Then we may glue the functions fi − hi to obtain a global meromorphic function f on X
such that f |Ui = fi − hi, which is to say, (f − fi)|Ui is holomorphic.

6.3 Resolving dependence on the cover

Now we attempt to deal with the dependency on the choice of open cover in defining Čech
cohomology.

Definition 6.7. Let X be a topological space, and U = {Ui}i∈I and V = {Vj}j∈J two open
covers of X. A refinement map is a map τ : J → I such that

Vj ⊂ Uτ(j)

for all j ∈ J . The cover V is a refinement of U is there is a refinement map τ : J → I.

Definition 6.8. Let X be a topological space, and F a presheaf of abelian groups on X.
Let U = {Ui}i∈I ,V = {Vj}j∈J be open covers of X, and let τ : J → I be a refinement map.
Then define

τ 1 : Ž1(U ,F)→ Ž1(V ,F) {gi1i2} 7→ {gj1j2} =
{
gτ(j1)τ(j2)|Vj1∩Vj2

}
It is not that hard to verify that τ 1 does in fact map into Ž1(V ,F), and it is also not too
hard to check that τ 1 maps B̌1(U ,F) to B̌1(V ,F). Hence τ 1 induces a map

τVU : Ȟ1(U ,F)→ Ȟ1(V ,F)

Lemma 6.9. Let V be a refinement of U . Then the homomorphism τVU does not depend on
the choice of refinement map τ .

Proof. Not very interesting, but technical.

9It is tempting to say the condition (2) implies that {tij} ∈ B̌1(U ,O), but that would only be true if we
knew that fi ∈ O(Ui), which is not necessarily the case, since fi may have a pole at ai.
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Definition 6.10. We give a preorder on the collection of open covers of a topological space
X by refinement. That is, U ≤ V if V is a refinement of U . If U ≤ V and V ≤ U , we say
they are equivalent.

Corollary 6.11. If U ,V are equivalent covers on X, then the map

τVU : Ȟ1(U ,F)→ Ȟ1(V ,F)

is an isomorphism.

Proof. Since U ,V are equivalent, there are refinements both ways. Composing them, we
obtain a map Ȟ1(U ,F) → Ȟ1(U ,F). By the previous lemma, these maps are independent
of the choice of refinement map, so they are the same as if we had chosen the “identity
refinement map” for U , which clearly induces the identity on Ȟ1(U ,F). Similarly, the
composition the other direction induces the identity on Ȟ1(V ,F).

Definition 6.12. Let X be a topological space and F a presheaf of abelian groups on X.
The collection of open covers of X with refinement maps forms a direct system, which gives
rise to a direct system of the groups Ȟ1(U ,F), with induced maps τVU . We define

Ȟ1(X,F) = lim−→ Ȟ1(U ,F)

to be the direct limit of this system.

In order to complete our discussion of the Mittag-Leffler problem, we include the following
proposition without proof.

Proposition 6.13. Let F be a sheaf. Then the canonical map

Ȟ1(U ,F)→ Ȟ1(X,F)

is injective for any open cover U .

This is not important at the moment, but note that the above proposition does NOT gen-
eralize to Ȟn. More importantly, the significant for the Mittag-Leffler problem is that if
Ȟ1(X,O) vanishes for a Riemann surface X, then the Mittag-Leffler problem always has a
solution.

Theorem 6.14. Let X be a noncompact Riemann surface. Then Ȟ1(X,O) = 0.

Combining these two results, we get:

Corollary 6.15. Let X be a noncompact Riemann surface. Then the Mittag-Leffler problem
always has a positive solution, for any open cover U of X.
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6.4 Classification of vector bundles via Čech cohomology

In this section, we give another motivation for Čech cohomology, by giving an interpretation
of Ȟ1(U ,F) in terms of vector bundles.

Definition 6.16. Let X be a smooth real manifold. A vector bundle E of rank k on X
is a smooth real manifold E together with a smooth, surjective map π : E → X with the
following properties.

1. For each x ∈ X, the fiber π−1(x) is a k-dimensional real vector space.

2. For each x ∈ X, there is an open neighborhood Ux of x and a diffeomorphism

Φx : π−1(Ux)→ Ux × Rk

making the following diagram commute

π−1(Ux) Ux × Rk

X

Φx

π p

where p is projection onto Ux, and additionally Φx has the property that for each
y ∈ Ux, the induced map

Φx|π−1(y) : π−1(y)→ {y} × Rk ∼= Rk

is R-linear. The map Φx is called a local trivialization.

Definition 6.17. The trivial vector bundle of rank k on X is the product E = X ×Rk

together with the projection

π : X × Rk → X (x, v) 7→ x

It is clear that each fiber is an R-vector space, and for any U ⊂ X, there is a local trivial-
ization

ΦU : U × Rk → X (x, v) 7→ x

which obviously has the needed properties.

Remark 6.18. Using the language of the trivial vector bundle, we can rephrase the definition
of a general vector bundle of rank k as a map π : E → X which is locally the trivial vector
bundle. That is, there is an open cover U = {Ui}i∈I such that for all i ∈ I, there is a
diffeomorphism between π−1(Ui) and Ui × Rk over X.

π−1(Ui) Ui × Rk

X

Φi

π p
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Also, Φi must have the property that it restricts to an R-linear map on each fiber. As before,
the map Φi is called the local trivialization of E over Ui.

Now we begin our attempt to connect vector bundles to Čech cohomology. Let π : E → X
be a vector bundle of rank k on a smooth real manifold X. Fix an open cover U = {Ui}i∈I
of X, and fix local trivializations Φi. For any i, j ∈ I, we can consider the composition

Φi ◦ Φ−1
j : (Ui ∩ Uj)× Rk → (Ui ∩ Uj)× Rk

which is a diffeomorphism, and gives an R-linear map when restricted to fibers. Note that
since Φj,Φi are boths maps over X, we can write Φi ◦ Φ−1

j as

(x, v) 7→ (x, φxij(v))

for some function
φxij : Rk → Rk

Since Φi ◦ Φ−1
j restricts to an R-linear map on fibers, the maps φxij are R-linear. They are

also clearly invertible since Φ ◦ Φ−1
j is, so we may view φxij as an element of GLk(R).

We want to understand what sort of object φij is, as a function of x. It takes in x ∈ Ui∩Uj,
and then outputs φxij ∈ GLk(R). We may think of φij as a matrix whose entries are functions
of x, and evaluating at x ∈ Ui ∩ Uj gives a particular φxij ∈ GLk(R). That is,

φij = (aij(x))

where each aij is a function Ui ∩ Uj → R. We should expect the functions aij to be smooth
since we are working with smooth manifolds, but we won’t go into exactly why they are
smooth.

We can now phrase the above in terms of sheaves. Let S to be the sheaf of R-valued
smooth functions on X, that is, for U ⊂ X, S(U) is the set of smooth functions U → R.
Then aij ∈ S(Ui ∩ Uj), so we realize we should view φij as an element of GLk(S(Ui ∩ Uj).
This prompts us to consider the sheaf F on X, defined by

F(U) = GLk(S(U))

In these terms, φij ∈ F(Ui∩Uj). Note that F(U) is a sheaf of nonabelian groups on X. This
is how we will think of φij. Returning to local trivializations, it is a simple computation to
realize that (

Φj ◦ Φ−1
k

)
◦
(
Φi ◦ Φ−1

k

)−1 ◦
(
Φi ◦ Φ−1

j

)
= Id

on the triple intersection Ui ∩ Uj ∩ Uk for any i, j, k ∈ I, which induces the relation

φjkφ
−1
ik φij = 1

in F(Ui∩Uj ∩Uk). After some thinking and translating between additive and multiplicative
notation, one should hopefully recognize this as the Čech cocycle condition, which is to say,

{φij} ∈ Ž1(U ,F)
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However, we have slightly overstepped our bounds, since our previous definition of Čech
cocycles, coboundaries, and cohomology used, to a small extend, the fact that the sheaf F
involved was a sheaf of abelian groups. Since we are now dealing with a sheaf of nonabelian
groups, we need to be a little more careful.

It turns out that we can still talk about Čech cocycles and cohomology, the only subtletly
is that the resulting cohomology set Ȟ1(U ,F) no longer is a group, but merely a pointed
set. After all this motivation, we now give the formal definition of nonabelian Čech cocycles
and cohomology.

Definition 6.19. Let F be a sheaf (or just a presheaf, no big deal) of (possibly nonabelian)
groups on a space X. Fix an open cover U = {Ui}i∈I of X. A nonabelian Čech 1-cocycle
with respect to U is a collection of sections

{φij}

with φij ∈ F(Ui ∩ Uj) satisfying the cocycle condition

φjkφ
−1
ik φij = 1

on the triple intersection F(Ui ∩ Uj ∩ Uk). The set of such Čech 1-cocycles is denoted

Ž1(U ,F)

Note that unlike in the case where F is a sheaf of abelian groups, Ž1 does not have a natural
group structure. It is merely a set, with a special element, the trivial cocycle, with φij = 1
for all i, j.

Example 6.20. Following all of the motivating discussion leading up to the definition,
given a vector bundle π : E → X of rank k on a smooth real manifold X, and a fixed
open cover U = {Ui}i∈I and fixed trivializations Φi, we obtain a nonabelian Čech 1-cocycle

{φij} ∈ Ž1(U ,F), where F is the sheaf

F(U) = GLk(S(U))

So we have an “assignment”

{vector bundles of rank k on X with fixed open cover U} → Ž1(U ,F)

This is not really a function, since producing a cocycle from a vector bundle requires choose-
ing local trivializations Φi. However, if we can resolve the dependence on choice of trivializa-
tions, and then also remove dependence on the cover U , this gives us some hope that we might
establish some sort of correspondence betwen vector bundles (perhaps up to isomorphism)
on X of rank k, and Ž1(X,F), or perhaps Ȟ1(X,F).
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Remark 6.21. First, let us address the issue of choice of trivializations. What happens
to the resulting cocycle {φij} when different local trivializations are chosen? Note that we
keep the same open cover U = {Ui} of X. Suppose {Φi} , {Φ′i} are different choices of local
trivializations for this cover. Then define φij, φ

′
ij via

Φi ◦ Φ−1
j : (Ui ∩ Uj)× Rk → (Ui ∩ Uj)→ Rk (x, v) 7→ (x, φxij(v))

Φ′i ◦
(
Φ′j
)−1

: (Ui ∩ Uj)× Rk → (Ui ∩ Uj)→ Rk (x, v) 7→ (x,
(
φ′ij
)x

(v))

For i ∈ I, define ψxi ∈ GLk(R) by

Φ′i ◦ Φ−1
i : Ui × Rk → Ui × Rk (x, v) 7→ (x, ψxi (v))

As before, let S be the sheaf of smooth R-valued functions on X. Similar to our discussion of
how we may view φij as element of GLk(S(Ui∩Uj)), we view ψi as an element of GLk(S(Ui)).
Now we need to do a somewhat tedious calculation, in order to determine an algebraic relation
between the ψ and φ maps. The basic idea is that the ψ maps should be a sort of “nonabelian
Čech coboundary,” whatever that means. First, note that

Φ′i ◦
(
Φ′j
)−1

=
(
Φ′i ◦ Φ−1

i

)
◦
(
Φi ◦ Φ−1

j

)
◦
(
Φ′j ◦ Φ−1

j

)
Thus, evaluating both sides at (x, v) ∈ (Ui ∩ Uj)× Rk gives the same result.

(x, (φ′ij)
x(v)) = Φ′i ◦

(
Φ′j
)−1

(x, v)

=
(
Φ′i ◦ Φ−1

i

)
◦
(
Φi ◦ Φ−1

j

)
◦
(
Φ′j ◦ Φ−1

j

)
= (x, ψxi φ

x
ij(ψ

x
j )−1(v))

The resulting equality that we actually want out of all of this mess is that

(φ′ij)
x = ψxi φ

x
ij(ψ

x
j )−1 on Ui ∩ Uj

which in turn implies the real “coboundary” condition that we were looking for:

φ′ij = ψiφijψ
−1
j in GLk(S(Ui ∩ Uj))

This motivates us to use this exact equation as our definition for equivalence of cocycles in
nonabelian Ž1(U ,F).

Definition 6.22. Let F be a sheaf of groups on X, and U = {Ui} an open cover of X. Two
Čech 1-cocycles {φij} ,

{
φ′ij
}

are equivalent if there exists a collection of sections ψi ∈ F(Ui)
such that

φ′ij = ψiφijψ
−1
j

It is not terribly difficult to verify that this is an equivalence relation.

Definition 6.23. Let F , X,U be as above. The quotient of Ž1(U ,F) by the above equiva-
lence relation is denoted Ȟ1(U ,F).
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Example 6.24. Let X be a smooth real manifold, and F be the sheaf F(U) = GLk(S(U)),
where S is the sheaf of smooth R-valued functions. Fix an open cover U = {Ui} of X.
Previously, we defined an “assignment”

{vector bundles of rank k on X with fixed open cover U} → Ž1(U ,F)

which was not a well defined function, since different choices of local trivializations could give
rise to different Čech 1-cocycles. However, basically by construction, two different sets of
choices of local trivializations give two equivalent Čech 1-cocycles, so the above “assignment”
gives rise to a well defined function

{vector bundles of rank k on X with fixed open cover U} → Ȟ1(U ,F)

We have now dealt with one ambiguity, the dependence on the choice of local trivializations,
by taking an appropriate quotient of Ž1(U ,F). Now, as in the commutative case, we want
to also deal with the dependence on the choice of the open cover U , in the same manner -
using refinements of covers, and eventually taking a direct limit.

Recall that if U = {Ui}i∈I and V = {Vj}j∈J are open covers of X, a refinement map
between them is a map τ : J → I such that Vj ⊂ Uτ(j). As in the abelian case, a refinement
map τ induces a map on Ž1.

τVU : Ž1(U ,F)→ Ž1(V ,F) {φi1i2} 7→
{
φ′j1j2

}
where

φ′j1j2 = φτ(j1)τ(j2)|Vj1∩Vj2
As before, one can verify that τVU respects the equivalence, and hence may be viewed as a
map on the quotient Ȟ1.

τVU : Ȟ1(U ,F)→ Ȟ1(V ,F)

Less obviously, τVU is independent of the refinement map τ , so the open covers of X, partially
ordered by refinement, form a direct system, so the sets Ȟ1(U ,F), ordered by refinement of
U form a direct system, so we may take the direct limit (in the category of sets, or pointed
sets if you wish).

Definition 6.25. The first nonabelian Čech cohomology set of X,F is

Ȟ1(X,F) = lim−→
U
Ȟ1(U ,F)

Returning to our discussion of vector bundles, we now have the necessary tools for dispensing
with our unfortunate dependence on the choice of open cover. A vector bundle of rank k
on X gives rise to an element of Ȟ1(U ,F) for any U , and (proof omitted) these various
cohomology classes form a “coherent sequence,” so that they give an element of the direct
limit. That is, we have a map

{vector bundles of rank k on X} → Ȟ1(X,F)
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We have not defined a map of vector bundles, but hopefully you can guess (or look it
up somewhere), and from there guess the appropriate definition of isomorphism of vector
bundles. Whatever the precise definition is, it is clear that if the definition is at all reasonable,
then isomorphic vector bundles ought to give rise to the same Čech cohomology class. So
we may more precisely state the previous map as

{isomorphism classes of vector bundles of rank k on X} → Ȟ1(X,F)

We make no attempt to justify this, but in fact this map is a bijection. In order to state the
theorem succinctly, we note that the traditional notation for the sheaf we have been calling
F is GLk.

GLk(U) = GLk(S(U))

where S is the sheaf of smooth R-valued functions.

Theorem 6.26. Let X be a real smooth manifold, and GLk the sheaf above. There is a
bijection

{isomorphism classes of vector bundles of rank k on X} → Ȟ1(X,GLk)

Remark 6.27. Taking the case k = 1, we get vector bundles of rank 1, which are more
commonly known as line bundles. On the cohomology side, we note that

GL1(U) = GL1(S(U)) = S(U)×

In particular, S(U)× is an abelian group, so we are back to the case where Ȟ1 is an abelian
group. In this case, the above theorem says that line bundles on X are in bijection with
Ȟ1(X,S×), which is more commonly known as the Picard group of X.

Remark 6.28. The previous theorem has many generalizations. For example, if we replace
the sheaf GLk with the corresponding sheaf associated with PGLk, then we get another Čech
cohomology group

Ȟ1(X,PGLk)

which is then in bijection with certain objects called “Azumaya algebras” on X, which,
as you may guess, bear a passing resemblence to vector bundles. Of course, many more
subtleties are involved.

6.5 The Čech cochain complex

At this point, we have only discussed Ȟ1, but the notation clearly suggests that there should
be objects Ȟn for, at least, n ≥ 0. In order to define all of these groups, and put our
understanding of Ȟ1 into this context, we define the Čech cochain complex.
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Definition 6.29. Let X be a topological space, and F a presheaf of abelian groups on X.
Fix an open cover U = {Ui}i∈I of X. Given n ∈ Z≥0, and an (n+ 1)-tuple

(i0, . . . , in) ∈ In+1

define the shorthand

Ui0···in =
n⋂
k=0

Uik = Ui0 ∩ · · · ∩ Uin

The group of n-cochains with respect to U is the (abelian) group

Čn(U ,F) =
∏

(i0,...,in)∈In+1

F (Ui0···in)

Example 6.30. In the case of n = 0, we get Č0(U ,F), which is the product over all F(Ui),
where Ui ranges over the open sets of the covering.

Definition 6.31. For n ∈ Z≥0, we define the nth differential dn : Čn(U ,F)→ Čn+1(U ,F)
by (

dn(s)
)
i0,...,in+1

=
n+1∑
j=0

(−1)jsi0···̂ij ···in+1
|Ui0···in+1

The above definition is difficult to parse. What is happening is that since dn(s) is in the
product over (n + 2)-tuples, it suffices to describe the component for each (n + 2)-tuple
(i0, . . . , in+1). Since s ∈ Čn(U ,F), s has a component for each (n + 1)-tuple. Since we’re
given an (n+ 2)-tuple, we can form various (n+ 1)-tuples by removing each index, one at a
time. Then we have to restrict it (using the restriction map associated with F) to a smaller
intersection, and we throw in a sign (−1)j just to make your life harder 10.

Lemma 6.32. Let dn be the differentials defined above. Then dn+1 ◦ dn = 0 for all n ≥ 0.

Proof. Do it yourself, if you’re a masochist.

Definition 6.33. For n ∈ Z≥0, the Čech n-cocyles is the kernel of dn, the Čech n-
boundaries is the image of dn−1.

Žn(U ,F) = ker dn B̌n(U ,F) = im dn−1

The shift of index n− 1 is so that both are subgroups of Čn(U ,F). Since dn−1 ◦ dn = 0, we
get a cochain complex, called the Čech cochain complex.

0→ Č0(U ,F)
d0−→ Č1(U ,F)

d1−→ Č2(U ,F)
d2−→ · · ·

The equation dn−1 ◦ dn = 0 is sometimes written sloppily as d2 = 0, and it also implies that

B̌n(U ,F) ⊂ Žn(U ,F)

10Just kidding, the sign is an important part of the fact that dn+1 ◦ dn = 0.
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So we may form the quotient, which is the cohomology of the Čech cochain complex.

Ȟn(U ,F) :=
Žn(U ,F)

B̌n(U ,F)

Remark 6.34. There are two common variations of the definition of the Čech cochain
complex, which end up giving the same cohomology groups, although this is not obvious.
We will not go into the details of why they give the same cohomology, but we will describe
the variants, so that the reader can compare with other sources.

The first variation is based on the recognition that it shouldn’t be necessary to look at
all the (n + 1)-tuples in In+1, since permuting the order of the indices doesn’t change the
intersection Ui0···in , and so throwing away the “redundant copies” of F(Ui0···in) should be a
reasonable thing to do, which in fact it is. More precisely, the symmetric group Sn+1 acts
by permutation on In+1. Define the alternating n-cochains,

Čn
a (U ,F) ⊂ Čn(U ,F)

to be the cochains which are “invariant under Sn+1 up to sign,” meaning that a cochain
(fi) ∈ Čn(U ,F) is in Čn

a (U ,F) if for σ ∈ Sn+1,(
fσ(i)

)
= (sgn(σ)fi)

Note that this implies that if two distinct indices ir, is are equal, then (fi) = (0). One
can show that the differentials dn as defined above restrict to maps between the alternating
cochains, giving rise to cohomology groups Ȟn

a (U ,F). One can also show that

Ȟn
a (U ,F) ∼= Ȟn(U ,F)

For the second variation on the definition, we start by fixing a total order on I, and define
the ordered n-cochains

Čn
o (U ,F) =

∏
i0<···<in

F(Ui0···in)

Using the same formula, define a differential dn on the ordered n-cochains, which also forms
a cochain complex, whose homology we denote by Ȟ1

o (U ,F). As with the first variation, one
may show that

Ȟn
o (U ,F) ∼= Ȟn(U ,F)

Example 6.35 (Ȟ0(U ,F)). In this example, we attempt to say what we can about the
zeroth Čech cohomology group Ȟ0(U ,F), for an arbitrary space X and arbitrary presheaf
F , and arbitrary open cover U . By definition,

Č0(U ,F) =
∏
i∈I

F(Ui)

Č1(U ,F) =
∏
i,j∈I

F(Ui ∩ Uj)
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and the zeroth differential
d0 : Č0(U ,F)→ Č1(U ,F)

can be described concretely by(
d0(fi)

)
ij

= fj|Ui∩Uj − fi|Ui∩Uj

So the zero cocycles, ker d0 = Ž0(U ,F) is the set of (fi) which are compatible on all
intersections (of the given open covering sets). The zero coboundaries are just zero, so
Ȟ0(U ,F) = Ž0(U ,F).

If F is a sheaf, then Ȟ0(U ,F) is the set of (fi) which are compatible on intersections,
which means that they glue to a global section f ∈ F(X). By the separatedness axiom, this
f is unique, so we obtain an isomorphism

Ȟ0(U ,F) ∼= F(X)

To emphasize, this is only true when F is a sheaf. In fact, if F is an arbitrary presheaf, the
failure of these two to be isomorphic is a “measurement” of how much F fails to be a sheaf.
More precisely, if F is any presheaf, there is a map

φU : F(X)→ Ȟ0(U ,F) f 7→ (f |Ui)

This is well defined since a global section always gives rise to local sections which are compat-
ible. If F satisfies separatedness, then φU is injective; that is, kerφU is an obstruction to F
being separated. If F satsifies gluing, then φ is surjective; that is, cokerφU is an obstruction
to F having gluing.

Conversely, the separatedness axiom for F may be rephrased precisely as the requirement
that kerφU = 0 for all open covers U , and the gluing axiom for F may be rephrased precisely
as the requirement that cokerφU = 0 for all open covers U . If we are careful, then passing
to the direct limit, we might hope that we obtain a map

φ : F(X)→ Ȟ0(X,F)

such that kerφ = 0 if and only if F is separated, and cokerφ = 0 if and only if F satisfies
gluing. Combining these, F is a sheaf if and only if φ is an isomorphism. (Note: we have
not justified any of this discussion, that will come later.)

Example 6.36 (Čech cohomology of the circle). Let X = S1 be the circle (unit circle in
R2 if you like), and let F be the sheaf of locally constant R-valued functions on X. We will
compute Ȟ0(U ,F) using the Čech cochain complex for a particularly simple open cover of
X. Let U = {U1, U2} be an open cover of two connected pieces, as depicted below.

U1 U2
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The intersection U1 ∩ U2 has two connected components, as we depict below.

U1 ∩ U2

Note that F(U1) ∼= R ∼= F(U2) since U1, U2 are connected, and F(U1 ∩ U2) ∼= R2, since it
has two components. The restriction maps are essentially the diagonal map R→ R2.

ρUiU1∩U2
: F(Ui) ∼= R→ F(U1 ∩ U2) ∼= R2 a 7→ (a, a)

The first few terms of the Čech cochain complex look like

0 Č0(U ,F) Č1(U ,F) Č2(U ,F) · · ·
∼= ∼=

F(U1)×F(U2) F(U11)×F(U12)×F(U21)×F(U22)

∼= ∼=
R2 R× R2 × R2 × R

d0 d1

Now we try to explicitly describe the first differential d0. For example, if we take (a, b) ∈
F(U1)×F(U2) ∼= R2 and look at the U12-component of d0(a, b) in F(U1 ∩ U2), we get

(d0(a, b))12 = a|U1∩U2 − b|U2∩U2 = (a, a)− (b, b) = (a− b, a− b)

Working the rest out similarly, we describe d0 as

d0 : F(U1)×F(U2) ∼= R2 → F(U11)×F(U12 ×F(U21)×F(U22) ∼= R× R2 × R2 × R
(a, b) 7→ (0, (b− a, b− a), (a− b, a− b), 0)

From this description, we can see that the kernel of d0 is (a, b) such that a = a, that is,

Ȟ0(U ,F) ∼= Ž0(U ,F) = ker d0 =
{

(a, a) ∈ R2 : a ∈ R
} ∼= R

Based on our previous general example, we already knew this should be the answer, since the
global sections F(X) are isomorphic to R, since a locally constant function on the connected
space X = S1 is just a constant function S1 → R, which are obviously identified with R.

We could, in principle, work out an explicit description for d1, although the target space
Č2(U ,F) is rather large, having 8 terms, six of which are R2 and two of which are R, so
Č2 ∼= R14. The answer should come out to be that Ȟ2(U ,F) = 0.
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Remark 6.37. Notice that in the previous example, the Čech cohomology groups ended up
being isomorphic to the corresponding singular cohomology groups.

Ȟ0(U ,F) ∼= H0
sing(S1,R) Ȟ1

sing(U ,F) ∼= H1(S1,R)

This is not a coincidence, and the pattern should continue for higher groups, meaning that
Ȟn(U ,F) = 0 for n ≥ 2. Later, we will explore more fully the connection between Ȟn(X,F)
and singular cohomology of X.

As you should expect, these may not be the same for every open cover U and ever sheaf
F , but it would be wonderful if we could establish something like Ȟn(X,F) ∼= Hn(X,R) in
general for a particular sheaf F , since then singular homology would just be a special case
of Čech cohomology. This turns out to be correct, although it will take until the very end
of the course to establish this.

6.6 Resolving dependence on the cover, in more generality

We previously worked out in a somewhat brute force way how to remove dependency on the
choice of open cover U , in the case of Ȟ1(U ,F) and obtain a cohomology group which is
more “intrinsic” to X and F , by taking the direct limit over refinement maps.

Ȟ1(X,F) = lim−→ Ȟ1(U ,F)

We now want to do a similar process for the entire Čech cochain complex, to obtain an
“intrinsic” cohomology group Ȟn(X,F).

Definition 6.38. Let A• = {An, dnA} and B• = {Bn, dnB} be cochain complexes. A mor-
phism of cochain complexes f • : A• → B• is a family of maps fn : An → Bn which
commutes with the differentials. That is, the following diagram commutes.

· · · An An+1 An+2 · · ·

· · · Bn Bn+1 Bn+2 · · ·

dn−1
A dnA

fn

dn+1
A

fn+1

dn+2
A

fn+2

dn−1
B dnB dn+1

B dn+2
B

A morphism of cochain complexes is also called a chain map. A morphism of cochain
complexes induces a map on cohomology, by a simple diagram chase.

Hn(f) : Hn(A)→ Hn(B) a 7→ fn(a)

Definition 6.39. Let X be a space and F be a presheaf of abelian groups on X. Let
U = {Ui}i∈I ,V = {Vj}j∈J be two open covers of X, and suppose we have a refinement map
τ : J → I, which means Vj ⊂ Uτ(j). The induced map on cochains is

τn : Čn(U ,F)→ Čn(V ,F)
(
(τn(s)

)
j0···jn

= sτ(j0···τ(jn)

∣∣∣∣
Vj0···jn
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Lemma 6.40. The maps τn form a chain map Č•(U ,F) → Č•(V ,F), which is to say, we
have the following commutative diagram.

0 Č0(U ,F) Č1(U ,F) · · ·

0 Č0(V ,F) Č1(V ,F) · · ·

τ0

d0

τ1

d2

d0 d1

Consequently, τn induces a map on Čech cohomology,

τ̌n : Ȟn(U ,F)→ Ȟn(V ,F)

Proof. Technical details.

We want to show that the map τ̌n is actually independent of the choice of refinement τ .
First, we recall the notion of chain homotopies.

Definition 6.41. Let g•, f • : A• → B• be two morphisms of cochain complexes. They are
chain homotopic if there exist morphisms hn : An → Bn−1 such that

fn − gn = dn−1
B ◦ hn + hn+1 ◦ dnA

We depict the situation with the following diagram.

· · · An An+1 An+2 · · ·

· · · Bn Bn+1 Bn+2 · · ·

dn−1
A dnA

fn−gn
hn

dn+1
A

fn+1−gn+1

hn+1

dn+2
A

fn+2−gn+2

hn+2

dn−1
B

dnB dn+1
B dn+2

B

The diagram above does not commute, but at least all of the maps involved in the above
equation appear in the diagram. The equation says that every downward vertical arrow is
equal to the sum of the two triangular paths from An to Bn. If f • is chain homotopic to the
zero chain map, we say f • is nullhomotopic.

Lemma 6.42. Chain homotopic maps induce the same maps on homology.

Proof. Suppose f •, g• : A• → B• are chain homotopic via hn. Then for x ∈ Zn(A•) = ker dnA,

fn(x)− gn(x) = dn−1
B ◦ hn(x) + 0

The RHS is then clearly in Bn(B•) = im dn−1
B , which is to say, it is zero in Hn(B•). Hence

fn(x) = gn(x) in Hn(B•)
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Remark 6.43. If A• is a (co)chain complex, it is exact if and only if Hn(A•) = 0 for all n.
One sufficient condition for this is that the identity chain map on A is nullhomotopic, using
the previous lemma. However, this is not a necessary condition, as the following example
shows.

Example 6.44 (Exact chain complex with non-nullhomotopic identity chain map). Let A
be the chain complex of abelian groups

0→ Z n−→ Z π−→ Z/nZ→ 0

where π is the usual quotien map, mod n. It is clear that A is exact; we claim that the
identity map is not nullhomotopic. Suppose hn gives a chain homotopy between the identity
and zero maps on A•.

0 Z Z Z/nZ 0

0 Z Z Z/nZ 0

n

Id
h0

π

Id
h1

Id
h2

h3

n π

This already forces h0 = h2 = h3 = 0.

0 Z Z Z/nZ 0

0 Z Z Z/nZ 0

n

Id
0

π

Id
h1

Id
0

0

n π

If this is a chain homotopy, then it the identity map Z/nZ→ Z/nZ is the sum of two maps
which are zero, which is impossible. One can also run into an issue with the identity map
for the middle Z term, but that’s not necessary.

Now we return to Čech cohomology.

Proposition 6.45. If τ, τ ′ : J → I are refinement maps for open covers U ,V on X, then
the induced chain maps τ̌ , τ̌ ′ are chain homotopic.

Proof. We just describe the definition of the chain homotopy, and leave it to the reader to
verify. To be precise, U = {Ui}i∈I and V = {Vj}j∈J , and then define

hn+1 : Čn+1(U ,F)→ Čn(V ,F)
(
hn+1(s)

)
j0···jn

=
n∑
k=0

(−1)ksτ(j0)···τ(jk)τ ′(jk)···τ(jn)

∣∣∣
Vj0···jn

Corollary 6.46. The map τ̌n is independent of the refinement map τ .
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Definition 6.47. As before, we have a partial order on the set of open covers of X by refine-
ment. By the previous corollary, the induced map Ȟn(V ,F)→ Ȟn(U ,F) is independent of
the choice of τ provided V ≤ U , so we obtain a directed system of abelian groups indexed by
open covers. We define the nth Čech cohomology group of the presheaf F is the direct
limit of this system.

Ȟn(X,F) := lim−→ Ȟn(U ,F)

Proposition 6.48 (Functoriality of Čech cohomology). Let φ : F → G be a morphism of
presheaves on a space X. There is an induced map

φn : Ȟn(X,F)→ Ȟn(X,G)

which makes Ȟn(X,−) into a (covariant) functor from the category of presheaves of abelian
groups on X to the category of abelian groups.11

Proof. For a fixed cover U of X, we get

φnU : Čn(U ,F)→ Čn(U ,G)
(
φnU(s)

)
i0···in

= φUi0···in (si0···in)

These give a morphism of chain complexes, so they induce maps on homology.

φ̌nU : Ȟn(U ,F)→ Ȟn(U ,G)

These maps are compatible with refinements, so passing to the direct limit we obtain a map

φn = lim−→ φ̌n : Ȟn(X,F) = lim−→ Ȟn(U ,F)→ Ȟn(X,G) = lim−→ Ȟn(U ,G)

which is precisely the claimed map. We leave the verification of functoriality properties to
the reader.

6.7 Sheafified Čech complex

Previously, we defined the group of n-cochains of the Čech complex, which we denoted
Čn(U ,F). When F is a presheaf of abelian groups on X, this is an abelian group. In this
section, we up the abstraction by defining a modified version of Čn(U ,F) which is not just
an abelian group, but instead a presheaf of abelian groups on X.

Definition 6.49. Let X be a topological space and F a presheaf of abelian groups on X.
Let U = {Ui}i∈I be an open cover of X. Recall the shorthand notation

Ui0···in =
n⋂
k=0

Uik

11Explicitly, this means that the identity morphism of presheaves induces the identity map on Ȟn, and
that this process of inducing maps respects composition.
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For an arbitrary open subset U ⊂ X, define

Čn(U ,F)(U) =
∏

(i0,...,in)∈In+1

F (U ∩ Ui0···in)

For V ⊂ U open subset of X, define restriction maps

resUV : Čn(U ,F)(U)→ Čn(U ,F)(V )

using the restriction maps for F on each component of the product, that is, on the (i0, . . . , in)

component, resUV is res
U∩Ui0···in
V ∩Ui0···in

(F). This makes Čn(U ,F) into a presheaf of abelian groups

on X. We call it the presheaf of Čech n-cochains.

Remark 6.50. If we take global sections of the presheaf of Čech n-cochains, we recover the
original definition of the group of Čech n-cochains.

Čn(U ,F)(X) =
∏

(i0,...,in)

F (X ∩ Ui0···in) =
∏

(i0,...,in)

F (Ui0···in) = Čn(U ,F)

Lemma 6.51. If F is a sheaf of abelian groups, then Čn(U ,F) is a sheaf (of abelian groups).
If F is flasque, then Čn(U ,F) is also flasque.

Proof. The fact that Čn(U ,F) is a sheaf follows from a more general discussion we will have
later about pushforward sheaves. For the moment, notice that for any V ⊂ X, we have a
sheaf FV on X given by

FV (U) = F(U ∩ V )

Then observe that Čn(U ,F) is the product over all (n + 1)-tuples of pushforward sheaves
with V = Ui0···in . This is all we will say about Čn(U ,F) being a sheaf at this point.

Now suppose F is flasque. Recall that this means all restriction maps for F are surjective.
Since the restriction maps for Čn(U ,F) are component-wise restriction maps for F , they are
surjective on each component, so they are surjective. So Čn(U ,F) is flasque.

Remark 6.52. Let X,F ,U be as above. For the moment, F is merely a presheaf. For
U ⊂ X, the product of restriction maps gives a map

F(U)
∏
i∈I

F(U ∩ Ui) = Č0(U ,F)(U)

∏
i∈I

resUU∩Ui

If F is a sheaf, or even if it is just a separated presheaf, then this map is injective. Since
this is injective for all U , we may alternatively phrase this as saying that we have an exact
sequence

0→ F → Č0(U ,F)

If F is merely a separated presheaf, then we may think of this as an exact sequence in the
category of presheaves. If F is a sheaf, then we may also view this as an exact sequence in
the category of sheaves.
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For the Čech cochains, we had differential maps which made them into a cochain complex
of abelian groups. For the presheaf of cochains, we have analogous differentials, which we
define next.

Definition 6.53. Let X,U ,F , Čn(U ,F) be as above, with F a sheaf. For U ⊂ X open,
define

dnU : Čn(U ,F)(U)→ Čn+1(U ,F)(U)

by the same formula as dn was defined for the Čech complex. Then by the same sort of
tedious calculation as was omitted before, dn+1

U ◦ dnU = 0. These differentials are clearly
compatible with restriction maps, so they give a morphism of sheaves

dn : Čn(U ,F)→ Čn+1(U ,F)

which satisfies dn+1 ◦ dn = 0, since the same equation holds everywhere locally. That is, we
get a cochain complex of sheaves on X.

0 F Č0(U ,F) Č1(U ,F) Č2(U ,F) · · ·d0 d1 d2

This cochain complex is called the sheafified Čech complex of F . In the next proposition,
we will show that this is in fact an exact sequence of sheaves, and then we will call it the
Čech resolution of F .

Remark 6.54. In the special case of the above where we take U = X, the map dnX is just
the original differential on Čech n-cochains. Using this and Remark 6.50, if we evaluate the
entire sheafified Čech complex by taking global sections, we get the original Čech complex,
with an extra F(X) term at the beginning.

0 F(X) Č0(U ,F) Č1(U ,F) · · ·d0 d1

Remark 6.55. Later we will define sheaf cohomology groups Hn(X,F) using injective
resolutions of F . Then using the abstract category theory, we will obtain a map Ȟn(X,F)→
Hn(X,F) by using the Čech resolution, where Hn(X,F) refers to the as-yet-undefined nth
sheaf cohomology group.

Proposition 6.56. Let F be a sheaf of abelian groups on X. The sheafified Čech complex
is an exact sequence of sheaves.

Proof. We already discussed in Remark 6.52 that the induced sequence on sections over any
open U ⊂ X is exact, so the sequence on stalks is also exact, so we have exactness at the F
term.

At the Č0 term, exactness of the induced sequence on sections over U is essentially
equivalent to the axioms that F is a sheaf. The map d0

U is given by

d0
U((si)) = si|U∩Ui∩Uj − sj|U∩Ui∩Uj
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so the kernel of d0
U is exactly collections of sections (si) with si ∈ F(U ∩ Ui) which agree on

all double intersections Ui ∩ Uj. Since F is a sheaf, any such (si) glue to a global section
s ∈ F(U), so s is in the image of the previous map. Since the induced sequence on sections
is exact for all U , the induced sequence on stalks is also exact, so we have exactness (in the
category of sheaves) at the Č0 term.

In order to prove exactness for the higher degree terms, we consider the induced cochain
complex on stalks Č•(U ,F)x. To show it is exact, we will construct a chain homotopy between
the identity map and the zero map. That is, we will define

θn : Čn(U ,F)x → Čn−1(U ,F)x

satisfying
dn−1
x ◦ θn + θn+1 ◦ dnx = IdČn(U ,F)x

Now we describe how to construct θn. Given x ∈ X and given an element of the stalk
fx ∈ Čn(U ,F)x, we need to define θn(fx).

First, pick j ∈ I12 so that x ∈ Uj. Then choose a section f ∈ Čn(U ,F)(V ), where
V ⊂ X is an open neighborhood of x. Since the stalk is the direct limit over shrinking
neighborhoods, we may shrink V if necessary so that V ⊂ Uj. Now define

θ̃n : Čn(U ,F)(V )→ Čn−1(U ,F)(V )(
θ̃n(f)

)
i0···in−1

= fji0···in−1|V ∩Ui0···in−1

This defines θ̃n(f) on each component, so it defines an output in Čn−1(U ,F)(V ). Then define

θn(fx) to be the image of θ̃n(f) in the stalk Čn−1(U ,F)x.

θn(fx) = ρVx

(
θ̃n(f)

)
It is not immediately clear that θn is well defined, since it might in priciple depend on the
choice of j, f, or V , but we omit these details. We give some justification for the claimed
equation which we wanted θn to satisfy. We just discuss the equality on the level of sections.
For f ∈ Čn(U ,F)(V ), we have(

θ̃n+1(dnV (f))
)
i0···in

= dnV (f)ji0···in

= fi0···in −
n∑
k 6=1

(−1)kfji0···̃ik···in

= fi0···in − dn−1
V

(
θ̃n(f)

)
which we may rearrange to

θ̃n+1 ◦ dnV + dn−1
V ◦ θ̃n = IdČn(U ,F)(V )

12Recall that I is the indexing set for our open cover U = {Ui}i∈I for X.
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Then taking the image in the stalks, we obtain the desired equality.

dn−1
x ◦ θn + θn+1 ◦ dnx = IdČn(U ,F)x

Thus θn is a nullhomotopy of the identity for the chain complex on stalks Č•(U ,F)x, so that
sequence of abelian groups is exact. Since this is exact for all x ∈ X, the chain complex of
sheaves Č•(U ,F) is exact.

6.8 Sheafification revisited, using Čech cohomology

Now with our powerful tool of Čech cohomology, we can give another approach to sheafifi-
cation which does not involve the étale space. The main advantage of this approach is not
visible at first, which is the possibility of generalizing to situations where X does not have
a true topology, but instead has a generalized thing called a Grothendieck topology.

Let X be a topological space, F a presheaf of abelian groups on X, and U = {Ui}i∈I an
open cover of X. Recall that

Ȟ0(U ,F) = Ž0(U ,F) = ker d0 =

{
(fi) ∈

∏
i∈I

F(Ui) : fi|Ui∩Uj = fj|Ui∩Uj , ∀i, j ∈ I

}

Also recall that if V = {Vj}j∈J is a refinement of U , with refinement map τ : J → I, we
obtain a map

Ȟ0(U ,F)→ Ȟ0(V ,F)

which leads to defining
Ȟ0(X,F) = lim−→ Ȟ0(U ,F)

Definition 6.57. Let X,F be as above. For U ⊂ X, define

F|U(W ) = F(W ∩ U)

which makes F|U a presheaf on U . So we obtain a group

F#(U) := Ȟ0(U,F|U)

Definition 6.58. Let X,F ,F# be as above. Suppose we have V ⊂ U open subset of X.
We want to describe a map

ρUV (F#) : F#(U)→ F#(V )

Given f ∈ F#(U) = Ȟ0(U,F|U) = lim−→ Ȟ0(U ,F|U), represent f in one of the limiting groups,

i.e. choose fU ∈ Ȟ0(U ,F|U) whose image in the direct limit is f . Here, U = {Ui}i∈I is some
open cover of U . This fU can be written as

fU = (fi) ∈
∏
i∈I

F(Ui)
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Then define V to be the following open cover of V .

V = {Vi = V ∩ Ui}i∈I

This covers V because V ⊂ U . Then define gi = fi|V ∈ F(Vi), so

(gi) ∈ Ȟ0(V ,F|V )

Finally, we can take the image of (gi) in the direct limit lim−→ Ȟ0(V ,F|V ) = Ȟ0(V,F|V ) =

F#(V ). This image is what we call ρUV (F#)(f).

ρUV (F#) : F#(U)→ F#(V ) f 7→ image of (fi|V ) in direct limit

It is not entirely clear that this is well defined, independent of the choice of fU , but we omit
these details.

Lemma 6.59. The previous two definitions make F# into a presheaf on X.

This is the setup to our new approach to sheafification. The general strategy is as follows:
take a presheaf F , and form the presheaf F#. We will show that F# satisfies the separation
axiom. Then repeat the process, forming (F#)#, which we will denote F+. We will show
that (F#)# satisfies both sheaf axioms.

F  F#  (F#)# = F+

Definition 6.60. We will construct a morphism of presheaves F → F#. Given an arbitrary
open subset U ⊂ X, we need to define a map F(U)→ F#(U) = Ȟ0(U,F|U). Consider the
trivial open cover of U , given by U = {U}. For this cover, we have

Ȟ0(U ,F) = F(U)

so we have the “identity map”

F(U)→ Ȟ0(U ,F) = F(U) s 7→ s

Then we compose this with the natural map Ȟ0(U ,F) → lim−→ Ȟ0(U ,F) = F#(U). This
gives our needed map

F(U)→ F#(U)

It is clear that these are compatible with restriction maps for F ,F#, so we get a morphism
of presheaves F → F#.

Theorem 6.61. Let X be a topological space and F a presheaf of abelian groups on X.

1. F# is a separated presheaf on X.

2. If F is separated, then F# is a sheaf on X. (Hence (F#)# is a sheaf on X for any
presheaf F .)
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3. The map defined above F → F# induces an isomorphism on stalks. (Hence repeating
the construction F → F# → (F#)# induces an isomorphism on stalks as well.)

4. (F#)# satisfies the universal property of sheafification for F .

Since the proof is so long, we break it up into four separate propositions.

Proposition 6.62. Let X be a topological space and F a presheaf of abelian groups on X.
Then F# is a separated presheaf on X.

Warning: The following proof is involves a lot of confusing notation, and requires a thorough
understanding of the following concrete description of a direct limit of abelian groups.

F#(U) = lim−→
U
Ȟ0(U ,F) =

(⊔
U

Ȟ0(U ,F)

)/
∼

The equivalence is described as follows. Given two open covers U = {Ui}i∈I and V = {Vj}j∈J
of U , and (si) ∈ Ȟ0(U ,F) and (tj) ∈ Ȟ0(V ,F), they represent the same element of the
direct limit if there is another open coverW = {Wk}k∈K and refinement maps τ : K → I, σ :
K → J such that the maps induced by τ, σ on the zeroth Cech cohomology map (si), (tj)
respectively to the same element of Ȟ0(W ,F).

Ȟ0(U ,F) Ȟ0(V ,F)

Ȟ0(W ,F)

τ̌0 σ̌0

Proof. Let X,F be as in the statement of the theorem. For V ⊂ U open subsets of X, we
denote the restriction map for F by ρUV (F) or just ρUV , and the restriction map for F# by
ρUV (F#).

We want to show that F# is separated, which is to say, for any U ⊂ X, if two sections
of F# over U are the same everywhere locally (on some cover of U), then they are the same
globally (equal in F#(U)). So let U ⊂ X be any open subset, and let V = {Vj}j∈J be an

open cover of U . Another way to phrase the property that F# be separated is that the
following map is injective. ∏

j∈J

ρUVj(F
#) : F#(U)→

∏
j∈J

F#(Vj)

To show it is injective, we start with two arbitrary elements s, t ∈ F#(U) with equal images
under the above map. That is, for j ∈ J ,

ρUVj(F
#)(s) = ρUVj(F

#)(t) in F#(Vj)

We want to show that s = t. In broad strokes, we just follow the definitions where they lead,
unraveling concrete descriptions of direct limits and maps between them. We will construct
cover W which is a much finer cover than V , and somehow things will work out.
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As noted before the proof, F#(U) is a direct limit over covers of U of the groups Ȟ0(U ,F),
so we may choose representative elements for each of s, t in some cover-specific Čech coho-
mology group. That is, there exist open covers U = {Ui}i∈I , Ũ = {Ũi}i∈Ĩ of U and elements

sU = (si) ∈
∏
i∈I

F(Ui) = Ȟ0(U ,F)

tŨ = (ti) ∈
∏
i∈Ĩ

F
(
Ũi

)
= Ȟ0

(
Ũ ,F

)
such that under the natural maps to the direct limit, (si) gets mapped to s and (ti) gets
mapped to t.

Ȟ0(U ,F)→ F#(U) (si) 7→ s

Ȟ0(Ũ ,F)→ F#(U) (ti) 7→ t

Now we attempt to unravel what the equality ρUVj(F
#)(s) = ρUVj(F

#)(t) implies. In order

to do this, we recall the description of the map ρUV (F#). Having found sU , tŨ representing s
and t, we consider the open covers of Vj given by

Vj = {Vj ∩ Ui}i∈I Ṽj = {Vj ∩ Ũi}i∈Ĩ

then consider the elements

si|Vj = ρUiVj∩Ui(si) ∈ F(Vj ∩ Ui)

ti|Vj = ρŨi
Vj∩Ũi

(ti) ∈ F(Vj ∩ Ũi)

So we have

(si|Vj) ∈
∏
i∈I

F(Vj ∩ Ui) = Ȟ0(Vj,F|Vj)

(ti|Vj) ∈
∏
i∈Ĩ

F(Vj ∩ Ũi) = Ȟ0(Ṽj,F|Vj)

By definition, ρUVj(F
#)(s) is the image of (si|Vj) in the direct limit, and ρUVj(F

#)(t) is the
image of (ti|Vj) in the direct limit. Following the discussion before the proof, the fact that
(si|Vj) and (ti|Vj) represent the same equivalence class in the direct limit means that there
is a cover Wj = {Wjk}k∈Kj of Vj and refinement maps

τj : Kj → I σj : Kj → Ĩ

such that under the induced maps τ̌ 0
j , σ̌

0
j , the elements (si|Vj) and (ti|Vj) are mapped to the

same element of Ȟ0(Wj,F|Vj).
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Ȟ0(Vj,F|Vj) Ȟ0(Ṽj,F|Vj)

Ȟ0(Wj,F|Vj)
τ̌0j σ̌0

j

Note that for all j, and for k ∈ Kj, Wjk ⊂ Vj ∩ Uτj(k) and Wjk ⊂ Vj ∩ Ũσj(k) (this is just
what it means that τj, σj are refinements). Now consider the open coverW = {Wjk}j∈J,k∈Kj .
Since V = {Vj}j∈J is an open cover of U and Wj = {Wjk}k∈Kj is an open cover of Vj, W is

an open cover of U .
Setting aside W for the moment, let us describe what we actually need to show in order

to conclude s = t. For s to equal t in F#(U) = lim−→ Ȟ0(U ,F|U), it suffices to find an open

cover W̃ = {W`}`∈L of U and refinement maps τ : L→ I, σ : L→ Ĩ such that the images of

(si), (ti) in Ȟ0(W̃ ,F) are equal. That is, in the following picture, we need τ̌ 0((si)) = σ̌0((ti)).

Ȟ0(U ,F) Ȟ0(Ũ ,F)

Ȟ0(W̃ ,F)

τ̌0 σ̌0

But this is exactly the data we already have, as long as we piece it together carefully. Define

L =

{
(j, k) ∈ J ×

⋃
j∈J

Kj : k ∈ Kj

}

and let
W̃ =W = {Wjk}j∈J,k∈Kj = {Wjk}(j,k)∈L

then define

τ : L→ I (j, k) 7→ τj(k)

σ : L→ Ĩ (j, k) 7→ σj(k)

Then we claim that τ̌ 0((si)) = σ̌0((ti)), which will finish the proof of (1). To prove these

are equal, it suffices to consider the (j, k)th component in Ȟ0(W ,F) =
∏

(j,k)∈L

F(Wjk). Note

from earlier that Wjk ⊂ Vj ∩ Uτj(k) ∩ Ũσj(k), so the restriction maps we are about to write
down make sense. We already know that for j ∈ J and k ∈ Kj, the following elements are
equal.

τ̌ 0
j

((
si|Vj

))
k

=
(
sτj(k)|Vj

) ∣∣
Wjk

= ρ
Uτj(k)

Vj∩Uτj(k)
(sτj(k))

∣∣
Wjk

= ρ
Vj∩Uτj(k)
Wjk

ρ
Uτj(k)

Vj∩Uτj(k)

(
sτj(k)

)
= ρ

Uτj(k)

Wjk
(sτj(k))

σ̌0
j

((
ti|Vj

))
k

=
(
tσj(k)|Vj

) ∣∣
Wjk

= ρ
Uσj(k)

Vj∩Uσj(k)
(tσj(k))

∣∣
Wjk

= ρ
Vj∩Uσj(k)
Wjk

ρ
Uσj(k)

Vj∩Uσj(k)

(
tσj(k)

)
= ρ

Uσj(k)

Wjk
(tσj(k))
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Thus for (j, k) ∈ L, we have

τ̌ 0
(
(si)
)

(j,k)
= sτ(j,k)

∣∣∣
Wjk

= sτj(k)

∣∣∣
Wjk

= ρ
Uτj(k)

Wjk
(sτj(k))

= ρ
Uσj(k)

Wjk
(tσj(k)) = tσj(k)

∣∣∣
Wjk

= tσ(j,k)

∣∣∣
Wjk

= σ̌0
(
(ti)
)

(j,k)

Thus τ̌ 0((si)) = σ̌0((ti)) in Ȟ0(W ,F), hence s = t in the direct limit. Hence the map we
originally considered is injective, so F# is a separated presheaf.

We continue the proof of Theorem 6.61, proving the second part using a lemma.

Lemma 6.63. Let F be a separated presheaf of abelian groups on a space X. Then for any
open subset U ⊂ X and any open cover U = {Ui}i∈I of U , the canonical map associated with
the direct limit

Ȟ0(U ,F|U)→ Ȟ0(U,F|U)

is injective.

Proof. Omitted.

Proposition 6.64. Let F be a separated presheaf of abelian groups on X. Then F# is a
sheaf.

Proof. Fom the previous proposition, we know F# is separated, so we just need to verify
that it satisfies gluing. Let U ⊂ X be an open set, and let U = {Ui}i∈I be an open cover of
U . Suppose we are given elements si ∈ F#(Ui) for i ∈ I which agree on double intersections.
That is, for i1, i2 ∈ I, we have

ρ
Ui1
Ui1∩Ui2

(F#)(si1) = si1
∣∣
Ui1∩Ui2

= ρ
Ui2
Ui1∩Ui2

(F#)(si2) = s21

∣∣
Ui1∩Ui2

We need to find s ∈ F#(U) such that s|Ui = si for all i ∈ I. Using the concrete description
of the direct limit, each si ∈ F#(Ui) = lim−→T Ȟ

0(T ,F|Ui) 13 is represented by some si,Vi ∈
Ȟ0(Vi,F|Ui) where Vi = {Vij}j∈Ji is an open cover of Ui.

si,Vi = (sij)j∈Ji ∈ Ȟ0 (Vi,F|Ui) =
∏
j∈Ji

F(Vij)

Now fix i1, i2 ∈ I, and consider the cover

W = {Vi1j1 ∩ Vi2j2}j1∈Ji1
j2∈Ji2

13T ranges over open covers of Ui.
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of Ui1 ∩ Ui2 . Then consider the elements

s̃i1 =

(
si1j1

∣∣∣
Vi1j1∩Vi2j2

)
j1∈Ji1
j2∈Ji2

∈ Ȟ0
(
W ,F|Ui1∩Ui2

)
=
∏
j1∈Ji1
j2∈Ji2

F (Vi1j2 ∩ Vi2j2)

s̃i2 =

(
si2j2

∣∣∣
Vi1j1∩Vi2j2

)
j1∈Ji1
j2∈Ji2

∈ Ȟ0
(
W ,F|Ui1∩Ui2

)
=
∏
j1∈Ji1
j2∈Ji2

F (Vi1j2 ∩ Vi2j2)

We have the canonical map of the direct limit

Ȟ0
(
W ,F|Ui1∩Ui2

)
→ lim−→

(
T ,F|Ui1∩Ui2

)
= Ȟ0

(
Ui1 ∩ Ui2 ,F|Ui1∩Ui2

)
= F#(Ui1 ∩ Ui2)

where the direct limit ranges over open covers T of Ui1 ∩ Ui2 . Under this map,

s̃i1 7→ ρ
Ui1
Ui1∩Ui2

(F#)(si1)

s̃i2 7→ ρ
Ui2
Ui1∩Ui2

(F#)(si2)

by definition of the restriction maps for F#. But by assumption, the two elements on the
RHS above are equal, so s̃i1 , s̃i2 get mapped to the same class in the direct limit. Then by
Lemma 6.63, s̃i1 = s̃i2 as elements of Ȟ0(W ,F|Ui1∩Ui2 ), meaning that

si1j1

∣∣∣
Vi1j1∩Vi2j2

= si2j2

∣∣∣
Vi1j1∩Vi2j2

for j1 ∈ Ji1 , j2 ∈ Ji2 . Now consider the open cover

V = {Vij} i∈I
j∈Ji

of U . Since si1j1 = si2j2 on the intersection Vi1i2 ∩ Vi2j2 , we have a well defined element

s̃ = (sij) i∈I
j∈Ji
∈ Ȟ0(V ,F|U) =

∏
i∈I
j∈Ji

F(Vij)

Finally, we define s to be the image of s̃ under the canonical map to the direct limit.

Ȟ0(V ,F|U)→ lim−→
T
Ȟ0(T ,F|U) = Ȟ0(U,F|U) = F#(U)

We claim that s is the required glued global section, that is, s|Ui = si in F#(Ui). We know
that si is represented by (sij)i∈Ji ∈ Ȟ0(V ,F|Ui) using the open cover Vi of Ui.

On the other hand, s is represented by (sij)i∈I,j∈Ji ∈ Ȟ0(Vi,F|U) ∈ Ȟ0
(
Ṽ ,F|Ui

)
using

the open cover V of U , so s|Ui is represented by (sij|Ui)i∈I,j∈Ji , using the open cover Ṽi =

{Ui ∩ Vij} of Ui. But this is silly, since Vij ⊂ Ui, so Ṽi = V is the same cover. So clearly si
and s|Ui are represented by the same thing, so they are equal in the direct limit.
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This finishes the proof of part (2) of Theorem 6.61. Now we discuss part (3). I deliberately
use the word “discuss” instead of “prove,” because the “proof” given below is basically hand
waving and nonsense.

Proposition 6.65. Let F be a presheaf of abelian groups on a space X. The morphism of
sheaves F → F# of Definition 6.60 induces an isomorphism on stalks.

Proof. We have the morphism φ : F → F# which is described on an open subset U ⊂ X by
composing the identity map F(U) → Ȟ0(U0,F) (where U0 = {U} is the trivial cover of U)
with the canonical map to the direct limit F#(U). We need to show that the induced map
on stalks φx is an isomorphism for all x ∈ X.

Let x ∈ X, let U be an open subset containing x, and let U = {Ui}i∈I be an open cover
of U . As φ is a morphism of presheaves, we have the following commutative diagram.

F(U) F#(U)

Fx F#
x

φU

ρUx (F) ρUx (F#)

φx

We recall the description of the map φx. Given an element of the stalk s ∈ Fx, we can choose
a neighborhood V of x and a section s ∈ F(Vs) such that ρVsx (s) = s. Then by commutativity
of the above diagram,

φx(s) = φx ◦ ρVsx (F)(s) = ρVsx (F#) ◦ φVs(s)

Now consider an element t ∈ F#
x . Then represent t by a section t ∈ F#(Vt), where Vt

is some neighborhood of x. Then since F#(Vt) is a direct limit also, represent t by some
t̃ ∈ Ȟ0(W , Vt), where W = {Wj}j∈J is an open cover of Vt.

t̃ = (tj)j∈J ∈
∏
j∈J

F(Wj) = Ȟ0 (W ,F|Vt)

That is, t̃ maps to t in the canonical map to the direct limit F#(Vt). Fix jx ∈ J to be any
index such that x ∈ Wj0 , which exists since W is an open cover of Vt which contains x. Now
consider the map

ψW : Ȟ0 (W ,F|Vt)→ Fx (uj)j∈J 7→ ρUx (F)(ujx)

We now make several outrageous claims, which complete the proof if true.

1. The class of ψW((uj)) in Fx does not depend on the choice of index jx.

2. As W ranges over open covers of Vt, the family of maps ψW are compatible in such a
way that they pass to a map on the direct limit

ψt = lim−→
W
ψW : lim−→ Ȟ0(W ,F|Vt) = F#(Vt)→ Fx
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3. As Vt ranges over neighborhoods of x on which is is possible to represent t, the family
of maps ψt are compatible in such a way that they pass to a map on the direct limit

ψ = lim−→
Vt

ψt : lim−→F
#(Vt) = F#

x → Fx

4. The map ψ : F#
x → Fx is inverse to φx.

I’m far too lazy to work these out, so you get to do it on your own.

Proposition 6.66. Let F be a presheaf of abelian groups on a space X, and let F+ = (F#)#

be the associated sheaf, and θ : F → F+ the composition of two maps following Definition
6.60. Then (F+, θ) satisfy the universal property of sheafification, which is to say, given any
sheaf G of abelian groups on X and a morphism of presheaves φ : F → G, there exists a
unique factorization through θ, that is, there exists a unique morphism ψ : F+ → G making
the following diagram commute.

F F+

G

θ

φ ψ

Proof. Let φ : F → G be a morphism of presheaves, with G a sheaf. By functoriality of Čech
cohomology (Proposition 6.48), we have a morphism φ# : F# → G# of presheaves. It fits
into the commutative below, where α : F → F# and β : G → G# are the canonical maps of
Definition 6.60.

F(U) G(U)

F#(U) = Ȟn(U,F|U) G#(U) = Ȟ0(U,GU)

φU

αU βU

φ#(U)

Following the discussion in Example 6.35, since G is a sheaf, the canonical map G(U) →
G#(U) is an isomorphism, so we obtain a morphism β−1

U φ#
U : F#(U) → G(U), giving a

morphism of presheaves β−1φ# : F# → G. Iterating this process, we obtain a morphism of
sheaves ψ : F+ → G which is precisely the needed factorization.

All that remains is to establish unqiueness of ψ. This is essentially a formal consequence
of the fact that θ induces an isomorphism on stalks. Since θ induces isomorphisms on stalks,
if ψ, ψ′ are two morphisms F+ → G which compose with θ to give the same morphism, they
are the same on stalks of F+, but then they are the same morphism by Corollary 4.3.

This completes the proof of Theorem 6.61, which we restate for convenience.
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Theorem 6.67. Let X be a topological space and F a presheaf of abelian groups on X.

1. F# is a separated presheaf on X.

2. If F is separated, then F# is a sheaf on X. (Hence (F#)# is a sheaf on X for any
presheaf F .)

3. The map defined above F → F# induces an isomorphism on stalks. (Hence repeating
the construction F → F# → (F#)# induces an isomorphism on stalks as well.)

4. (F#)# satisfies the universal property of sheafification for F .
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7 Representable functors and Yoneda’s lemma

This section is material covered in a guest presentation for the class by another student.
The material in this section is not critical to anything after it in these notes, so it may be
reasonably skipped over.

In this section, we build up to the statement of Yoneda’s lemma with some definitions
and examples using algebras over a field. We skip any proof of the lemma. Then we give
some application to developing the category of affine group schemes and their connection to
the category of Hopf algebras.

Definition 7.1. A category is locally small if between any two objectsX, Y , the morphisms
HomC(X, Y ) form a set.

Definition 7.2. Let C be a locally small category, and let X be an object in C. The
associated covariant functor to X is

hX : C → Set Y 7→ HomC(X, Y )

This describes the functor hX on objects. Given a morphism f ∈ HomC(Y, Z), hX acts on f
as follows.

hX : HomC(Y, Z)→ HomSet

(
HomC(X, Y )→ HomC(X,Z)

)
f 7→ (φ 7→ f ◦ φ)

More generally, if the homomorphism sets of C are objects in some category D (say the
category of groups), then an object X of C has an associated functor hX : C → D.

Definition 7.3. A functor C → Set is representable if it is naturally isomorphic to a func-
tor hX for some object X in C. For such a functor, the object X is called the representing
object.

More generally, if D is a category and hom sets HomC(X, Y ) are objects in the category
D, then a functor C → D is representable if it is naturally isomorphic to some hX as a
functor D → D.

In this section, all of our examples will focus on the category C = Algk, the category of
commutative unital associative k-algebras, where k is a fixed field. In all of the following
examples, we are somewhat lazy in justifying things. We justify the fact that each functor
is representable only in that we describe how the functor on objects gives isomorphisms, but
we do not fully describe the naturality of these isomorphisms.

Example 7.4. The trivial functor

Algk → Set A 7→ {∗}

is representable, with representing object k, viewed as an algebra over itself. This is because
for any k-algebra A, there is a unique k-algebra map k → A which is determined by sending
1 ∈ k to 1 ∈ A.

hk : Algk → SetA 7→ Homk(k,A) ∼= {∗}
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Example 7.5. The forgetful functor

Algk → Set A 7→ A

is representable, with representing object k[x], the polynomial ring in one variable. This is
because for any k-algebra A, a k-algebra map k[x] → A is determined by the image of x,
which can be any element of A.

hk[x](A) = Homk(k[x], A) ∼= A φ↔ φ(x)

Example 7.6. The functor
Algk → Set A 7→ A×

which takes an algebra to its group of multiplicative units is also representable, with repre-
senting k-algebra

k[x, y]/(xy − 1) ∼= k[x, x−1]

This is because a k-algebra map k[x, x−1]→ A is determined by the image of x, along with
the fact that x must be mapped to a unit.

Example 7.7. Let hA, hB be representable functors Algk → Set, with representing k-
algebras A,B respectively. Then the functor

hA × hB : Algk → Set C 7→ hA(C)× hB(C)

is representable, with representing k-algebra A⊗k B. (On the right side, hA(C)× hB(C) is
just the cartesian product of sets, which is the categorical product in that categoy.) This is
because of the well-known natural isomorphism

Homk(A⊗k B,C) ∼= Homk(A,C)× Homk(B,C)

By natural isomorphism, we mean that there is a natural isomorphism of bifunctors

Homk(−⊗k −, C) ∼= Homk(−, C)× Homk(−, C)

Definition 7.8. Given a locally small category C, let Č be the category of covariant functors
C → Set, with morphisms given by natural transformations. We may then regard h as a
(contravariant) functor

h : C → Č X 7→ hX

Alternatively, we may view h as a covariant functor to the opposite category Čopp.

h : C → Čopp X 7→ hX

Definition 7.9. Let C,D be locally small categories and F : C → D a functor. For every
pair of objects X, Y in C, F induces a function

FX,Y : HomC(X, Y )→ HomD(X, Y )

The functor F is full if for every X, Y , FX,Y is surjective. The functor F is faithful if for
every X, Y , FX,Y is injective. If it is both, we say F is fully faithful.
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Definition 7.10. A functor F : C → D is essentially surjective if for any object Z of D,
there exists an object X of C such that F(X) ∼= Z. That is to say, not every object of D is
in the “image” of F , but every isomorphism class of objects of D is in the “image.”

Remark 7.11. This is a distraction at this point, but it is an important fact that a functor
F : C → D is an equivalence of categories if and only if it is fully faithful and essentially
surjective.

Lemma 7.12 (Yoneda lemma). The functor h : C → Č is fully faithful. That is, for any
objects X, Y of C, h induces an isomorphism

HomC(X, Y ) ∼= HomC(hY , hX)

More generally, for any object F of Č, h induces an isomorphism

F(Y ) ∼= HomČ(hY ,F)

Proof. The proof isn’t actually that hard. You basically just need to keep track of everything
and define the logical maps to give inverses to the maps induced by h. Despite this, the
proof is not that illuminating so we skip it.

Remark 7.13. The philosophy behind Yoneda’s lemma is that it tells us a lot about rep-
resentable functors and morphisms between them. In general, it is very difficult to get a
handle on all of the possible natural transformations between two functors. However, what
Yoneda’s lemma says is that if we have two representable functors, then we can understand
all of the natural transformations between them by understanding the morphisms between
their representating objects, which is usually much more attainable.

7.1 Application of Yoneda - affine group schemes and Hopf alge-
bras

Definition 7.14. Fix a field k, and let Gp be the category of groups. An affine group
scheme over k is a representable functor Algk → Gp.

Example 7.15. Let hA : Algk → Gp be an affine group scheme over k, with representing
k-algebra A. We have the usual structure maps associated with A:

A⊗k A→ A a⊗ b 7→ ab (bilinear) multiplication

A→ A a 7→ −a additive inversion

k → A λ 7→ λ1A multiplicative identity

We want to see how the fact that A represents a functor Algk → Gp also induces a lot of
additional structure on A, which is in some sense “dual” to the above algebra structure. To
save some space, in the diagrams to follow we denote hA merely by h. For any k-algebra B,
we know that hB = hA(B) is a group, so it has a multiplication map

mB : hB × hB → hB (x, y) 7→ xy
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Also, given a morphism φ : B → C of k-algebras, the fact that h is a functor (in particular,
hφ is a group homomorphism) means that mB,mC are compatible in the sense that the
following diagram commutes.

hB × hB hB

hC × hC hC

mB

h(φ×φ) hφ

mC

Similary, hB has an inversion map

iB : hB → hB x 7→ x−1

which fits into a commutative diagram

hB hB

hC hC

iB

hφ hφ

iC

Also, hB has a special element (the identity), which we can represent categorically as a map
from the trivial group {e} to hB.

εB : {e} → hB

fitting into a commutative diagram

{e} hB

{e} hC

εB

hφ

εC

Each of these diagrams respectively says that m, i, ε are natural transformations.

m : h× h→ h

i : h→ h

ε : Trivial functor→ h

Based on our examples from the previous section, the functor h× h and the trivial functor
are representable, in particular, h × h is represented by A ⊗k A, and the trivial functor is
represented by k (viewed as a k-algebra). Hence by Yoneda’s lemma, these natural transfor-
mations correspond to k-algebra homomorphisms

m∗ : A→ A⊗k A
i∗ : A→ A

ε∗ : A→ k
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We have not written them out, but one can write out various properties for these maps,
which are formally induced by various commutative diagrams associated with hA being a
functor. For all the usual properties of A (such as having a unit, associativity, etc.) there
is a “dual” property of the maps above, with names like counit, coassociativity, etc. The
technical word to summarize all of this is that the maps m∗, i∗, ε∗ give A the structure of a
coalgebra, which the interested reader can read more about.

In fact, such an algebra A representing a functor Algk → Gp is not merely an algebra
and coalgebra simultaneously. It is a bialgebra, which just means that a few technical
compatibilities are imposed on the relationship between the algebra and coalgebra structures.
Actually, there is even more structure on A - it has the properties of being a Hopf algebra,
which is a bialgebra with even more structure.

Remark 7.16. In the previous example, we demonstrated that the k-algebra representing
an affine group scheme over k (a representable functor Algk → Gp) has a lot more structure
imposed upon it, to the point where A is given the structure of a Hopf algebra. This gives
a functor from the category of affine group k-schemes to the category of Hopf k-algebras.

If one is careful and has the appropriate definitions in hand, one can trace back the con-
struction. Basically, one observes that given a Hopf k-algebra A, one can take the associated
functor hA : Algk → Set, B 7→ Homk(A,B) and use the various commutative diagrams codi-
fying the Hopf algebra properties to see that the set hA(B) has a reasonable group structure
which makes hA into a functor Algk → Gp. That is, a Hopf k-algebra defines an affine group
scheme, via the functor h of the Yoneda lemma.

Finally, as one would hope in the best of all possible worlds, the two constructions above
of functors we have described are quais-inverses, meaning that they give an equivalence of
categories.

{affine group k-schemes} ↔ {Hopf k-algebras}

We state this in the following theorem, without much in the way of justification other than
this discussion.

Theorem 7.17. Fix a field k. The category of affine group schemes over k is equivalent to
the category of Hopf algebras over k.
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8 Functors between categories of sheaves

So far, we have dealt with the category Sh(X) (or PSh(X)), the category of sheaves (or
presheaves) of abelian groups on a fixed topological space X. Now, we will consider how a
continuous map f : X → Y of topological spaces induces various functors between Sh(X)
and Sh(Y ). We will discuss several such functors, and various adjunction properties between
them. We give a quick list as a preview. Fix a map f : X → Y .

1. Direct image functor f∗ : Sh(X)→ Sh(Y ), also sometimes called pushforward.

2. Inverse image functor f−1 : Sh(Y )→ Sh(X), also sometimes called pullback.

3. Extension by zero - when f is injective and the image is closed or open in Y , we have
f! : Sh(X)→ Sh(Y ). This is read as “f lower shriek.”

4. Exceptional image functor f ! : Sh(Y )→ Sh(X), read as “f upper shriek.”

As mentioned, perhaps the most important property of these functors is various adjunctions,
for example, (f−1, f∗) are an adjoint pair.

8.1 Direct image functor

Definition 8.1 (Direct image functor). Let f : X → Y be a continuous map of topological
spaces. We will define the direct image functor f∗ : Sh(X) → Sh(Y ). First, we define it
on objects. We can even just define it on presheaves. Let F be a presheaf of abelian groups
on X. For V ⊂ Y , define a presheaf f∗F on Y by

(f∗F)(V ) = F(f−1(V ))

The restriction maps for f∗F are defined as follows. For V1 ⊂ V2 ⊂ Y open sets, we have
f−1(V1) ⊂ f−1(V2) ⊂ X open subsets, so we may define the restriction map ρV2V1(f∗F) by
commutativity of the following diagram.

f−1(V1) f−1(V1)

(f∗F)(V1) (f∗F)(V2)

ρ
f−1(V2)

f−1(V1)

ρ
V2
V1

(f∗F)

There are some quick things to check to verify that f∗F as defined is a presheaf, but these
basically come from the analogous properties of F . Similarly, one can verify that if F is a
sheaf, then f∗F is a sheaf. This completes our description of the functor f∗ acting on objects
of Sh(X).

Now we discuss how f∗ acts on morphisms. Let φ : F1 → F2 be a morphism of sheaves (of
abelian groups) on X. So for every U ⊂ X open, we have a map φU : F1(U)→ F2(U) fitting
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into an appropriate commutative square. To define a morphism f∗φ = φ∗ : f∗F1 → f∗F2, it
suffices to define

(φ∗)V : (f∗F1)(V )→ (f∗F2)(V )

for each V ⊂ Y open. We define (φ∗)V by commutativity of the following diagram.

F1(f−1(V )) F2(f−1(V ))

(f∗F1)(V ) (f∗F2)(V )

φf−1(V )

(φ∗)V

It is immediate to verify that this makes φ∗ into a morphism of sheaves. After some additional
mild verification, this definition makes f∗ into a covariant functor, Sh(X)→ Sh(Y ). This is
called the direct image functor associated to f , or sometimes called the pushforward of
f .

Example 8.2 (Direct image functor associated to inclusion of a point). Let X be a topo-
logical space and x ∈ X. Consider the inclusion map ι : {x} ↪→ X, which is continuous. Let
S be an abelian group, and let F be the constant sheaf on {x} with value group S. That is,

F(U) =

{
S U = {x}
{0} U = ∅

What is the pushforward of F under ι? We compute, since there are only two simple cases.
Let V ⊂ X be open.

(ι∗F)(V ) = F(ι−1(V ))

=

{
F({x}) x ∈ V
F(∅) x 6∈ V

=

{
S x ∈ V
{0} x 6∈ V

Hence ι∗F is the skyskraper sheaf on X concentrated at x (with value group S).

Example 8.3 (Pushforward of locally constant sheaf need not be locally constant). In this
example, we will see that for the right function f , the pushforward of a locally constant sheaf
need not be locally constant. This will also serve as an example of how two sheaves may
have the same stalks at each point, and not be isomorphic as sheaves.

Let X, Y both be the unit circle S1 = {z ∈ C : |z| = 1} ⊂ C. Consider the two sheeted
covering

f : X → Y z 7→ z2

Let S be a nontrivial abelian group, and let F be the locally constant sheaf on X with value
group S. That is, for U ⊂ X, F(U) is the group of locally constant functions U → S. Hence
if U has n connected components, then

F(U) ∼= S × · · · × S
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with an n-fold product. Given an arbitrary open subset U ⊂ Y , we do not attempt to describe
(f∗F)(U), since this is a bit complicated. Instead, we will just attempt to describe the stalks
of the pushforward sheaf f∗F . Given y ∈ Y , there is a sufficiently small neighborhood V of
y such that f−1(V ) has exactly two connected components. Hence

(f∗F)(f−1(V )) ∼= S × S

Also, any smaller neighborhood of y will still have a preimage with two connected compo-
nents. So taking the direct limit over shrinking neighborhoods of y, we see that the stalk
(f∗F)y is two copies of S.

(f∗F)y = lim−→
y∈V
F(f−1(V )) ∼= S × S

Now, on the other hand, consider the locally constant sheaf G on Y with value group S×S.
From previous examples (long ago), we know that the stalk of G at any point is S × S.

Gy ∼= S × S

So for any point y ∈ Y , the stalks Gy and (f∗F)y are isomorphic. Yet we claim that these
sheaves are not isomorphic. This is immediate from considering global sections. The global
sections of G are

G(Y ) ∼= S × S
But the global sections of f∗F are just one copy of S, since f−1(Y ) = X is connected.

f∗F(Y ) ∼= S 6∼= G(Y )

Thus f∗F ,G are not isomorphic sheaves. If f∗F was a locally constant sheaf, it would have
to be G, since we know what the stalks of f∗F are, but this is not the case. Hence f∗F is not
a locally constant sheaf. This provides our example of a pushforward of a locally constant
sheaf which is not locally constant.

As mentioned at the beginning, this example also gives a subtle example of how stalks
do not entirely determine the sheaf. From a previous result, we know that if a morphism of
sheaves induces isomorphisms on every stalk, then it is an isomorphism of sheaves. In this
sense, stalks “determine” the sheaf.

However, in the above example, we saw two sheaves f∗F and G which do have the same
stalks everywhere, yet are not the same. This is because the isomorphisms between stalks
are not induced by a morphism of sheaves. In fact, they cannot be, since then the previous
result would force them to be isomorphic as sheaves, which they are not.

Proposition 8.4 (Direct image functor is left exact). Let X, Y be topological spaces.

1. For any continuous map f : X → Y , the direct image functor f∗ : Sh(X) → Sh(Y ) is
left exact.

2. If ι : X ↪→ Y is injective with closed image, then the direct image functor ι∗ is exact.
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Proof. (1) Let 0 → F → G → H → 0 be a short exact sequence of sheaves (of abelian
groups) on X. We need to show that the sequence

0→ f∗F → f∗G → f∗H

is exact. Following section 4.2, we know that for any U ⊂ X, the sequence

0→ F(U)→ G(U)→ H(U)

is a short exact sequence of abelian groups. Hence for V ⊂ Y open, we get that the sequence

0→ F(f−1(V ))→ G(f−1(V ))→ H(f−1(V ))

is exact, but this is the same as the sequence

0→ (f∗F)(V )→ (f∗G)(V )→ (f∗H)(V )

So 0 → f∗F → f∗G → f∗H is exact as a sequence of presheaves, hence exact as a sequence
of sheaves.

(2) Let ι : X ↪→ Y be injective with closed image. As ι is injective, we identify X with
ι(X). Let F be a sheaf on X. First, we describe the stalks of ι∗F . For y ∈ Y if y 6∈ X, since
X is closed, there exists V ⊂ Y with y ∈ V and V ∩X = ∅. Then

(ι∗F)(V ) = F(ι−1(V )) = F(∅) = 0

where 0 represents the trivial group. Hence taking the direct limit over shrinking neighbor-
hoods of y, we see that the stalk at y is zero, if y 6∈ X. On the other hand, if y ∈ X, then
the stalk of ι∗F is just the stalk of F . Putting this together,

(ι∗F)y =

{
Fy y ∈ X
0 y 6∈ X

Now we return to exactness. Let 0→ F → G → H → 0 be a short exact sequence of sheaves
on X. Then the sequence on stalks is exact for any x ∈ X.

0→ Fx → Gx → Hx → 0

We want to show that 0→ ι∗F → ι∗G → ι∗H → 0 is exact. For y ∈ Y , consider its sequence
of stalks.

0→ (ι∗F)y → (ι∗G)y → (ι∗H)y → 0

If y ∈ X, then this is exact since it is identical to the previous sequence, and if y 6∈ X, then
all terms in this are zero, so it is trivially exact. Hence ι∗ is exact.
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Definition 8.5. Let F be a sheaf on X, and let f : X → Y be a continuous map. We want
to describe an induced map

Ȟn(Y, f∗F)→ Ȟn(X,F)

First, let V = {Vi}i∈I be an open cover of Y , and let U = {Ui = f−1(Vi)}i∈I be the induced
open cover of X. Note that for i0, · · · , in ∈ I, we have

Ui0···in = f−1(Vi0···in)

using basic properties of preimages, hence

(f∗F)(Vi0···in) = F(Ui0···in)

So the corresponding groups of Čech n-cochains are equal.

Čn(U ,F) = Čn(V , f∗F)

They also have the same Čech differentials, since these are given by “the same” combinatorial
formula. Hence we obtain an isomorphism on cover-specific Čech cohomology groups.

Ȟn(U ,F) ∼= Ȟn(V , f∗F)

Then composing with the canonical map to the direct limit, we obtain a map

Ȟn(V , f∗F)
∼=−→ Ȟn(U ,F)→ Ȟn(X,F)

Modulo some tedious verification, these maps are compatible with refinements of covers,
hence pass a map on the direct limit.

Ȟn(Y, f∗F)→ Ȟn(X,F)

Note that despite the many isomorphisms on cover-specific cohomology groups, this map is
in general not an isomorphism. The main reason for this is that every open cover of Y gives
an open cover of X by taking preimages, but not every open cover of X arises in this way.
Furthermore, two different open covers of Y may give the same open cover of X. Hence the
direct limits on each side are generally over very different indexing sets.

However, if f is a homeomorphism, then f does give a bijection between open covers of X
and Y in this way, hence the induced map above on Čech cohomology is an isomorphism. In
the next definition and remark, we give a slightly weaker condition on f for this to happen.

Definition 8.6. Let f : X → Y be a continuous map of topological spaces. Then f induces
a map

f̃ : {open covers of Y } → {open covers of X} {Vi}i∈I 7→
{
f−1(Vi)

}
i∈I

We say the map f is a cover isomorphism if the induced map f̃ is a bijection.
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Example 8.7. If f is a homeomorphism, then f is a cover isomorphism.

Example 8.8. Let X, Y be nonempty sets, each with the trivial topology (the only open
sets are the whole set and the empty set). Let f : X → Y be any set map. Then f is
continuous, and f is a cover isomorphism.

Remark 8.9. It is mildly tempting to think that a cover isomorphism must have some
structure approximating a homeomorphism, but the previous somewhat silly example demon-
strates that a cover isomorphism need not be open, surjective, or injective.

Proposition 8.10. If f : X → Y is a cover isomorphism, and F is a sheaf on X, then the
induced map Ȟn(Y, f∗F)→ Ȟn(X,F) is an isomorphism.

Proof. Since f gives a bijection between open covers, in a way which is compatible with
refinements as previously asserted (without proof, sorry), then the induced map f̃ gives an
isomorphism of directed systems (of open covers with refinements). This gives rise to an
isomorphism of directed systems between abelian groups, Ȟn(U ,∗F) with U ranging over
open covers of Y , and Ȟn(V ,F) with V ranging over open covers of X. Passing to the direct
limit, this induces an isomorphism on the direct limit, which is the claimed isomorphism.

8.2 Inverse image functor

Unfortunately, the inverse image functor is much less simple to describe than the direct
image functor. However, since we have built up enough understanding of abstract direct
limits and sheafification, it is not so bad.

The general intuition is as follows. Let f : X → Y be continuous. We want a functor
f−1 : Sh(Y )→ Sh(X). Recall that for a sheaf F on X, we define

(f∗F)(V ) = F(f−1(V )) V ⊂ Y open

Given a sheaf G on Y , the logical analogous definition would be

(f−1G)(U) = G(f(U)) U ⊂ X open

However, there is an issue with this, which is that f(U) may or may not be an open subset
of Y . If f is an open map, this definition works, and we will actually show that our slightly
more complicated definition agrees with this in that particular case.

However, if f(U) is not open, we need to somehow “approximate” f(U) by open subsets
of Y . The natural way to do this is using a direct limit over all open subsets of Y containin
f(U). So instead of f(U), we use a direct limit.

Definition 8.11 (Inverse image functor on objects). Let f : X → Y e a continuous map of
topological spaces. We will define the inverse image functor f−1 : Sh(Y ) → Sh(X), just
on objects at this time. Let G be a sheaf (of abelian groups) on Y . First, we need to define
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an auxiliary presheaf, which is not going to be our final definition of f−1G. For U ⊂ X open,
define

F(U) = lim−→
f(U)⊂V
V open

G(V )

The direct limit is taken over all V ⊂ Y which are open and contain f(U), the partial
ordering on such subsets is by reverse inclusion, with maps being restriction maps. We want
to make F a presheaf, so we need to define restriction maps for F . Given U1 ⊂ U2 ⊂ X, it
is clear that

{V ⊂ Y open, f(U1) ⊂ V } ⊂ {V ⊂ Y open, f(U2) ⊂ V }
so one directed system is actually just a subset of the other. So we obtain a map

ρU2
U1

(F) : F(U2) = lim−→
f(U2)⊂V

G(V )→ F(U1) = lim−→
f(U1)⊂V

G(V )

Some verification is required, but these restriction maps make F into a presheaf (of abelian
groups) on Y . However, now we run into a second issue - we have no reason to expect
that F as defined is a sheaf. In order to fix that, we “simply” sheafify it. Let F+ be the
sheafification of F . Then we define the inverse image of G to be

f−1G := F+

This defines part of a functor f−1 : Sh(Y )→ Sh(X), called the inverse image functor or
sometime pullback. We will define it on morphisms a bit later.

Example 8.12 (Inverse image for open map). Let f : X → Y be an open map. Then for
U ⊂ X, f(U) ⊂ Y is open. So for any sheaf G on Y , the associated sheaf F as described in
the previous definition is

F(U) = lim−→
f(U)⊂V

G(V ) = G(f(U))

In this case, F is a sheaf, by transferring properties of G, so the sheafification is just F .
Hence

f−1G = F+ = F

Example 8.13 (Inverse image for inclusion of a point). Let X be a space and x ∈ X. Let
ι : {x} ↪→ X be the inclusion. Let G be a sheaf on X. Then the auxiliary sheaf F is defined
by

F({x}) = lim−→
x∈V
G(V ) = Gx

Hence the pullback ι−1G is the constant sheaf on {x} with value group equal to the stalk Gx.

Definition 8.14 (Inverse image functor on morphisms). Now we describe the inverse image
functor on morphisms. Let f : X → Y be a continuous map, and let φ : G1 → G2 be a
morphism of sheaves on Y . So for V ⊂ Y open, we have a map (of abelian groups)

φV : G1(V )→ G2(V )
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which is compatible with restriction maps. Let F1,F2 be the auxiliary presheaves on X,
defined by

F1(U) = lim−→
f(U)⊂V

G1(V )

F2(U) = lim−→
f(U)⊂V

G2(V )

Since the maps φV are compatible with restrictions, which are the maps of the above direct
limits, using the maps φV we obtain a map φU as below.

φU = lim−→
f(U)⊂V

φV : F1(U) = lim−→
f(U)⊂V

G1(V )→ F2(U) = lim−→
f(U)⊂V

G2(V )

Modulo some verification, these maps φU give us a morphism of presheaves f̃−1φ : F1 → F2.
Let θ1 : F1 → F+

1 , θ2 : F2 → F+
2 be the respective sheafifications. Using the universal

property of sheafification, we obtain a morphism of sheaves

f−1φ : f−1G1 = F+
1 → f−1G2 = F+

2

After some mild verification, one checks that this makes f−1 : Sh(Y ) → Sh(X) into a
covariant functor.

Remark 8.15. Occasionally the functor f−1 is also denoted f ∗, but this is not technically
correct. Properly speaking, the notation f ∗ should only be used when f : X → Y is a mor-
phism of schemes, in which case Sh(X), Sh(Y ) usually refer not to sheaves of abelian groups,
but to sheaves of OX-,OY -modules respectively. However, the definition/construction of f ∗

(in that situation) is very similar to our description of f−1 above.

Proposition 8.16 (Stalks of the inverse image sheaf). Let f : X → Y be a continuous map,
and G be a sheaf (of abelian groups) on Y . Let x ∈ X. There is a natural isomorphism
between stalks

(f−1G)x ∼= Gf(x)

Here, the word “natural” means that if φ : G1 → G2 is a morphism of sheaves on Y , then the
following diagram commutes for any x ∈ X.

(f−1G1)x (G1)f(x)

(f−1G2)x (G2)f(x)

(f−1φ)x

∼=

φf(x)

∼=

Proof. We will just describe the isomorphism, the naturality is a mild verification/diagram
chase after the definitions are laid out. Let F be the auxiliary sheaf associated to G and f .
Since F ,F+ = f−1G have isomorphic stalks, it suffices to describe an isomorphism

Fx ∼= Gf(x)
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for x ∈ X. Let x ∈ X, and let U ⊂ X be an open neighborhood of x. If we have an open
subset V ⊂ Y with f(U) ⊂ V , then f(x) = y ∈ V . This gives a map

F(U) = lim−→
f(U)⊂V

G(V )→ lim−→
f(x)∈V

G(V ) = Gf(x)

Modulo some verification, this passes to the direct limit over all U ⊂ X containing x, giving
a map

Fx = lim−→
x⊂U
F(U) = lim−→

x⊂U
lim−→

f(U)⊂V
→ Gf(x)

We leave the verification that this map is an isomorphism to the reader.

Corollary 8.17 (Inverse image functor is exact). Let f : X → Y be a continuous map. The
inverse image functor f−1 : Sh(Y )→ Sh(X) is exact.

Proof. Let 0 → F → G → H → 0 be a short exact sequence of sheaves (of abelian groups)
on Y . Then for y ∈ Y , the sequence on stalks is exact.

0→ Fy → Gy → Hy → 0

Hence for x ∈ X, using naturality of the isomorphism (F)f(x)
∼= (f−1F)x of the previous

proposition, we obtain a commutative diagram as below.

0 Ff(x) Gf(x) Hf(x) 0

0 (f−1F)x (f−1G)x (f−1H)x 0

∼= ∼= ∼=

Hence the lower sequence is also exact, so 0→ f−1F → f−1G → f−1H → 0 is a short exact
sequence of sheaves. Hence f−1 is exact.

Now we give some description/discussion of the inverse image functor involving the étale
space description of sheafification. We start by recalling the definition of fiber produt in the
category of topological spaces.

Definition 8.18. Let f : X → Z and g : Y → Z be continuous maps. The fiber product
or pullback of X and Y (or more properly, of f and g) with respect to Z is the object
X ×Z Y which is universal in the following diagram.

X ×Z Y X

Y Z

f

g

Concretely, we may describe it as

X ×Z Y = {(x, y) ∈ X × Y : f(x) = g(y)}

The topology is given by the subspace topology from the product X × Y . The maps to X
and Y in the diagram above are just the projections to each component, respectively.
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Definition 8.19. Let f : X ′ → X be a continuous map and let π : E → X be a local
homeomorphism. Recall that in this situation, we call E the total space, and X the base
space. Let E ′ = X ′ ×X E be the fiber product, with projection maps π′ : E ′ → X ′ and
f ′ : E ′ → E.

E ′ E

X ′ X

π′

f ′

π

f

In this situation, we say that π′ is obtained by base change from π via f .

Remark 8.20. Let f : X ′ → X, π : E → X, and π′ : E ′ → X ′ be as above. For any x′ ∈ X ′,
there is a bijection (just of sets)

(π′)−1(x′) ∼= π−1(f(x′))

This follows from a simple diagram chase, which we now describe. Given e′ = (x′, e) ∈
(π′)−1(x′) ⊂ E ′, we get f ′(e′) = e ∈ π−1(f(x′). Conversely, given e ∈ π−1(f(x′)), the
element (x′, e) ∈ X ′ × E satisfies f(x′) = π(e), so we get e′ = (x′, e) ∈ (π′)−1(x′). These
processes are clearly inverse, so this gives the bijection above.

Lemma 8.21 (Local homeomorphisms preserved by base change). Let f : X ′ → X be
a continuous map, and π : E → X be a local homeomorphism. Form the fiber product
E ′ = X ′ ×X E, with projections π′ : E ′ → X ′ and f ′ : E ′′ → E. Then π′ is a local
homeomorphism.

Proof. Let e′ = (x′, e) ∈ E ′ = X ′ ×X E. Note that π(e) = f(x′). We need to find an open
neighborhood U ⊂ E ′ of e′ such that π′|U : U → π′(U) is a homeomorphism. Since π is a
local homeomorphism, there is an open neighborhood V ⊂ E of e such that π|V : V → π(V )
is a homeomorphism.

Then let W = f−1(π(V )) ⊂ X ′. Since π is an open map, π(V ) is open in X, so by
continuity of f , W is open in X ′. Also, since f(x′) = π(e), x′ ∈ W . Then by the definition
of the product topology on X ′ × E, W × V is an open neighborhood of (x′, e) in X ′ × E.
Finally, let U = (W × V ) ∩ E ′, so that U is an open neighborhood of e′ = (x′, e) in E ′. We
claim that π′|U is a homeomorphism, which will complete the proof.

To show that π′|U is a homeomorphism, we construct an inverse. First, note that the
image of π′|U = W . Let x′ ∈ W = f−1(π(V )). Then f(x′) ∈ π(V ). So define

η : W → U x′ 7→
(
x′, (π|V )−1(f(x′))

)
Then we verify that η, π′|U are inverse to each other. Let u = (x′, e) ∈ U , where x′ ∈ W, e ∈
V , and f(x′) = π(e). Then

ηπ′|U(x′, e) = η(x′) =
(
x′, π−1(f(x′))

)
= (x′, π−1(π(e)) = (x′, e)
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On the other hand, it is obvious that π′|Uη(x′) = x′ for x′ ∈ W . So they are inverses. It
is immediately obvious that η is continuous, but we omit the proof of this fact. It should
follow relatively quickly from the fact that π is an open map.

Remark 8.22. The previous lemma is often phrased as saying “local homeomorphisms are
preserved under base change.”

Lemma 8.23. Let π1 : E1 → X, π2 : E2 → X be local homeomorphisms, and let ψ : E1 → E2

be a map (not necessarily continuous) over X which is a bijection.

E1 E2

X

π1

ψ

π2

Then ψ is a homeomorphism.

Proof. Proof omitted.

Remark 8.24. One consequence of the previous lemma is as follows. Let F be a presheaf
on a space X, with étale space πF : EF → X. Let θ : F → F+ be the sheafification of F ,
and πF+ : EF+ → X the étale space of F+.

EF =
⊔
x∈X

Fx EF+ =
⊔
x∈X

F+
x

We know that θx : Fx → F+
x is an isomorphism for all x, so this gives a map

ψ : EF → EF+ e ∈ Fx 7→ θx(e) ∈ F+
x

which is a bijection, and a map overX. Hence by the previous lemma, ψ is a homeomorphism.

Remark 8.25. Let f : X → Y be continuous, and G a sheaf on Y . Recall that to define
f−1G, we constructed an auxiliary presheaf F on X, and then defined f−1G to be the
sheafification of this sheaf. We also know a lot about a particular concrete description of the
sheafification, using the étale space. The next proposition describes the étale space of this
F in terms of a fiber product.

We recall the description of the étale space. Let F be a presheaf on a space X. The étale
space of F is

EF =
⊔
x∈X

Fx

with the obvious projection πF : EF → X, which is an open map and a local homeomorphism.
The topology is somewhat complicated to describe, but is roughly speaking generated by a
basis of lifting open sets of X to EF . Recall that one construction of sheafification we gave
is

F+(U) = Γ(U, πF)

where Γ(U, πF) is continuous sections of πF . Recall also that if F is a sheaf, then F ∼= F+.
Then following the remark above, there is a homeomorphism (over X) of the étale spaces
EF ∼= EF+ .
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Proposition 8.26. Let f : X → Y be a continuous map, and let G be a sheaf on Y . Let
πG : EG → Y , and πf−1G : Ef−1G → X be the respective étale spaces of G, f−1G. Form the
fiber product EG ×Y X in the following diagram.

EG ×Y X EG

X Y

πG

f

There is a homeomorphism ψ : Ef−1G → EG ×Y X over X, that is, the following diagram
commutes.

Ef−1G EG ×Y X

X

ψ

∼=

πf−1G

Proof. Before embarking on the proof, we give two reductions.
(1st reduction) By Lemma 8.23, it suffices to define a map ψ which is just a bijection and

a map over X, then it will follow from the lemma that it is a homeomorphism.
(2nd reduction) Let F be the auxiliary presheaf used to define f−1G, that is, F+ = f−1G.

F(U) = lim−→
f(U)⊂V
V open

G(V )

Using the Remark 8.25, we have a homeomorphism EF ∼= Ef−1G over X, so to prove the

proposition it suffices to define a bijection ψ : EF
∼=−→ EG ×Y X over X. So this is what we

now do, ending our discussion of reductions.
By Proposition 8.16, for x ∈ X, we have natural isomorphisms

φx : Fx
∼=−→ Gf(x)

Let π : EF → X be the étale space of the presheaf F .

EF =
⊔
x∈X

Fx EG =
⊔
y∈Y

Gy

Then define
Φ : EF → EG e ∈ Fx 7→ φx(e) ∈ Gx ⊂ EG

Then the following diagram commutes.

EF EG

X Y

Φ

πF πG

f
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We now claim that Φ is continuous. This a rather unpleasant calculation, following the
definitions of the topologies on étale spaces, which we omit. Moving on, we assume Φ is
continuous.

The fiber product EG ×Y X is defined by a universal property, that it is universal in the
following diagram.

EG ×Y X EG

X Y

πG

f

Hence by the universal property, there is a map ψ : EF → EG ×Y X making the following
diagram commute.

EF

EG ×Y X EG

X Y

ψ

Φ

πF πG

f

In fact, we can describe ψ a bit more concretely, using commutativity of this diagram. Let
e ∈ EF , so e ∈ Fx for some x ∈ X. Let ψ(e) = (e′, x′) ∈ EG ×Y X, where e′ ∈ Gy ⊂ EG
for some y ∈ Y , and x′ ∈ X. Using the commutativity of the upper “triangle,” e′ = Φ(e) =
φx(e) ∈ Gf(x). Using commutativity of the lower “triangle,” x′ = x. Hence we may describe
ψ as

ψ : EF → EG ×Y X e ∈ Fx 7→ (φx(e), x) ∈ Gf(x) ×X

Since φx is a bijection, ψ is a bijection. Also, by Lemma 8.21, the projection map EG×Y X →
X is a local homeomorphism, since πG : EG → Y is a local homeomorphism. Then by Lemma
8.23, since ψ is a bijection, it is a homeomorpism. Clearly, it is a map over X, as seen in the
previous diagram.

Example 8.27 (Inverse image of a locally constant sheaf is a locally constant sheaf). Recall
that the direct image of a locally constant sheaf need not be locally constant. However, the
inverse image functor is better behaved in this respect, as the following example demon-
strates.

Let f : X → Y be a continuous map. Let S be an abelian group, and let G be the locally
constant sheaf on Y with value group S, and let F be the locally constant sheaf on X with
value group S. Let πG : EG → Y be the étale space of G, and let πF : EF → X be the étale
space of F . Recall from Example 5.15 that we may describe EG as Y × S, with πG being
just the projection map to Y . Using the previous proposition, the étale space Ef−1G of the
inverse image sheaf is homeomorphic to the fiber product EG ×Y X.
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EG ×Y (Y × S) Y × S

X Y

πG

f

Explicitly,

EG ×Y (Y × S) = {(x, y, s) ∈ X × Y × S : f(x) = πG(y, s) = y} ∼= X × S

That is, Ef−1G ∼= S × X, which is the same as the étale space EF . Then using Corollary
5.16, since this isomorphism is over X, it follows that F ∼= f−1G.

Definition 8.28. Let X be a subspace of a space Y , and let ι : X ↪→ Y be the inclusion.
Let G be a sheaf (of abelian groups) on Y . The restriction of G to X, denoted G|X , is the
inverse image sheaf ι−1G on X.

We have already used this notation, but now it has some more substance behind it. In
the case where X ⊂ Y is an open subset, the restriction has a simple description as

G|X(U) = G(U ∩X)

However, if X is not an open subset of Y , such a definition does not make sense, since for
U ⊂ Y open, the intersection U∩X may or may not be open in Y . Hence, in such a situation,
we need to use the process of taking direct limits and sheafification, which is exactly what
the inverse image functor accomplishes.

8.3 Adjunction between (f−1, f∗)

Before discussion some generalities about adjunctions, we state the main result as motivation.

Proposition 8.29 ((f−1, f∗) adjunction)). Let f : X → Y be a continuous map of topological
spaces. Let F be a sheaf on X, and let G be a sheaf on Y . There is a natural bijection

HomSh(X)(f
−1G,F) ∼= HomSh(Y )(G, f∗F)

Remark 8.30. The above proposition is more succinctly stated in saying that f−1 is left
adjoint to f∗ and f∗ is right adjoint to f−1. In the following general definitions, we explain
the precise meaning of the word “natural” in the proposition.

Definition 8.31. Let C,D be locally small categories, and let F : C → D and G : D → C be
covariant functors. We say that (F ,G) form an adjoint pair or alternately that F is left
adjoint to G and G is right adjoint to F for any objects X ∈ Ob(C), Y ∈ Ob(D), there is
a natural bijection

bX,Y : HomD(FX, Y ) ∼= HomC(X,GY )

By “natural,” we mean that the various morphisms bX,Y are compatible with C-morphisms
and D-morphisms in the following way. If f : X1 → X2 is a morphism in C, and g : Y1 → Y2

is a morphism in D, then the following diagram commutes.
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HomD(FX2, Y1) HomC(X2,GY1)

HomD(FX1, Y2) HomC(X1,GY2)

bX2,Y1

∼=

t7→g◦t◦Ff u7→Gg◦u◦f
bX1,Y2

∼=

In particular, specializing to the case where g = IdY : Y → Y , we get the diagram

HomD(FX2, Y ) HomC(X2,GY )

HomD(FX1, Y ) HomC(X1,GY )

bX2,Y

∼=

t7→t◦Ff u7→u◦f
bX1,Y

∼=

and similarly specializing to the case where f = IdX : X → X, we get the diagram

HomD(FX, Y1) HomC(X,GY1)

HomD(FX, Y2) HomC(X,GY2)

bX,Y1
∼=

t7→g◦t u7→Gg◦u
bX,Y2
∼=

Alternatively, the “naturality” condition of the isomorphisms bX,Y can be rephrased as saying
that the isomorphisms bX,Y assemble to give a natural isomorphism of functors

b : HomD(F(−), •)→ HomC(−,G(•))

where we view both HomD(F(−), •) and HomC(−,G(•)) as functors Copp ×D → Set.

In some situations, directly constructing or describe a natural isomorphism as above may
be somewhat difficult. Showing that two functors are adjoint is not that simple. In order to
show that (f−1, f∗) form an adjoint pair, we will first develop an alternative characterization
of adjointness, in terms of natural transformations called the “unit” and “counit.”

Definition 8.32. Let F : C → D,G : D → C be an adjoint pair of functors, specifically, F
is left adjoint to G. Note that for X ∈ Ob(C), we have the isomorphism

bX,FX : HomD(FX,FX)
∼=−→ HomC(X,GFX)

In particular, one element of the left side that we always have is the identity map of FX,
which we denote IdFX . Then we define

ηX = bX,FX(IdFX) : X → GFX

Now consider a morphism f : X1 → X2 in C, and the associated morphism Ff : FX1 → FX2

in D. By naturality of b, we get two commutative diagrams.
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HomD(FX1,FX1) HomC(X1,GFX1)

HomD(FX1,FX2) HomC(X1,GFX2)

HomD(FX2,FX2) HomC(X2,GFX2)

HomD(FX1,FX2) HomC(X1,GFX2)

bX1,FX1

∼=

t7→Ff◦t u7→GFf◦u
bX1,FX2

∼=

bX2,FX2

∼=

t7→t◦Ff u7→u◦f
bX1,FX2

∼=

In each diagram, we follow the path of the identity map starting in the top left corner. The
first diagram gives

GFf ◦ bX1FX1(IdX1) = GFf ◦ ηX1 = bX1,FX2(Ff ◦ IdX1) = bX1,FX2(Ff)

The second diagram gives

bX2,FX2(IdX2) ◦ f = ηX2 ◦ f = bX1,FX2(IdFX2 ◦Ff) = bX1,FX2(Ff)

Combining these, we obtain ηX2◦f = GFf ◦ηX1 . We depict this in the following commutative
diagram.

X1 GFX1

X2 GFX2

ηX1

f GFf
ηX2

As this commutes for an arbitrary map f : X1 → X2, this is precisely the condition that η
is a natural transformation from the identity functor on C to the functor GF .

η : IdC → GF

This natural transformation η is called the unit of the adjunction (F ,G).

Definition 8.33. Similarly to the above, we define the counit associated to an adjunction
(F ,G). For Y ∈ Ob(D), we have

bGY,Y : HomC(FGY, Y )
∼=−→ HomC(GY,GY )

and we define
εY = b−1

GY,Y (IdGY )

We omit the diagram chase verification, but one can verify as with η above that these maps
assemble together to give a natural transformation

ε : FG → IdD : FGY → Y

As already mentioned, ε is called the counit of the adjunction (F ,G).
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All the previous work of defining the unit and counit would not be especially useful, except
for the following proposition. Above, we constructed η, ε given an adjunction (F ,G). The
next proposition says that one can reverse-engineer the process, and actually recover the
adjunction from η and ε, provided η and ε satisfy some “triangle identities,” which are
expressed as commutative diagrams (how else?).

Proposition 8.34 (Adjunction equivalent to triangle identities). Given covariant functors
F : C → D,G : D → C. Then (F ,G) form an adjoint pair if and only if there exist natural
transformations

η : IdC → GF ε : FG → IdD

which make the following diagrams commute.

F FGF G GFG

F G

Fη

IdF
εF

ηG

IdG
Gε

Remark 8.35. The two triangular commutative diagrams in the proposition are called the
triangle identities.

Remark 8.36. Before embarking on at least a partial proof, let’s make sure we understand
what the two commutative diagrams are saying. In the first triangle identity, η is a natural
transformation IdC → GF , and F is a covariant functor C → D. Hence Fη is a natural
transformation F → FGF , described as follows. For X ∈ Ob(C), we have ηX : X → GFX.
Hence we have

(Fη)X = F(ηX) : FX → FGFX
which gives a natural transformation Fη : F → FGF . Similarly, given X ∈ Ob(C), the
natural transformation εF is given by

(εF)X = εFX : FGFX → FX

So the first triangle identity is equivalent to having, for all X ∈ Ob(C), the following com-
mutative diagram.

FX FGFX

FX

F(ηX)

IdFX
εFX

Simillarly, the second triangle identity is equivalent to having, for all Y ∈ Ob(C), the follow-
ing commutative diagram.

GY GFGY

GY

ηGY

IdGY
G(εY )
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Proof. (of Proposition 8.34). First, we will show that given an adjunction (F ,G), the unit
η and counit ε satisfy the triangle identities. Actually, we will just verify the first triangle
identity, since the second is similar. Let bX,Y be the natural isomorphisms between hom-sets
associated to the adjunction. We want to show that for X ∈ Ob(C), the following diagram
commutes.

FX FGFX

FX

F(ηX)

IdFX
εFX

By naturality of the isomorphisms bX,Y , we have the following commutative diagramm, for
any object X ∈ Ob(C).

HomD(FGF ,FX) HomC(GFX,GFX)

HomD(FX,FX) HomC(X,GFX)

bGFX,FX
∼=

t7→t◦F(ηX) u7→u◦ηX
bX,FX
∼=

In particular, consider the map εFX starting in the top right corner. By construction of ε,
it gets mapped under bGFX,FX to IdGFX , which then gets mapped down to ηX under the
vertical map. On the other hand, the preimage of ηX under bX,FX is IdFX , by construction
of η. Hence the vertical map on the left takes εFX to IdFX . That is,

εFX ◦ F(ηX) = IdFX

This is precisely the needed commutative triangle for the triangle identity. As mentioned
before, we will not do the verification for the second triangle identity, since it is similar.
This completes our argument that an adjunction (F ,G) induces a unit η and counit ε which
satisfy the triangle identities.

To complete the proof, we need to prove that given η, ε satisfying the triangle identities,
it follows that (F ,G) form an adjoint pair. That is, we need to construct the natural
isomorphisms bX,Y for X ∈ Ob(C), Y ∈ Ob(D). We define bX,Y as follows.

bX,Y : HomD(FX, Y )→ HomC(X,GY ) φ 7→ Gφ ◦ ηX

That is, bX,Y is the following composition.

X
ηX−→ GFX Gφ−→ GY

Similarly, define

b̃X,Y : HomC(X,GY )→ HomD(FX, Y ) ψ 7→ εY ◦ Fψ

FX Fψ−−→ FGY εY−→ Y
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We then claim that bX,Y , b̃X,Y are inverse to each other. Consider the composition b̃X,Y ◦bX,Y
applied to φ ∈ HomD(FX, Y ).

b̃X,Y ◦ bX,Y (φ) = b̃X,Y (Gφ ◦ ηX) = εY ◦ F(Gφ ◦ ηX) = εY ◦ FGφ ◦ FηX

b̃X,Y ◦ bX,Y (φ) =
(
FX FηX−−→ FGFX FGφ−−→ FGY εY−→ Y

)
By naturality of ε, we have a commutative diagram as below.

FGFY FGY

FX FX

εFX

FGφ

εX

φ

Now we can fit the above diagram into the commutative diagram below. The triangle on
the left is one of the triangle identities.

FX FGFX FGY Y

FX

FηX

b̃X,Y ◦bX,Y (φ)

IdFX

FGφ

εFX

εY

φ

Thus b̃X,Y ◦ bX,Y (φ) = φ. A similar diagram concatenation argument proves that the other

composition bX,Y ◦ b̃X,Y is the identity. Hence having a unit and counit η, ε induce bijections
bX,Y . We omit the proof of the naturality of the isomorphisms, since this is tedious. This
completes our “proof.”

With the preceeding proposition in hand, we are now prepared to prove that the direct image
and inverse image functors form an adjoint pair. We will do this by constructing a unit and
counit, and showing (to some degree) that they satisfy the triangle identities.

Proposition 8.37 ((f−1, f∗) adjunction)). Let f : X → Y be a continuous map of topological
spaces. Then (f−1, f∗) form an adjoint pair.

Proof. Using the previous proposition, it suffices to construct natural transformations

η : IdSh(Y ) → f∗f
−1 ε : f−1f∗ : IdSh(X)

which satisfy the triangle identities. First, we construct η. To construct a natural transfor-
mation IdSh(Y ) → f∗f

−1, we need, for a sheaf G on Y , to define

ηG : G → f∗f
−1G
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Let L be the auxiliary presheaf on X defined by

L(U) = lim−→
f(U)⊂V

G(V )

Recall that f−1G is defined as the sheafification L+ of L. Let θ : L → L+ be the canonical
map of sheafification. Applying the direct image functor to θ, we obtain

f∗θ : f∗L → f∗L+ = f∗f
−1G

So to define ηG, it suffices to define a morphism G → f∗L, and then compose with f∗θ above.
Set H = f∗L. Then for V ⊂ Y open,

H(V ) = f∗L(V ) = L(f−1(V )) = lim−→
f(f−1(V ))⊂W

G(W )

Note that trivially, for V ⊂ Y , by basic properties of sets, f(f−1(V )) ⊂ V . So in the direct
limit above, V is one possible W . Hence we have the canonical map to the direct limit,

G(V )→ H(V ) = lim−→
W

G(W )

Modulo some verification, these assemble together to give a morphism of presheaves

αG : G → H

We then compose this with f∗θ to obtain

ηG = f∗θ ◦ αG : G αG−→ H f∗θ−−→ f∗f
−1G

Once again, we wave our hands and blithely assert that these ηG assemble to give a natural
transformation

η : IdSh(Y ) → f∗f
−1

Now we define the counit ε. We need to define, for a sheaf F on X, a morphism of sheaves

εF : f−1f∗F → F

For F ∈ Ob(Sh(X)), f−1f∗F is the sheafification of the auxiliary presheaf K defined by

K(U) = lim−→
f(U)⊂V

(f∗F)(V ) = lim−→
f(U)⊂V

F(f−1(V ))

First, we will construct a morphism K → F , and then apply the universal property of
sheafification to get a morphism from f−1f∗F = K+. That is, we want for U ⊂ X, a
morphism K(U) → F(U). Note that for V open in Y such that f(U) ⊂ V , we have
U ⊂ f−1(V ) by basic set theory, hence there is a restriction map (of F)

res
f−1(V )
U (F) : F(f−1(V ))→ F(U)
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Then using more handwaving, such maps are compatible with the direct limit defining K(U),
hence the restriction maps above induce a map on the direct limit.

lim−→
f(V )⊂U

res
f−1(V )
U (F) : K(U) = lim−→

f(V )⊂U
F(f−1(V ))→ F(U)

Using even more handwaving, these are compatible with restrictions for K,F , and so give a
morphism of presheaves

K → F

Then using the universal property of sheafification, since F is a sheaf, such a morphism of
presheaves induces a unique morphism of sheaves

εF : f−1f∗F = K+ → F

Using even more handwaving (we’re getting really good at that in this proof) these are
compatible with morphisms in such a way that they give a natural transformation

ε : f−1f∗ → IdSh(X)

This completes our construction of the unit and counit natural transformations. In order to
finish the proof that (f−1, f∗) are adjoint, we would need to verify the triangle identities for
η, ε. The argument for this is convoluted and tediious, and not especially illustrative, so we
omit it.

Lastly, we give an application of the above adjunction to a property of f∗ acting on injective
objects.

Definition 8.38. Let C be an abelian category. An object I ∈ Ob(C) is injective if the
(covariant) functor HomC(−, I) is exact. Somewhat more concretely, this is equivalent to the
following property: If φ : X → Y is a monomorphism in C and ψ : X → I is any morphism,
then there is a morphism h : Y → I making the following diagram commute.

0 X Y

I

φ

ψ
h

Note that the functor HomC(−, I) is left exact for any object in C, it really the right exactness
part that makes injective objects special.

Remark 8.39. We have not discussed abelian categories in any generality yet, but eventually
we will see that Sh(X) is an abelian category. We are primarily interested in the above
definition in the situation where C = Sh(X). In this setting, “monomorphism” is what we
have previously defined as an injective morphism of sheaves.
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In the following proposition, “additive” functor just means that it respects binary products.
If the abstraction of the next proposition is too daunting, just imagine that F = f−1,G =
f∗, C = Sh(Y ),D = Sh(X) for some continuous map f : X → Y .

Proposition 8.40. Let C,D be abelian categories and F : C → D,G : D → C be an adjoint
pair of additive functors (F ,G), and suppose that F is exact. Then G takes injectives to
injectives. That is, if I is an injective object of D, then GI is an injective object of C.

Proof. Let I be an injective object of D. Let 0 → X
φ−→ Y be an exact sequence in C, and

let ψ : X → GI be a morphism. We have the following diagram in C, which we need to
complete with a morphism Y → GI to show that GI is injective.

0 X Y

GI

φ

ψ

Since F is exact, the sequence 0 → FX Fφ−→ FY is exact in D. So we have the following
diagram. As (F ,G) are adjoint, we have a natural isomorphisms bX,I , bY,I fitting into the
following diagram.

HomD(FY, I) HomC(Y,GI)

HomD(FX, I) HomC(X,GI)

bY,I
∼=

t7→t◦Fφ u7→u◦φ
bX,I
∼=

Let ψ̃ = b−1
X,I(ψ). Then we have the following diagram (in D), which, by injectivity of I can

be completed to a morphism h̃ : FY → I.

0 FX FY

I

Fφ

ψ̃
h̃

Let h = bY,I(h̃). We repeat the diagram as an aid to keeping track of where each morphism
lives.

h̃ ∈ HomD(FY, I) HomC(Y,GI) 3 h

ψ̃ ∈ HomD(FX, I) HomC(X,GI) 3 ψ

bY,I

bX,I

By commutativity of the above diagram, we have

ψ = bX,I(ψ̃) = bX,I(h̃ ◦ Fφ) = bY,I(h̃) ◦ φ = h ◦ φ

That is, h is the needed completion in the original diagram.
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0 X Y

GI

φ

ψ
h

Hence GI is injective.

As remarked before the proof, the case that we care about for the previous proposition is
for the (f−1, f∗) adjunction, where F = f−1,G = f∗, C = Sh(Y ),D = Sh(X). We note this
in the following corollary.

Corollary 8.41. Let f : X → Y be a continuous map. If I is an injective sheaf on X, then
f∗I is an injective sheaf on Y .

8.4 Extension by zero

Our next topic has very little to do with the previous few sections on the adjunction between
the inverse image and direct image functors. The next goal is to describe the “extension by
zero” functor associated to an embedding ι : Z ↪→ X, where Z ⊂ X is open or closed. We
consider the closed case first, since it is quite simple to describe, and is in fact just a special
case of the direct image functor.

Definition 8.42. Let i : Z ↪→ X be an embedding of topological spaces, so we identify Z
with i(Z). Assume Z is closed in X. Given a sheaf G on Z, the extension by zero of G is
the sheaf i∗G. We also denote this functor by i!, which is read as “i lower shriek.”

Remark 8.43. The goal of this remark is to explain the use of the phrase “extension by
zero.” Let i : Z ↪→ X be a closed embedding of topological spaces, and G be a sheaf on Z.
Let F = i∗G be the extension by zero of G. As we have previously seen, for x ∈ X, the stalk
of F is

Fx = (i∗G)x =

{
Gx x ∈ Z
0 x 6∈ Z

Also note that F|Z = i−1F = i−1i∗G. In the previous section, we constructed the unit

η : i−1i∗ → IdSh(Z)

which is a natural transformation, given on a sheaf G by

ηG : i−1i∗G → G

which is an isomorphism on stalks at x ∈ Z (one can trace through the construction of ηG
and verify this). Hence η is an isomorphism of sheave FZ ∼= G. Hence F = i∗G is a sheaf
on X whose restriction to Z coincides with G, and whose stalks outside of Z are zero. This
explains the use of the phrase “extension by zero,” since F = i∗G is an “extension” of G in
the above sense - it is “the same” as G on Z, but “extended” to all of X in a way that the
values outside Z are zero.
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The previous discussion sets our model for what extension by zero should be. The extension
by zero should be a new sheaf on the total space X, whose stalks are zero outside of Z and
whose restriction to Z is the original sheaf.

The next question is, what happens if the embedding Z ↪→ X has image which is not
closed? In this situation, we may still take the direct image. However, even when the image
of Z is open in X, the next example shows that the direct image does not have the desired
properties of the previous paragraph. This will motivate defining the extension by zero in a
more careful way in this situation.

Example 8.44. Let Y = R2, and let X ⊂ Y be the open unit disc,

X =
{

(x, y) ∈ R2 : x2 + y2 < 1
}

Let ι : X ↪→ Y be the inclusion, which is an embedding with open image. Let G be the
locally constant sheaf on X with value group S, where S is any nontrivial abelian group.

Let F = ι∗G be the direct image sheaf on Y . For x ∈ X, the stalk of G is just S, Gx ∼= S,
and the stalk of the F is the same, Fx = (ι∗G)x ∼= S. Also, for any y ∈ Y along the boundary
of X, we claim that the stalk is also S. To see this, note that every open neighborhood U
of y intersects X, and we may always shrink such a neighborhood U so that the intersection
U ∩X is connected, in which case

(ι∗G)(U) = G(ι−1(U)) = G(U ∩X) ∼= S

Passing to the direct limit of the stalk at y, all the groups of the direct limit eventually
become S, so (ι∗G)y ∼= S. Putting this together,

(ι∗G)y =

{
S y ∈ X
0 y 6∈ X

where X is the closure of X, the closed unit disk X = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. So in
contrast to the previous situation of a closed embedding, the direct image of G is not a good
choice for “extension by zero,” since the stalks along the boundary will usually not vanish.

Definition 8.45 (Extension by zero for open embeddings). Let j : U ↪→ X be an embedding
of topological spaces with open image. Let G be a sheaf (of abelian groups) on U , and define
H to be the presheaf on X defined by

H(V ) =

{
G(V ) V ⊂ U

0 else

for V ⊂ X open. In general, H is not a sheaf, so we just take the sheafification, and define
the extension by zero of G by j to be the sheafification H∗. We denote this as j!G.
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Remark 8.46. It is pretty quick to see from the definitions that the stalks of j!G behave as
we want an extension by zero to behave.

(j!G)x =

{
Hx = Gx x ∈ U
0 x 6∈ U

It is also immediate from the definition that

j−1j!G = j−1H+ ∼= G

Proposition 8.47. Let j : U ↪→ X be an open embedding and j : Z ↪→ X be a closed
embedding. Then the functors j!, i! are both exact.

Proof. Pretty immediate from the description of stalks.

Remark 8.48. Using the definitions above, it is possible to extend the “extension by zero
functor” to so-called “locally closed”14 subspaces of X in a way which makes sense. This is
only really used in algebraic geometry when dealing with sheaves on varieties, since that’s
the only place where people care about locally closed subspaces.

Proposition 8.49. Let X be a topological space, and let F be a sheaf (of abelian groups)
on X. Let Z ⊂ X be a closed subset, with fixed embedding i : Z ↪→ X. Let U = X \ Z, with
fixed embedding j : U ↪→ Z. Then we have a short exact sequence of sheaves

0→ j!(F|U)
εF−→ F ηF−→ i∗(F|Z)→ 0

Remark 8.50. We may alternatively write the short exact sequence above as

0→ j!j
−1F → F → i!i

−1F → 0

Proof. (Proposition 8.49) We will just describe the maps of the short exact sequence, and
leave verification of exactness. As j is an open map, the sheaf F|U = j−1F on U is describable
without direct limits,

F|U(V ) = j−1F(V ) = F(V )

Then by definition, j!(F|U) = j!j
−1F is the sheafification of the presheaf F̃ , which is defined

by

F̃(V ) =

{
F(V ) V ⊂ U

0 else

where 0 represents the trivial group. We have a morphism of sheaves φ : F̃ → F given by

φV : F̃(V )→ F(V ) φV =

{
IdF(V ) V ⊂ U

0 else

14A subspace A ⊂ X is locally closed if A = U ∩ V where U ⊂ X is open and V ⊂ X is closed.
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where 0 represents the unique map to the trivial group. Then by the universal property of
sheafification, φ extends to a morphism εF on F̃+ = j!j

−1F .

εF : j!j
−1F → F

This is the morphism in the claimed short exact sequence. The second map ηF is simply the
previously described unit of the (i−1, i∗) adjunction.

η : IdSh(X) → i∗i
−1 ηF : F → i∗i

−1F = i∗(F|Z) = i!(F|Z) = i!i
−1F

We omit verification of exactness, since it is not that hard to write down what all the stalks
are for these functors.

Remark 8.51. Let j : U ↪→ X be an open embedding as above. It turns out that the map
εF : j!j

−1F → F is the counit of a different adjunction than the one we previously discussed.
Among other things, this means that these maps give a natural transformation

ε : j!j
−1 → IdSh(X)

There is an adjunction (j!, j
−1). The unit of this adjunction is described by

η : IdSh(U) → j−1j!G
ηG : G → j−1j!G G ∈ Ob(Sh(U))

(ηG)V = IdG(V ) : G(V )→ j−1j!G(V ) V ⊂ U open

We repeat this fact in the following proposition, but give no attempt at a proof.

Proposition 8.52. For an open embedding j : U ↪→ X of topological spaces, the functors
(j!, j

−1) form an adjoint pair.

8.5 Exceptional inverse image

Above, we saw that for j : U ↪→ X an open embedding, j! has a right adjoint, namely j−1.
When i : Z ↪→ X is a closed embedding, i! = i∗ also has a right adjoint. It is the goal of this
section to describe this adjoint, at least in rough outline. This right adjoint will be called
the “exceptional inverse image” functor, and it is more complicated to describe than any of
the functors between sheaf categories that we have so far described.

Definition 8.53. Let F be a sheaf of abelian groups on a space X. Let U ⊂ X be an open
subset, and let s ∈ F(U) be a section. The support of s is the set

supp(s) =
{
x ∈ U : ρUx (s) 6= 0 in Fx

}
Lemma 8.54. Let F , X, U, s be as above. The set supp(s) is closed in U .
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Proof. We will show that the complement of supp(s) is open. Let x ∈ U \ supp(s). By
definition of supp(s), ρUx (s) = 0 in Fx. If something is zero in the stalk, it means there is
a small open neighborhood V of x such that ρUV (s) = 0 in F(V ). Then by shrinking V if
necessary, V ∩ supp(s) = ∅. Thus U \ supp(s) is open, so supp(s) is closed.

Definition 8.55. Let i : Z ↪→ X be an embedding of a closed subspace, and let F be a
sheaf on X. Define, for U ⊂ X,

FZ(U) = {s ∈ F(U) : supp(s) ⊂ Z}

Note that we have an obvious injective morphism of presheaves FZ → F , given by inclusions
FZ(U) ↪→ F(U), so FZ is a subsheaf of F . The exceptional inverse image of F is the
sheaf i−1FZ . This defines a functor

i! : Sh(X)→ Sh(Z)

which acts on objects as described above, and on objects as follows. Given a morphism of
sheaves on X, φ : F → G we have φU : F(U)→ G(U), and we note that

φU(FZ(U)) ⊂ GZ(U)

So the maps φU |FZ(U) give a morphism of sheaves φ|FZ : FZ → GZ . Then i!φ is defined to be
the inverse image applied to the morphism φ|FZ .

Proposition 8.56. Let i : Z ↪→ X be an embedding with closed image. The functor i! :
Sh(X)→ Sh(Z) is left exact.

Proof. Let 0 → F → G → H → 0 be a short exact sequence of sheaves on X. Then we
claim that 0 → FZ → GZ → HZ is also an exact sequence of sheaves on X. Since FZ is a
subsheaf of F , for x ∈ X we have inclusions (FZ)x ↪→ Fx, making the following commutative
diagram.

0 (FZ)x (GZ)x (HZ)x

0 Fx Gx Hx

It is immediate from this diagram that (FZ)x → (GZ)x is injective. Somewhat less immedi-
ately, but just by a simple diagram chase, we get exactness at (GZ)x. Then apply the inverse
image functor i−1, which is left exact, and we get an exact sequence 0 → i!F → i!G →
i!H.

Proposition 8.57. Let i : Z ↪→ X be an embedding with closed image. The functors
(i! = i∗, i

!) form an adjoint pair.

Proof. Omitted.

Remark 8.58. In general, if f : X → Y is any continuous map between locally compact
spaces, a functor f ! : Sh(Y ) → Sh(X) can be defined on the level of derived categories,
though not actually on the level of sheaves. This leads into a great deal of abstraction,
including results like Grothendieck-Verdier duality.
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8.6 Summary of adjunctions and exactness results

Since we have introduced so many functors associated to continuous maps, and various
exactness and adjunction properties among them, we include the following table as a reference
for all of this information. Let

f : X → Y i : Z ↪→ X j : U ↪→ X

be continuous maps, with i, j injective and i(Z) closed in X, j(U) open in X.

Functor Name Exactness Adjunctions
f∗ : Sh(X)→ Sh(Y ) Direct image Left exact (f−1, f∗)
f−1 : Sh(Y )→ Sh(X) Inverse image Exact (f−1, f∗)
i! = i∗ : Sh(Z)→ Sh(X) Extension by zero Exact (i!, i

!), (i−1, i!)
j! : Sh(U)→ Sh(X) Extension by zero Exact (j!, j

−1)
i! : Sh(X)→ Sh(Z) Exceptional inverse image Left exact (i!, i

!)
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9 General homological algebra

As our next step toward defining sheaf cohomology, we need some more category theory.
This section covers the required general homological algebra such as injective and projective
objects, resolutions, and delta functors which set the stage for derived functors. We do not
delve too deeply into this abstraction, since that would involve going all the way to derived
categories. We’ll cover just enough homological algebra to get to sheaf cohomology.

9.1 Injectives

Let R be a unital, associative ring (not necessarily commutative). By an R-module, we mean
a left R-module. Fix an R-module Q, and consider the contravariant functor HomR(−, Q).
This functor is left exact, meaning that given a short exact sequence of R-modules,

0→ L
ψ−→M

φ−→ N → 0

the resulting sequence after applying HomR(−, Q) is left exact, meaning that the following
is exact.

0→ HomR(N,Q)
φ′−→ HomR(M,Q)

ψ′−→ HomR(L,Q)

The maps φ′, ψ′ are given by f 7→ f ◦ φ, g 7→ g ◦ ψ, respectively. We want to understand
when this functor is exact, which is to say, when it is also right exact, which is to say, when
ψ′ is surjective. A morphism f : L→ Q is in the image of ψ′ if it factors through ψ, which
is to say, there exists h : M → Q making the following diagram commute.

0 L M

Q

ψ

f
h

Before moving on to discuss when this happens, we give a concrete example of failure.

Example 9.1. Let R = Z, and consider the short exact sequence of abelian groups (Z-
modules)

0→ Z ψ=2−−→ Z mod 2−−−→ Z/2Z→ 0

Let Q = Z/2Z, and consider the map f = mod2 : Z→ Z/2Z. Then if h : Z→ Z/2Z is any
map, h ◦ ψ = 0, which is not f .

0 Z Z

Z/2Z

2

mod 2 6∃

Proposition 9.2. Let Q be an R-module. The following are equivalent.
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1. HomR(−, Q) is exact.

2. HomR(−, Q) is right exact.

3. Given any injective morphism ψ : L→ M and any morphism f : L→ Q, there exists
h : M → Q such that h ◦ ψ = f .

0 L M

Q

ψ

f
∃h

4. For any ideal I ⊂ R with inclusion ψ : I ↪→ R, and any morphism f : I → Q, there
exists h : R→ Q such that h ◦ ψ = f .

0 I R

Q

ψ

f
∃h

5. For any module M , if Q is a submodule of M , then Q is a direct summand of M .

6. Every short exact sequence 0→ Q→M → N → 0 splits.

Proof. The equivalence of (1), (2), (3), (5), (6) is not hard, done in other places, e.g. Lang’s
graduate algebra textbook. The equivalence of (4) with the rest is commonly known as
Baer’s criterion, and the proof is somewhat complicated, involving Zorn’s lemma. This can
also be found in Lang, or other places, such as the online Stacks Project.

Definition 9.3. An R-module Q satsifying the above equivalent conditions is called injec-
tive.

Definition 9.4. Let R be a ring and M an R-module. For x ∈ R, consider the map

x : M →M m 7→ xm

The module M is divisible if for every x 6= 0, the map above is surjective. This is usually
stated as saying that xM = M for every x 6= 0.

Example 9.5. Q viewed as a Z-module is divisible. Z is not divisible as a Z-module.

Example 9.6. A quotient of a divisible module is divisible. For example, Q/Z is a divisible
Z-module.

Proposition 9.7. Let R be a PID. An R-module is injective if and only if it is divisible.
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Proof. We use Baer’s criterion. Let Q be an R-module, and let I ⊂ R be an ideal, so I = (r)
for some x ∈ R. An R-module homomorphism f : I → Q is determined by f(r) = q, and an
R-module homomorphism h : R → Q is determined by h(1) = q′. Q is injective if and only
if there is a map h : R→ Q such that h(r) = q.

0 I R

Q

f
h

If Q is divisible, then there exists q′ ∈ Q such that rq′ = q, hence we may define h(1) = q′,
and then h(r) = rh(1) = rq′ = q. Hence Q is injective.

Conversely, if Q is injective, then for any r ∈ R, consider the above diagram with I = (r),
and for q ∈ Q, consider the map f : I → Q given by f(r) = q. Since Q is injective, there
exists h as above, in particular, there exists q′ = h(1) ∈ Q with rq′ = rh(1) = h(r) = q.
Hence Q is divisible.

Remark 9.8. Let R be a Noetherian ring. Then a direct sum of injective modules is
injective. In fact, by a somewhat high-powered result, R is Noetherian if and only if every
countable direct sum of injective modules is injective.

Definition 9.9. A category C has enough injectives if every object in C is a subobject of
an injective object.

Proposition 9.10. The category of abelian groups has enough injectives.

Proof. Let M be an abelian group, and let A be a set of generators for M . Let F be the
free abelian group on A, so we have a surjection

F �M

Let K ⊂ F be the kernel of this map, so by the first isomorphism theorem, M ∼= F/K. Let
Q be the free Q-module on A. Note that Q is an injective Z-module, as it is a countable
direct sum of injective objects (namely copies of Q). Then K ⊂ F ⊂ Q. Then

M ∼= F/K ⊂ Q/K

Since Q/K is a quotient of a divisible group, it is divisible. So M is a subobject of the
injective module Q/K.

Remark 9.11. For any (unital, associative) ring R, the category of R-modules has enough
injectives. For a topological space X, the category Sh(X) of abelian groups on X has enough
injectives.

Proposition 9.12. Let C be an abelian category with enough injectives. Then every object
X has an injective resolution.

0→ X → I0 → I1 → I2 → · · ·
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Proof. Omitted.

Remark 9.13. Injective resolutions are not unique. However, they are unique up to chain
homotopy, which is to say, any two injective resolutions of an object X are chain homotopic.

Remark 9.14. Suppose 0 → M ′ → M → M ′′ → 0 is a short exact sequence in a category
with enough injectives. Then there are simultaneous resolutions of M ′,M,M ′′ which form
together to make a short exact sequence of chain complexes.

0 0 0

0 M ′ M M ′′ 0

0 I ′0 I0 I ′′0 0

0 I ′1 I1 I ′′1 0

...
...

...

9.2 Projectives

In this section, we omit nearly all of the proofs, since they are not materially different from
the dual statements in the previous section on injectives.

Definition 9.15. An R-module P is projective if it satsifies the following equivalent con-
ditions.

1. Given a morphisms g : M → M ′′ and f : P → M ′′ with g surjective, there exists a
morphism h : P →M such that gh = f .

P

M M ′′ 0

h
f

g

2. Every short exact sequence 0→M →M ′′ → P → 0 is split.

3. P is a direct summand of a free R-module.

4. The (covariant) functor HomR(P,−) is exact.

5. The functor HomR(P,−) is right exact.
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Remark 9.16. By condition (3) above, a free R-module is projective. The converse is not
true in general. However, if R is a PID or a local ring, then the converse does hold, that is,
over a PID or local ring, projective is equivalent to free.

Lemma 9.17. Every R-module is a quotient of a projective module. (More generally, every
module is a quotient of a free module.)

Remark 9.18. The category of R-modules has enough projectives. That is, every object is
a quotient of a projective object.

Definition 9.19. A projective resolution of an R-module M is a long exact sequence

· · · → P2 → P1 →M → 0

with each Pi projective.

Proposition 9.20. If a category C has enough projectives, then every object has a projective
resolution.

Remark 9.21. In the category of R-modules, every object even has a free resolution.

Lemma 9.22. Let f : M → N be a morphism of R-modules. Given any two projective
resolutions of M,N respectively, f extends to a chain map between the projective resolutions.

· · · P2 P1 M 0

· · · P ′2 P ′1 N 0

f

This extension is not unique, bu it is unique up to chain homotopy, which is to say, any two
such extensions are chain homotopic.

Corollary 9.23. Any two projective resolutions of a fixed module M are homotopy equiva-
lent.

Proof. Apply the previous lemma to Id : M →M .

The statement of the next lemma is not intended to be precise or help someone understand
if they have not seen it before. For that, the confused reader should consult other sources.

Lemma 9.24. A short exact sequence of chain complexes induces a long exact sequence on
homology.

Proposition 9.25. Let R be an integral domain and not a field. Suppose M is an R-module
which is projective and injective. Then M = 0.
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Proof. Let R be an integral domain, and suppose M is an R-module which is projective an
injective. We will show that if M 6= 0, then R is a field.

As a first step, we show that any nonzero morphism M → R is surjective. Consider a
nonzero morphism f : M → R of R-modules, so there exists m ∈ M with f(m) = b 6= 0.
Since M is injective, it is divisible, so there exists m′ ∈M such that bm′ = m. Then

bf(m′) = f(bm′) = f(m) = b

hence f(m′) = 1, so f is surjective. Hence every nonzero morphism M → R is surjective.
As M is projective, it is a direct summand of a free R-module F , F ∼= M ⊕Q. Write F

as
F ∼=

⊕
i

Fi

where Fi ∼= R, and let πi : F → Fi = R be projection onto the ith component. Let x ∈ R
be nonzero, and consider the composition

M ↪→ F
πi−→ R

x−→ R

where x denotes left multiplication by x. Recall that we want to show R is a field, so it
suffices to show that x is a unit. Since R is an integral domain, the map x : R → R is
nonzero, and clearly the other maps are nonzero, so we have a nonzero map M → R. By
the previous discussion, any such map is surjective. In particular, x : R → R is surjective,
so there exists y ∈ R such that xy = 1, which is to say, x is a unit, and R is a field.

9.3 Abelian categories

We’ll build up to the definition of an abelian category. We’ll define additive categories, then
describe the additional condition for an additive category to be abelian. First, we recall
some definitions.

Definition 9.26. Let C be a category.

1. A morphism f : A→ B in C is a monomorphism if for any object C and morphisms
g, h : C → A, fg = fh =⇒ g = h. That is, f has a left cancellative property.

C A B
g

h

f

2. A morphism f : A → B in C is an epimorphism if for any object C and morphisms
g, h : C → A, gf = hf =⇒ g = h. That is, f has a right cancellative property.

A B C
f g

h

Example 9.27. In the category of abelian groups, monomorphism is equivalent to injective,
and epimorphism is equivalent to surjective.
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Definition 9.28. Let C be a category and B and object in C.

1. A subobject of B is a pair (A, i) where A is an object and i : A→ B is a monomor-
phism.

2. A quotient of B is a pair (C, p) where C is an object and p : B → C is an epimorphism.

Definition 9.29. Let f, g : A→ B be morphisms in a category C. The equalizer of f and
g, if it exists, is denoted eq(f, g), and is the limit of the diagram

A B
g

h

The coequalizer, if it exists, is the colimit of the above diagram. It is denoted coeq(f, g).

Remark 9.30. Since it has been a while since we discussed limits and colimits, let us write
concretely what the limit and colimit of the simple diagram above are. The limit, if it exists,
is a pair (C, h) where h : C → A is a morphism such that fh = gh, and such that C is
universal with this property.

C

A B

h fh=gh

f

g

That C is universal in this diagram means specifically that if h′ : C ′ → A is another morphism
such that fh′ = gh′,

C ′

A B

h′ fh′=gh′

f

g

then h′ factors through h, meaning there exists a unique morphism k : C ′ → C such that
h′ = hk.

C ′

C

A B

h′
k

h

f

g

Remark 9.31. Similar to the above, we describe more concretely the coequalizer as the
colimit of such a diagram f, g : A → B. It is a pair (C, h) where h : B → C is a morphism
such that hf = hg, and such that C is univeral among such objects.
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A B

C

f

g

hf=hg h

That is, if h′ : B → C is another such morphism, there exists a unique morphism k : C → C ′

such that the following diagram commutes.

A B

C

C ′

f

g

h

h′
k

Lemma 9.32. Let g, f : A→ B be morphisms in a category C.

1. If eq(f, g) = (C, h) exists, then h is a monomorphism.

2. If coeq(f, g) = (D, k) exists, then k is an epimorphism.

Proof. We just do the proof of (1), since (2) is similar. Let (C, h) be the equalizer of f and
g. Let α, β : D → C be morphisms such that hα = hβ.

D C A D
α

β

h
f

g

We need to show that α = β. Since hα = hβ and fh = gh, we get

fhα = fhβ ghα = ghβ

So hα, hβ are both maps D → A such that composing with f or g gives the same morphism.
By the universal property of (C, h) then, there is a unique map k : D → C such that
kh = hα = hβ. In particular, we can choose k = α or k = β, and then by uniqueness
α = β.

Definition 9.33. A category C is additive if

1. For any two objects A,B, HomC(A,B) is an abelian group, and the composition of
morphisms is bilinear. That is, if we have morphisms

A B C D
f g1

g2

h

then
h ◦ (g1 + g2) ◦ f = h ◦ g1 ◦ f = h ◦ g2 ◦ f
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2. Binary products and coproducts exist in C. (Then by induction, all finite products and
coproducts exist.)

3. C has a zero object (an obejct 0 which is initial and terminal).

Definition 9.34. A functor F : C → D between additive categories is additive if for any
objects A,B in C, the induced map

HomC(A,B)→ HomD(FA,FB)

is a homomorphism of abelian groups.

Example 9.35. For any commutative ring R, the category of R-modules is additive. The
full subcategory of finitely generated R-modules is also additive.

Definition 9.36. Let C be an additive category and f : A → B be a morphism. Let 0
denote the zero element of HomC(A,B).

1. The kernel of f , if it exists, is the equalizer of f and 0.

2. The cokernel of f , if it exists, is the coequalizer of f and 0.

A B
f

0

It is important to note that the kernel of f is not just an object, but is a pair (K, i) where
i : K → A is a morphism. Similarly, the cokernel is a pair (C, p) where p : B → C is a
morphism. Despite this warning, we will often refer to the object K as the kernel of f , and
the morphism i : K → A as the “canonical map associated with the kernel.” Ditto for the
cokernel.

Remark 9.37. Let us be a bit more concrete about the universal properties of the kernel
and cokernel of a morphism, assuming they exist. The kernel of f is a pair (K, i) where
i : K → A with fi = 0, and if g : E → A is any morphism such that fg = 0, then g factors
through i via a unique morphism h : E → K.

E

K

A B

h
g 0

i 0

f

Dually, the cokernel of f is a pair (C, p) where p : B → C with pf = 0, and if g : B → E is
any morphism such that gf = 0, then g factors through p via a unique morphism h : C → E.

147



A B

C

E

0

f

0

p

g
h

Remark 9.38. Let f : A→ B be a morphism such that the kernel i : K → A and cokernel
p : B → C exist. Then

1. (K, i) is a subobject of A, and i is a monomorphism.

2. (C, p) is a quotient of B, and p is an epimorphism.

Definition 9.39. Let f : A→ B be a morphism in an additive category C, and assume the
kernel and cokernel of f exist. Let i : K → A and p : B → C be the kernel and cokernel,
respectively.

1. The image of f is the kernel of of p : B → C, if it exists. That is, im f = ker coker f .

2. The coimage of f is the cokernel of i : K → A, if it exists. That is, coim f =
coker ker f .

Remark 9.40. By definition, im f is a subobjects of B, and coim f is a quotient of A.

Example 9.41. In the category of R-modules, the categorical kernel, cokernel, and image
all coincide with the usual concrete set-theoretic descriptions. Every morphism f fits into
an exact sequence

0→ ker f ↪→ A
f−→ B � B/ im f → 0

We also have a short exact sequence

0→ im f → B → B/ im f → 0

Which is to say, im f is the kernel of the cokernel of f , that is, im f ∼= coim f . This is just
the content of the first isomorphism theorem. This explains why the notion of coimage does
not come up much in commutative algebra, since it just coincides with the image.

Remark 9.42. Although the image and coimage coincide for R-modules, they do not coin-
cide in general for additive categories. We will give a concrete example later.

Recall that we abuse language slightly in referring to ker f as an object, rather than as a
pair. But we do it anyway, because who can stop us?

Lemma 9.43. Let f : A→ B be a morphism in an additive category C.

1. If ker f exists, then f is a monomorphism if and only if ker f is the zero object.
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2. If coker f exists, then f is an epimorphism if and only if coker f is the zero object.

Proof. Use some universal properties. Been there, done that.

Lemma 9.44. Let f : A → B be a morphism in an additive category C, and assume
ker f, coker f, im f, coim f exist. Let s : A→ coim f and t : im f → B be the canonical maps.
Then there is a unique morphism

u : coim f → im f

such that t ◦ u ◦ s = f .

A coim f im f Bs

f

u t

Proof. Let i : ker f → A and j : B → coker f be the canonical maps associated with the
kernel and cokernel respectively. By definition,

im f = ker coker f = ker j coim f = coker ker f = coker i

By definition of the cokernel, j ◦ f = 0. Then by the universal property of the kernel, f
factors through ker j = im f . That is, there exists a unique morphism f ′ : A→ im f = ker j
making the following diagram commute.

A

ker j

B coker f

f ′
f 0

t 0

j

Then t ◦ f ′ ◦ i = f ◦ i = 0 by definition of the kernel. So t ◦ (f ′ ◦ i) = t ◦ (f ′ ◦ 0).

ker f im f B
f ′◦i

f ′◦0

t

By Lemma 9.32, t is a monomorphism, so we can cancel it to get f ′ ◦ i = 0. Then by the
universal property of the cokernel, f ′ factors (uniquely) through coim f = coker i. That is,
there exists a unique morphism u : coim f = coker i → im f = ker j making the following
diagram commute.

ker f A

coker i

ker j

0

0

i

s

f ′
u
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Thus u satisfies
t ◦ u ◦ s = t ◦ f ′ = f

Uniqueness of u is clear from the uniqueness of all the maps constructed in the proof.

Remark 9.45. The morphism u : coim f → im f is called the canonical map associated
to f .

Definition 9.46. Let f : A→ B be a morphism in an additive category C. The morphism
f is strict if the canonical map u : coim f → im f is an isomorphism (and all of the required
kernels and cokernels exist, of course).

Example 9.47. As previously discussed, the fact that every morphism in the category of
R-modules is strict is essentially the content of the first isomorphism theorem.

Definition 9.48. An abelian category A is an additive category such that

1. Every morphism has a kernel and cokernel.

2. Every morphism is strict.

Remark 9.49. The previous example of R-mod serves as a good philosophical framework
to understand abelian categories - they are categories in which a sort of generalized first
isomorphism theorem holds.

Example 9.50. The category of R-modules is abelian.

Example 9.51. Let R be a non-Noetherian ring. The subcategory of finitely generated
R-modules is additive but NOT abelian. In particular, kernels may fail to exist.

As a concrete and simple example, take an ideal I of R which is not finitely generated
(such I exists precisely because R is non-Noetherian). Then consider the quotient map

f : R→ R/I

As an R-module, R is finitely generated (it is generated by 1, in fact), and so is R/I (it is
generated by the class of 1). However, the kernel (in the category of R-modules) is I, and
the kernel in this subcategory would also have to be I, except that I is not an object in this
category, since I is not finitely generated as an R-module.

Example 9.52. As previously promised, we now give a concrete example of a homomorphism
in an additive category for which the image and coimage are distinct objects. In particular,
this gives an example of an additive category in which kernels and cokernels exist, but that
not every morphism is strict.

As our category, take C to be the category of Hausdorff topological abelian groups. Both
R and Q, using the additive structures and the standard topologies (subspace topology from
R on Q), are objects in this category. Consider the inclusion map

f : Q ↪→ R
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which is a continuous group homomorphism, and so a morphism in C. It is relatively clear
that the kernel of f is the pair (0, 0), where 0 : 0 ↪→ Q is the trivial morphism. Slightly less
obviously, the cokernel of f is also the pair (0, 0), where 0 : R → 0 is the trivial morphism.
We verify the universal property. Suppose g : R → E is a homomorphism of topological
groups such that gf = 0, which is to say, g vanishes on Q.

Q R

0

E

0

0

f

0

g
?

Since g is continuous, and vanishes on the dense subset Q, g = 0. So there is a unique map
0 : 0 → E making the diagram commute. So (0, 0) is in fact the cokernel of f . From there
is is immediate to calculate the image and coimage.

im f = ker coker f = ker(R→ 0) = R
coim f = coker ker f = coker(0→ Q) = Q

So the image and coimage are not isomorphic. In particular, the canonical map coim f →
im f cannot be an isomorphism.

We end this section with a statement (and no proof) of a classic theorem about abelian
categories which is simultaneously very important philosophically, but not very practically
useful.

Theorem 9.53 (Freyd-Mitchell embedding theorem). Let A be a small abelian category.
There exists a ring R and an exact, fully faithful functor A → R-mod. That is, A is
equivalent to a full abelian subcategory of R-mod for some ring R.

Remark 9.54. The previous theorem philosophically and logically justifies doing “diagram
chases” in an arbitrary abelian category, even though properly speaking the objects of a
general abelian category do not have “elements.”

However, it is easy to overestimate the importance and usefulness of the theorem, since
some aspects of the structure of A may not be preserved. In particular, a fully faithful exact
additive functor necessarily preserves finite limits and colimits, but may not preserve infinite
limits and colimits. Hence not necessarily all aspects of the structure of A are captured by
this “embedding.”

9.4 Homology in abelian categories

Definition 9.55. Let A be an abelian category. A cochain complex in A is a diagram

· · · → Ai−1 di−1
A−−→ Ai

diA−→ Ai+1 → · · ·
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such that diA ◦ di−1
A = 0 for every i ∈ Z. We use the notation A• = (Ai, diA) to refer to the

whole cochain complex.

Definition 9.56. Suppose

A
f−→ B

g−→ C

are morphisms in an abelian category A such that gf = 0. As f is strict, we can write f as
a composition

A
`−→ im f ∼= coim f

k−→ B

where we identify im f with coim f with the canonical isomorphism. Note that in the above,
` is an epimorphism, and k is a monomorphism. Since 0 = gf = gk` = 0`, since ` is an
epimorphism, this implies gk = 0.

Using the universal property of the kernel, we then get a unique morphism t : im f → ker g
such that ut = k, where u is the canonical morphism associated with ker g. Since both k, u
are monomorphisms, t is also.

The homology or cohomology15 of the sequence A → B → C is the cokernel of the
monomoprhism t, by which we really mean the object associated with the cokernel of t. We
say that A→ B → C is exact at B if the homology is the zero object, or equivalently, if t
is an epimorphism, or equivalently, if t is an isomorphism.

Definition 9.57. A sequence 0→ A→ B → C → 0 (or longer) is exact if it exact at each
term.

Definition 9.58. Let F : C → D be an additive functor between abelian categories. F is
left exact if for every exact sequence 0→ A→ B → C in C, the sequence

0→ FA→ FB → FC

is exact. Similarly, one defines right exact and exact functors, as you would expect.

Definition 9.59. Let A• = (Ai, diA), B• = (Bi, diB) be cochain complexes. A morphism of
cochain complexes f : A• → B• is a family of morphisms fi : Ai → Bi which commute
with the differentials.

diB ◦ fi = fi+1 ◦ diA
That is, a certain large commutative diagram which looks like a ladder is commutative. Sim-
ilarly following the definitions in the category R-mod, we define chain homotopy between
morphisms of cochain complexes.

Given an abelian category A, cochain complexes with entries in A form a category of
their own, Kom(A), with morphisms given by morphisms of cochain complexes. Kom(A) is
also an abelian category, although we omit the proof.

Definition 9.60. A short exact sequence of cochain complexes is a sequence A• →
B• → C• such that each sequence Ai → Bi → Ci is exact.

15The only difference in algebra between homology and cohomology is which direction the arrows go in
the chain complexes, so it doesn’t actually affect the “shape” of the diagram in a meaningful way.
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Remark 9.61. Properly speaking, the previous definition is the “wrong” definition, in the
sense that one should just define it using the previous definition of exactness in the abelian
category Kom(A). However, it turns out that the previous definition is then a theorem, so
whatever.

Definition 9.62. Let A• = (Ai, diA)i∈Z be a cochain complex in an abelian category A.
Define

Zi(A•) = ker diA Bi(A•) = coker di−1
A

with canonical monomorphism Zi(A•) → Ai and canonical epimorphism Ai−1 → Bi(A•).
Following our previous definition of cohomology at a single term, there is a canonically
induced morphism

ti : Bi(A•)→ Zi(A•)

We define the ith cohomology of Ai to be the (object associated with) the cokernel of ti.

H i(A•) = coker ti

Remark 9.63. The previous definition of cohomology of cochain complexes is the appro-
priate generalization of cohomology of chain complexes of R-modules to a general abelian
category. It has all the properties we would expect, which we do not spend time to justify.

1. A morphism of chain complexes A• → B• induces morphisms on each cohomology
object H i(A•) → H i(B•). In fact, given an abelian category A, we can think of each
H i(−) as a (covariant, additive) functor Kom(A)→ A.

2. If two morphisms of chain complexes A• → B• are chain homotopic, then they induce
the same morphisms on homology. (The cohomology functors “factor” through the
“homotopy category of chain complexes.”)

3. A short exact sequence of chain complexes induces a long exact sequence on cohomol-
ogy, in the same manner as in the category of R-modules.

Definition 9.64. Let C be a category. An object I in C is injective if for every monomor-
phism f : X → Y and every morphism g : X → I, there exists a morphism h : Y → I such
that hf = g.

X Y

I

f

g
h

Remark 9.65. If C is a locally small category (which includes all of the categories we care
about in these notes), then an object I is injective in C if and only if the induced map

HomC(Y, I)→ HomC(X, I) φ 7→ φ ◦ f
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is surjective. (This only makes sense when C is locally small, since otherwise we would have
to talk about a “surjective function” between things which are not sets, which is scary, and
also nonsense.)

If C is furthermore an additive category, then the previous condition is equivalent to
exactness (or just right exactness) of the functor HomC(−, I) (which is a functor from C to
abelian groups, and is always left exact).

Definition 9.66. A category C has enough injectives if every object X is a subobject
of an injective object. Equivalently, for every object X, there is a monomorphism X → I
where I is an injective object.

Remark 9.67. Injective resolutions are defined in an abelian category as you would expect,
following the definition in R-mod. If an abelian category has enough injectives, then every
object has an injective resolution. The proof is essentially the same as in R-mod, just more
categorical. As in R-mod, a morphism between objects extends to a chain map between any
two injective resolutions, and this extension is unique up to chain homotopy.

Proposition 9.68. Let C,D be abelian categories and F : C → D,G : D → C be an adjoint
pair of additive functors (F ,G), and suppose that F is exact. Then G takes injectives to
injectives. That is, if I is an injective object of D, then GI is an injective object of C.

Proof. This is just Proposition 8.40 repeated.

Now we get to the big result, which is the point of building up all of the previous formalism
about abelian categories.

Theorem 9.69. Let X be a topological space. The category Sh(X) of sheaves of abelian
groups on X is an abelian category with enough injectives.

Proof. We need to prove the following list of things.

1. Sh(X) is additive.

2. Sh(X) has kernels.

3. Sh(X) has cokernels.

4. Every morphism in Sh(X) is strict.

5. Sh(X) has enough injectives.

(1) To prove Sh(X) is additive, we need to describe the abelian group structure on a hom
set, describe the zero object, and show that finite products and coproducts exist.

Let F ,G be sheaves on X, and φ, ψ : F → G be morphisms. The sum φ + ψ is defined
on sections on an open set U ⊂ X by

(φ+ ψ)U = φU + ψU : F(U)→ G(U)
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This is compatible with restriction maps in the appropriate way to make φ+ ψ a morphism
of sheaves. It is clear that this makes HomSh(X)(F ,G) into an abelian group, in a way which
is compatible with composition of morphisms.

The zero object in Sh(X) is the constant sheaf given by 0(U) = {∗}.
Finite products and coproducts coincide in the category of abelian groups, they are

usually denoted × or ⊕. Given two sheaves F ,G on X, the product sheaf is given by F ×G,
which is defined on an open set U ⊂ X by

(F × G)(U) = F(U)× G(U)

There is some checking to do, but this is a product and coproduct in the category of sheaves
on X. This completes the proof that Sh(X) is additive.
(2) Kernels in Sh(X) are not that hard to describe, just use the kernel presheaf which we
have already defined. More precisely, given a morphism of sheaves φ : F → G, let K = kerφ
be the presheaf defined by

K(U) = ker(φU)

We showed before that this is a sheaf. We will give a rough justifcation that this is the
kernel. Let i : K → F be the expected morphism. Any morphism α : H → F which satisfies
φα = 0 is going to be zero on any open subset, so αU will factor (uniquely) through the
inclusion iU : K(U) ↪→ F(U), so α factors through i (uniquely).
(3) Now we show that Sh(X) has cokernels. This is more complicated than kernels, because
the obvious choice of object for the cokernel is merely a presheaf, and not in general a sheaf,
so we have to resort to sheafification to rectify the situation.

Let φ : F → G be a morhpism of sheaves, and let C be the cokernel presheaf, defined by

C(U) = coker(φU) = G(U)/ imφU

Let j : G → C be the obvious morphism, where jU : G(U) → C(U) is the quotient map. As
C is not generally a sehaf, let θ : C → C+ be the sheafification of C. Then define c : G → G
by c = θ ◦ j. We claim that (C+, c) satisfies the universal property of the cokernel (for φ) in
the category of sheaves on X.

Suppose ψ : G → H is a morphism of sheaves such that ψφ = 0. We need a morphism
H → C+ making the following diagram commute, and to show that such a morphism is
unique.

F G

H

C+

0

0

φ

ψ

c

Note that j is an epimorphism, and that θ induces isomorphisms on stalks at each x ∈ X,
θx : Cx ∼= C+

x , which makes c : G → C+ an epimorphism.
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For every open subset U ⊂ X, we have ψU : G(U) → H(U), and ψU ◦ φU = 0, so by
the universal property of cokernels for abelian groups, we get a unique induced morphism
C(U)→ H(U). Modulo some small verification, this gives a morphism of presheaves C → H.

Then using the universal property of sheafification, since H is a sheaf, the map above
factors through C+, giving the desired map ψ̃ : C+ → H, where ψ̃ = ψ ◦c. This is the desired
map in the previous commutative diagram. Uniqueness of ψ̃ comes (after some details) from
the fact that c is an epimorphism, so there is a right cancellation property. This completes
our proof that (C+, c) is the cokernel of φ in Sh(X).
(4) We will just sketch the proof that every morphism in Sh(X) is strict. Let φ : F → G be
a morphism of sheaves, and let u : coimφ→ imφ be the induced natural map. Consider the
induced map on sections, φx : Fx → Gx, and ux : (coimφ)x → (imφ)x. One can show that ux
is the natural map from the coimage to the image of φx; that is, (coimφ)x = coim(φx) and
(imφ)x = im(φx), and ux is the associated natural map. By the first isomorphism theorem
(aka morphisms of abelian groups are strict), ux is an isomorphism of abelian groups. Hence
u is an isomorphism of sheaves.
(5) Let F be a sheaf on X. For x ∈ X, the stalk Fx is an abelian group. We know that the
category of abelian groups has enough injectives, so let

ix : Fx ↪→ Ix

be an embedding of Fx into an injective (divisible) abelian group Ix. We want to translate
this local data into global data, that is, into a monomorphism of sheaves F → I where I is
some injective sheaf on X, whose stalk at x is the groups Ix.

We can view ix as a morphism of constant sheaves on the space {x}. In fact, the category
of (constant) sheaves on {x} is equivalent to the category of abelian groups. That is, both
abelian groups Fx, Ix determine constant sheaves on {x}, meaning that the respective con-
stant sheaves take the values Fx, Ix respectively on the set {x}. Note that Ix is an injective
sheaf on {x}, using the equivalence.

Now consider the inclusion
jx : {x} ↪→ X

We can then consider the pushforward of Ix under jx, and the pullback of F under jx. The
pushforward is (jx)∗Ix, which is a sheaf on X. Recall that (j−1

x , (jx)∗) form an adjoint pair,
so by Proposition 8.40, (jx)∗Ix is an injective sheaf on X.

The pullback j−1
x F is a sheaf on {x}, defined as the sheafification of some direct limit,

but since the space {x} is so small, this is easy to describe - it is just the constant sheaf with
value group Fx. That is,

j−1
x (F)({x}) = Fx

So identifying (the constant sheaf on {x}) Fx with j−1
x F , we can now view ix as a morphism

(of sheaves on {x})
ix : j−1

x F → Ix

Recall that (j−1
x , (jx)∗) form an adjoint pair (Proposition 8.29). That is, we have an isomor-

phism
HomSh({x})(j

−1
x F , Ix) ∼= HomSh(X)(F , (jx)∗Ix)
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Let i′x : Ft = (jx)∗Ix be the the morphism of sheaves on X corresponding to ix under the
above isomorphism. Define

I =
∏
x∈X

(jx)∗Ix

Since each (jx)∗Ix is an injective sheaf, I is an injective sheaf. Taking the product of maps
i′x : F → (jx)∗Ix, we obtain a morphism of sheaves

i =
∏
x∈X

i′x : F → I =
∏
x∈X

(jx)∗Ix

All that remains to show is that i is a monomorphism in the category Sh(X), or equivalently,
that the morphism induced on stalks is injective (in the category of abelian groups). However,
it is obvious that the morphism induced on stalks is the original map ix : Fx → Ix, so this
is proven.

9.5 Sheaves of O-modules

This section is a quick aside on a generalization of the category of sheaves, which is commonly
used in algebraic geometry.

Definition 9.70. A ringed space is a pair (X,O) where X is a topological space and O
is a sheaf of (usually commutative) rings on X.

Definition 9.71. Let (X,O) be a ringed spaced. A sheaf of O-modules, or just an O-
module, is a sheaf M of abelian groups on X, such that for each open subset U ⊂ X, there
is a map

µU : O(U)×M(U)→M(U)

making M(U) into an O(U)-module, and in a way so that the maps µU are compatible with
the restriction maps for O and M in the “expected way.”16 We omit describing this in detail,
for details consult other sources such as Hartshorne’s book on algebraic geometry.

Definition 9.72. Given a ringed space (X,O), using the definition above we get a category
of (sheaves of) O-modules on X.

Remark 9.73. The category Sh(X) is just a special case of the category of O-modules on
X, where O is the locally constant sheaf with value group Z.

Theorem 9.74. The category of O-modules on a ringed space X is an abelian category with
enough injectives.

Proof. The proof is essentially a repeat of our proof that Sh(X) is abelian with enough
injectives. The only real difference is in the injectives aspect, which is a bit more complicated.

16As always, this is just expressed by some diagram being commutative.
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9.6 δ-functors

Definition 9.75. Let A,B be abelian categories. A cohomological δ-functor from A to
B is a collection of functors T i : A → B for i ∈ Z≥0 together with morphisms δi so that for
every short exact sequence

0→ A′ → A→ A′′ → 0

in A, we have a morphism in B, δi : T i(A′′) → T i(A′), such that there is a long exact
sequence (in B)

0→ T 0(A′)→ T 0(A)→ T 0(A′′)
δ0−→ T 1(A′)→ · · ·

Furthermore, the process of taking short exact sequences to long exact sequences must be
functorial, meaning that a morphism of short exact sequences induces a morphism of long
exact sequences. The content of the previous statement is just that given a morphism of
short exact sequences

0 A′ A A′′ 0

0 B′ B B′′ 0

the following diagrams commute.

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

δi

δi

This condition for the cohomological δ-functor is called naturality.

Definition 9.76. Let A,B be abelian categories. A cohomological δ-functor (T i, δi) is called
universal if given any other δ-functor ((T i)′) and natural transformation F0 : T 0 → (T 0)′,
there is a unique sequence of natural transformations F i : T i → (T i)′ for i ≥ 0 starting with
F0, such that the F i commute with the δi maps.

Remark 9.77. Philosophically speaking, a universal δ-functor is determined up to isomor-
phism by the zeroth term (the zeroth functor T 0).

Definition 9.78. An additive functor F : A → B between abelian categories is effaceable
if for each object A of A, there exists an object M in A such that F(M) = 0 and a
monomorphism u : A→M .

Example 9.79. Given a ring R and an injective R-module A, the functor ExtnR(A,−)17

vanishes on injective objects, and every R-module admits a monomorphism to an injective
object I, so ExtnR(A,−) is effaceable.

Theorem 9.80 (Grothendieck universality theorem). Let T = (T i) be a cohomological δ-
functor between abelian categories A,B. If T i is effaceable for each i ≥ 1, then T is universal.

17This might need to be ExtnR(−, A) instead, I get the entries confused sometimes.
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9.7 Right derived functors

Definition 9.81. Let A be an abelian category with enough injectives, and let F : A → B
be a left exact covariant additive functor. For an object A ∈ Ob(A), choose an injective
resolution.

I• 0→ A→ I0 → I1 → · · ·

Applying F and dropping the A term, we obtain a chain complex, which is in general not
exact.

FI• 0→ FI0 → FI1 → · · ·

We define the ith right derived functor of F to be the functor RiF given by RiF(A) =
H i(FI•).

Theorem 9.82. Let F ,A,B be as in the previous definition.

1. For each A ∈ Ob(A), the object RiF(A) is well defined up to isomorphism (independent
of the injective resolution of A), and RiF is an additive functor A → B.

2. There is a natural isomorphism of functors F ∼= R0F .

3. The collection (RiF)i≥0 is a cohomological δ-functor from A to B.

4. If I is injective, RiF(I) = 0 for i ≥ 1. That is, RiF is effacable, so the family (RiF)
is a universal δ-functor.

Proof. (1) Let A,A′ be objects inA, and take injective resolutions I•(A), I•(A′). A morphism
f : A → A′ extends to a morphism of chain complexes f : I•(A) → I•(A′), uniquely up to
homotopy.

Consider two resolutions of A, I•1 (A), I•2 (A). Extend the identity map Id : A → A
to a morphism of complexes f1 : I•1 (A) → I•2 (A) and also to a morphism of complexes
f2 : I•2 (A) → I•1 (A). Then by the uniqueness up to homotopy, f1 ◦ f2 and f2 ◦ f1 are each
chain homotopic to the respective identity chain maps on I•1 (A), I•2 (A). In particular, f1, f2

must induce isomorphisms on homology.
Now apply F to the whole situation (to some gigantic diagram which I’m too lazy to

type up). Then Ff1,Ff2 also induce isomorphisms on homology. This proves that RiF(A)
is well defined regardless of the choice of injective resolution.

From the procedure above, it is relatively clear how to induce a map RiF(A)→ RiF(B)
form a morphism A→ B, using the same methods. This makes RiF a functor. It is clearly
additive since a direct sum of objects has an injective resolution given by taking the direct
sum at each term of respective injective resolutions (noting that the direct sum of injective
objects is injective).

(2) Since F is left exact,
0→ FA→ FI0 → FI1

is exact. So R0F(A), which is by definition the kernel of FI0 → FI1, is isomorphic to A. It
takes some more checking, but this is in fact a natural isomorphism of functors R0F ∼= F .
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(3) Given a short exact sequence 0 → A′ → A → A′′ → 0 in A, we need to product a
long exact sequence involving the right derived functors of F . Using the horseshoe lemma,
we can choose compatible injective resolutions of A′, A,A′′ making a short exact sequence of
complexes,

0→ I•(A′)→ I•(A)→ I•(A′′)→ 0

For each i ≥ 0, the object I i(A) is injective, so the sequence 0→ I i(A′)→ I i(A)→ I i(A′′)→
0 is split. So applying F to this, it is still exact. As long as we drop the first row (of the
original sequence 0 → A′ → A → A′′ → 0 after applying F , we get a short exact sequence
of chain complexes

0→ FI•(A′)→ FI•(A)→ FI•(A′′)→ 0

We need to drop the A terms because that sequence does not necessarily remain exact after
applying F , since F is only left exact. But once we do that, we have this short exact sequence
of chain complexes, and then by a standard lemma in homological algebra, this gives rise to
a long exact sequence on homology.

0→ R0F(A′)→ R0F(A)→ R0F(A′′)→ R1F(A′)→ · · ·

which makes the family (RiF) into a cohomological δ-functor. We have omitted many details,
such as why the naturality condition holds.

(4) If I is injective, we have the somewhat trivial resolution

0→ I → I → 0

of I, applying F and dropping the first term, we get the chain complex 0→ FI → 0, whose
only homology is in degree zero. Hence R0F(I) = F(I), and RiF(I) = 0 for i ≥ 1. Hence
RiF is effaceable for i ≥ 1.

(5) By Grothendieck’s theorem, since RiF is effaceable for each i ≥ 1, the δ-functor
(RiF) is universal.

Definition 9.83. Let F : A → B be a left exact additive covariant functor between abelian
categories, such that A has enough injectives. An object J of A is called F-acyclic if
RiF(J) = 0 for i ≥ 1.

Example 9.84. Injective objects (of A) are always acyclic for any left exact functor, but in
general the class of acyclics may be larger than that. The advantage of dealing with acyclic
objects is that we can compute the derived functors using acyclic resolutions instead of just
injective resolutions, as the next result shows.

Proposition 9.85. Let F ,A,B be as above, and A ∈ Ob(A). Suppose

J• 0→ A→ J0 f0−→ J1 f1−→ · · ·

is a resolution of A by F-acyclic ojects. Then we may compute RiF(A) as the ith cohomology
of the chain complex

FJ• 0→ FJ0 → FJ1 → · · ·
In other words, RiF(A) ∼= H i(FJ•) for all i ≥ 0.
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Proof. First, note that since F is left exact, R0F(A) = F(A) ∼= H0(FJ•), so the case i = 0
is proved.

For i ≥ 0, let Ki = ker f i ∼= im f i−1, viewed as a subobject of J i. In particular, K0 ∼= A.
For each i, we get a short exact sequence

0→ Ki ei−→ J i
gi−→ Ki+1 → 0

where ei is the canonical monomorphism (inclusion) and gi is the canonical epimorphism
(quotient), and f i = ei+1 ◦ gi. Note that H i(FJ•) ∼= Ki/ imFf i 18 Then using the fact that
RF i is a δ-functor, we get an induced long exact sequence.

0→ FKi → FJ i → FKi+1 → R1F(Ki)→ R1F(J i)→ R1F(Ki+1)→ · · ·

Since J is F -acyclic, RkF(J i) = 0 for k ≥ 1, and all i. So in the above long exact sequence,
every 3rd term vanishes starting with R1F(J i), and we get isomorphisms

RjF(Ki+1) ∼= Rj+1F(Ki) ∀j ≥ 1

Remeber that we want to show RiF(A) ∼= H i(FJ•). For i ≥ 1, we have (using the isomor-
phisms above),

Ri+1F(A) ∼= Ri+1F(K0) ∼= RiF(K1) ∼= Ri−1F(K2) ∼= · · · ∼= R2F(Ki+1) ∼= R1F(Ki)

So to complete the proof, it suffices to prove R1F(Ki) ∼= H i+1(FJ•) for i ≥ 0. Returning to
the long exact sequence from before, R1F(Ki) is the cokernel of Fgi : FJ i → FKi+1, since
the R1F(J i) vanishes. That is, the following sequence is exact.

0→ FKi Fei−−→ FJ i Fg
i

−−→ FKi+1 δ−→ R1F(Ki)→ 0 (9.1)

By considering the sequence 0 → Ki+1 ei+1

−−→ J i+1 → Ki+2 → 0 and applying F , by left
exactness of F , the following is also exact.

0→ FKi+1 Fei+1

−−−→ FJ i+1

In particular, Fei+1 is a monomorphism. Recall that f i = ei+1◦gi, so Ff i = (Fei+1)◦(Fgi).
Since Fei+1 is a monomorphism,

imFgi ∼= imFf i

So using equation 9.1 again, we see

R1F(Ki) = cokerFgi ∼= FKi+1/ imFgi ∼= FKi+1/ imFf i = H i+1(FJ•)

which completes the proof.

18We are somewhat abusing notation of quotients by thinking of things as modules over a ring, but there
is a way to make this precise, it just takes a lot of time and effort.
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We end this chapter with a result which we will need shortly in the next chapter to establish
some key properties of sheaf cohomology.

Definition 9.86. Let A be an abelian category with enough injectives, and let A•, B•

be cochain complexes with objects in A. Let f • : A• → B• be a morphism of cochain
complexes, with induced maps on homology f̃n : Hn(A•) → Hn(B•). The morphism f is

a quasi-isomorphism if each f̃ is an isomorphism. If there exists a quasi-isomorphism
between chain complexes A•, B•, we say they are quasi-isomorphic as chain complexes.

Theorem 9.87. Let A be an abelian category with enough injectives, and let M• be a cochain
complex in A, such that Mn = 0 for all n < 0. Then there is a cochain complex I• and a
quasi-isomorphism φ : M• → I• such that each φn is a monomorphism.
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10 Sheaf cohomology

Finally, we have reached the culmination of this course, and we can finally define sheaf
cohomology. Since we have built up so much theory regarding sheaves, abelian categories,
and derived functors, the definition is relatively quick to give.

We then turn to an “application” of sheaf cohomology, which is that both de Rham
cohomology and singular cohomology of smooth manifolds can be realized as a particular
instance of sheaf cohomology. In fact, both are the same instance of sheaf cohomology, so
this gives a proof that de Rham and singular cohomology agree for smooth manifolds.

10.1 Defining sheaf cohomology

Definition 10.1. Let X be a topological space, and Sh(X) be the category of sheaves of
abelian groups on X. Recall that Sh(X) is an abelian category with enough injectives. The
global sections functor is

Γ(X,−) : Sh(X)→ AbGp

which is described on objects (sheaves F) by

F 7→ Γ(X,F) = F(X)

Given a morphism of sheaves φ : F → G, the global sections functor takes φ to the corre-
sponding map on global sections, φX : F(X)→ G(X).

Remark 10.2. Previously, we proved that Γ(X,−) is a left exact functor. Even slightly
more generally, if U ⊂ X is any open subset, and 0 → F → G → H → 0 is a short exact
sequence of sheaves, then

0→ F(U)→ G(U)→ H(U)

is an exact sequence of abelian groups. Taking U = X is precisely the statement that
Γ(X,−) is left exact.

Definition 10.3. The ith sheaf cohomology functor, which we denote H i(X,−) is the
ith right derived functor of Γ(X,−). That is, H i(X,−) = RiΓ(X,−). This is also sometimes
called the ith cohomology group of X with coefficients in F .

Remark 10.4. All of the machinery and generality we have developed about right derived
functors applies to the sheaf cohomology functors. For example, H0(X,F) ∼= F(X), and a
short exact sequence 0→ F → G → H → 0 of sheaves gives rise to a long exact sequence of
abelian groups

0→ F(X)→ G(X)→ H(X)→ H1(X,F)→ H1(X,G)→ H1(X,H)→ H2(X,F)→ · · ·

Remark 10.5. Sheaf cohomology is generally quite hard to compute explicitly, directly
from the definition. The usual strategies are either to identify it with something more
combinatorially computable like Čech cohomology, or to give a geometric interpretation of
a particular cohomology group with something like the Picard group.
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Recall that we showed previously how a continuous map f : X → Y induces a natural map

Ȟn(Y, f∗F)→ Ȟn(X,F)

for all n ≥ 0, where F is a sheaf on X. We want something similar for sheaf cohomology,
which motivates the following propositition.

Proposition 10.6. Let f : X → Y be a continuous map of topological spaces, and let F be
a sheaf of abelian groups on X.

1. There are natural homomorphisms

Hn(Y, f∗F)→ Hn(X,F)

for all n ≥ 0.

2. If f is an embedding with closed image, the natural map above is an isomorphism.

Remark 10.7. Before the proof, let us clarify the meaning of “natural” in the previous
proposition. It means that given continuous map f : X → Y and a morphism of sheaves
F → G on X, the following diagram commutes.

Hn(Y, f∗F) Hn(X,F)

Hn(Y, f∗G) Hn(X,G)

The horizontal maps are the maps from the proposition, and the vertical maps are the
somewhat simpler induced maps on cohomology from the morphism F → G, or in the case
of the left vertical map, first there is an induced map f∗F → f∗G, then an induced map on
cohomology.

Proof. We start by working with an arbitrary sheaf G on Y . Later we will replace G with
f∗F , but for the moment, just use G. Take an injective resolution J• of G.

0→ G → J0 → J1 → J2 → · · ·

where J i is an injective sheaf on Y , so we can use this to compute sheaf cohomology of G,
in the usual way - apply Γ(Y,−), drop the first term, and take cohomology.

H i(Y,G) ∼= H i(Γ(Y, J•)) 0→ Γ(Y, J0)→ Γ(Y, J1)→ · · ·

Returning to the injective resolution J• of G, we apply the inverse image functor f−1 :
Sh(Y )→ Sh(X), which is exact, to get a long exact sequence of sheaves on X.

0→ f−1G → f−1J0 → f−1J1 → · · ·

Note that f−1J i may or may not be injective (in Sh(X)). However, by Theorem 9.87, there
is a cochain complex I• and a quasi-isomorphism φ : f−1J• → I• so that φi : f−1J i → I i is
a monomorphism, and so that each I i is an injective sheaf (on X).
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0 f−1G f−1J0 f−1J1 · · ·

0 I−1 I0 I1 · · ·

φ−1 φ0 φ1

Since φ is a quasi-isomorphism and the upper sequence is exact, the lower sequence is also
exact, which is to say, I• is an injective resolution. Using exactness of both sequences, we may
identify f−1G with the zeroth cohomology of f−1J• and I−1 with the zeroth homology of I•,
so the fact that φ is a quasi-isomorphism means that φ−1 : f−1G → I−1 is an isomorphism.
That is,

0→ f−1G → I0 → I1 → · · ·
is an injective resolution of f−1G (in the category Sh(X).) In particular, we can use this
resolution to compute Hn(X, f−1G) by the usual procedure - apply Γ(X,−), drop the first
term, and take cohomology. Thus H i(X, f−1G) is the ith cohomology of Γ(X, I•).

H i(X, f−1G) ∼= H i(Γ(X, I•)) 0→ Γ(X, I0)→ Γ(X, I1)→ · · ·

Also, applying Γ(X,−) to the previous diagram involving φ and droppin the first terms, we
get a morphism of complexes

0 Γ(X, f−1J0) Γ(X, f−1J1) · · ·

0 Γ(X, I0) Γ(X, I1) · · ·

φ0X φ1X

Set this aside for now.
Now we take a moment to recall how the inverse image sheaf f−1Jn is defined. Let J̃n

be the auxiliary presheaf (on X) defined by

J̃n(U) = lim−→
f(U)⊂V

Jn(V )

and then f−1Jn is, by definition, the sheafification of J̃n. In particular,

J̃n(X) = lim−→
f(X)⊂V

Jn(V )

and Y is one such V , so there is a canonical map to the direct limit Jn(Y ) → J̃n(X). Let

θ : J̃n → (J̃n)+ = f−1Jn be the canonical map associated with sheafification, so in particular

we have a map (of abelian groups) θX : J̃n(X)→ f−1Jn(X). Composing these, we obtain a
map Jn(Y ) = Γ(Y, Jn) → f−1Jn(X) = Γ(X, f−1Jn), which we denote by ψn. We omit the
details, but the maps ψn give a morphism of cochain complexes ψ : Γ(Y, J•)→ Γ(X, f−1J•).

0 Γ(Y, J0) Γ(Y, J1) · · ·

0 Γ(X, f−1J0) Γ(X, f−1J1) · · ·

ψ0 ψ1
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Composing ψ with Γ(φ) form earlier, we get a morphism of complexes Γ(Y, J•)→ Γ(X, I•),
which then induces morphisms on cohomology groups

H i(Y,G) = H i
(
Γ(Y, J•)

)
→ H i

(
Γ(X, I•)

)
= H i(X, f−1G)

Recall that this was all for an arbitrary sheaf G on Y . Now take the sheaf F of the proposition,
and let G = f∗F . The induced maps above give maps

H i(Y, f∗F)→ H i(X, f−1f∗F)

Recall that we have an adjunction (f−1, f∗) which comes with a counit natural transformation
η : f−1f∗F → F . Of course, a morphism of sheaves induces a morphism on sheaf cohomology,

H i(X, f−1f∗F)→ H i(X,F)

Composing this with the previous induced map, we obtain the desired induced map.

H i(X, f∗F)→ H i(X,F)

This completes the proof of (1).
(2) Now suppose that f is an embedding with closed image. We want to show that the

induced map from part (1) is an isomorphism in this case. Let F be a sheaf on X, and take
an injective resolution I• of F .

I• 0→ F → I0 → I1 → · · ·

Since f is a closed embedding, the direct image functor f∗ is exact (Proposition 8.4). Also, f∗
preserves injectives (Corollary 8.41). So applying f∗ to I•, we obtain an injective resolution
of f∗F .

f∗I
• 0→ f∗F → f∗I

0 → f∗I
1 → · · ·

Now we apply Γ(X,−) to f∗I
•.

0→ Γ(X, f∗F)→ Γ(X, f∗I
0)→ Γ(X, f∗I

1)→ · · ·

The ith cohomology of this complex Γ(X, f∗I
•) is H i(X, f∗F). In particular, the first term

is
Γ(X, f∗F) = F(f−1(Y )) = F(X) = Γ(X,F)

and for the other terms,

Γ(X, f∗I
0) = I0(f−1(Y )) = I0(X) = Γ(X, I0)

So in fact, the complex Γ(X, f∗I
•) has cohomology which computes H i(X,F). Hence

H i(X, f∗F) ∼= H i(X,F). By waving our hands and combining this fact with the naturality
of the morphisms in part (1), those morphisms must be isomorphisms 19. This completes
the proof of (2).

19Perhaps I am wrong about this. In any case, it should follow that those morphisms are isomorphisms
by tracing through the construction in part (1) and combining with the argument in (2).
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10.2 Higher direct images

Definition 10.8. Let f : X → Y be a continuous map of topological spaces. Recal that the
direct image functor f∗ : Sh(X)→ Sh(Y ) is left exact. The higher direct image functors
are the right derived functors of f∗. We just denote them by Rif∗ for i ≥ 0.

Remark 10.9. In the next proposition, we will give a helpful interpretation of Rif∗ in
terms of some sheafifications, but before the proof we should recall some facts. Given an
open embedding j : U ↪→ X, the functor j! is exact, and we have an adjunction (j!, j

−1),
which implies that j−1 preserves injectives. In particular, if I is an injective in Sh(X), then
I|U = j−1I is injective in the category Sh(U).

Proposition 10.10. Let f : X → Y be a continuous map and F a sheaf on X. Consider
the presheaf G on Y defined by

G(V ) = H i
(
f−1(V ),F|f−1(V )

)
with restriction maps given by the natural maps of Proposition 10.6. The higher direct image
of F , Rif∗(F), is (isomorphic to) the sheafification of G.

Proof. This will be a very nice consequence of Grothendieck’s universality theorem (9.80)
on cohomological δ-functors.

Let G be the presheaf on Y defined in the proposition, and let Hi(X,F) be the sheafifica-
tion of G, with canonical sheafificaiton morphism θ : G → Hi(X,F). Then think of Hi(X,−)
as a functor Sh(X)→ Sh(Y ). Since sheafification is an exact functor PSh(Y )→ Sh(Y ), the
functors {Hi(X,−)} form a δ-functor from Sh(X) to Sh(Y ). We also have a δ-functor
{Rif∗(−)} with the same domain and range.

Hi(X,−) : Sh(X)→ Sh(Y )

Rif∗(−) : Sh(X)→ Sh(Y )

In the case i = 0, it is clear that

Rif∗F = f∗F = H0(X,F)

If we can show that Rif∗(−) and Hi(X,−) are both effaceable functors for all i ≥ 1, then
it follows from Grothendieck’s universality theorem that they are both universal δ-functors,
and then since they agree in degree zero, for each i ≥ 1 we have a natural isomorphism
Rif∗(−) ∼= Hi(X,F), which would complete the proof. So it suffices to show effaceability,
which we now do.

We know that any sequence of right derived functors vanishes on injective objects and is
hence effaceable, so Rif∗(−) is effaceable. On the other hand, let I be an injective sheaf on
X, and let us show that Hi(X, I) = 0. For any subset V ⊂ Y , we have an inclusion

j : f−1(V ) ↪→ X
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Since f−1(V ) is open in X, the functors (j!, f
−1) form an adjoint pair (Remark 8.51)

and j! is exact (Proposition 8.47), so we also know j−1 preserves injectives (Proposition
8.40). Hence j−1I, otherwise denoted If−1(V ), is an injective sheaf on f−1(V ). Hence
H i(f−1(V ), I|f−1(V )) = 0, otherwise known as Hi(X, I) = 0 for all i ≥ 1. This shows
that Hi(X,−) is effaceable, which completes the proof.

10.3 Acyclic sheaves

Recall that we can compute derived functors using somewhat more general types of resolu-
tions than injective resolutions, we can use acyclic resolutions (Proposition 9.85).

Definition 10.11. A sheaf F on a space X is acyclic if H i(X,F) = 0 for all i ≥ 1. In
terms of the general definition of acyclic objects, this is saying that F is Γ(X,−)-acyclic.

Example 10.12. Injective sheaves are acyclic, since injective objects in any category are
acyclic with respect to any left exact functor. Flasque sheaves are also acyclic (proof to
come). Fine sheaves are also acyclic (definition of fine sheaves and proof to come).

10.3.1 Flasque sheaves

Recall that a sheaf F on X is flasque if the restriction maps F(U) → F(V ) are surjective
for any open subsets V ⊂ U ⊂ X. Before we prove that flasque sheaves are acyclic, we need
a lemma from Hartshorne’s book on algebraic geometry, to which we refer the reader for
proof.

Lemma 10.13. Let (X,OX) be a ringed space. Then any injective OX-module is flasque.

Proof. Hartshorne chapter III, Lemma 2.4.

In particular, we are just dealing with the special case of sheaves of abelian groups, which
are the case of thinking of X as a ringed space (X,OX) where OX is the locally constant
sheaf with value group Z. In this case, the lemma tells us that injective sheaves are flasque,
in the sense of both words meaning what we have been using them to mean, regardless of
whatever Hartshorne may mean by these words.

Theorem 10.14 (Flasque sheaves are acyclic). Let F be a flasque sheaf on a space X. Then
F is acyclic.

Proof. The outline of the proof is as follows: we embed (take a monomorphism) F into
an injective sheaf, consider the cokernel of that embedding, and examine the long exact
sequence on sheaf cohomology. Then we can do some “dimension shifting” induction to get
a lot of vanishing of cohomology.

Let F be a flasque sheaf on X. Since Sh(X) has enough injectives, let F → I be a
monomorphism of F to an injective sheaf I. Let G be the cokernel of this morphism, so we
have a short exact sequence of sheaves

0→ F → I → G → 0
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By the Hartshorne lemma above (10.13), I is flasque, so it follows that G is also flasque
(Theorem 4.23). From the same theorem, since F is flasque, we get a short exact sequence
on global sections.

0→ F(X)→ I(X)→ G(X)→ 0

Also, I is injective, so H i(X, I) = 0 for all i ≥ 1. Now consider the long exact sequence on
sheaf cohomology associated to 0→ F → I → G → 0.

0→ F(X)→ I(X)→ G(X)→ H1(X,F)→ H1(X, I)→ H1(X,G)→ H2(X,F)→ · · ·

As noted above, I(X)→ G(X) is surjective, so the morphism G(X)→ H1(X,F) is the zero
morphism. Also, H1(X, I) = 0. From this it follows that H1(X,F) = 0, for any flasque
sheaf F . Additionally, every 3rd term of the sequence vanishes starting with H1(X, I), so
the LES gives isomorphisms

H i(X,G) ∼= H i+1(X,F) ∀i ≥ 1

Since we also noted that G is flasque, we know that H1(X,G) = 0. Then by induction,
H i(X,F) and H i(X,G) are both zero for all i ≥ 1.

Remark 10.15. The trick at the end of the previous proof is a technique known as “di-
mension shifting,” where every third term of some long exact sequence vanishes and that
combines with induction to get some powerful result. This technique frequently arises in
group cohomology.

We have now shown that flasque sheaves are acyclic, so we can compute sheaf cohomology
using flasque resolutions instead of injective resolutions, which may be more convenient.

The question now arises, can we always find a flasque resolution? Ok, yes, we know from
the Hartshorne lemma above that any injective sheaf is also flasque, so we can just take an
injective resolution and consider it as a flasque resolution, but this is unhelpful. We know
that injective resolutions always exist and that the proof is sort of constructive, but the
construction of the proof often constructs injective sheaves which are way too big to get a
handle on.

So we should amend our question: is there some sort of canonical flasque resolution
which is simpler to describe? The answer is yes, and this canonical resolution is called the
Godement resolution. Unfortunately, it isn’t that much more practically useful, but we
describe it anyway.

Definition 10.16 (Preliminary to Godement resolution). Let F be a sheaf, and π : EF → X
be the étale space of F . Recall that

EF =
∏
x∈X

Fx

with projection map π given by π(e) = x where e ∈ Fx. Also recall that we have an
isomorphism of sheaves

F(−) ∼= Γ(−, π)
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where Γ(U, π) is continuous sections of π over U .

Γ(U, π) = {s : U → EF | πs = IdU , s is continuous}

For U ⊂ X open, define C0F to be sheaf of sections of π which are not necessarily continuous.

C0F(U) = {s : U → EF | πs = IdU}

Note that C0F(U) can be identified with
∏

x∈U Fx via

C0F(U)→
∏
x∈U

Fx s 7→
(
s(x)

)
x∈U

For V ⊂ U ⊂ X open subset, we have a natural restriction map

resUV : C0F(U) =
∏
x∈U

Fx → C0F(V ) =
∏
x∈V

Fx

which is just the map which acts as the identity map on Fx for x ∈ V , and acts as the zero
map for x ∈ U \ V . Note that Γ(−, π) ∼= F is a subsheaf of C0F .

Lemma 10.17. Let F be a sheaf on X, and C0F be the object defined above. Then C0F is
a flasque sheaf on X.

Proof. First, one would show that C0F is a presheaf, which is fairly obvious. Verifying the
sheaf axioms is also not terribly hard, and the flasque property is also obvious.

Now we return to defining the Godement resolution.

Definition 10.18 (Godement resolution). Let F be a sheaf on a space X, and let C0F be
the sheaf defined above. We previously noted that F is a subsheaf of C0F , meaning that
we have a monomorphism F → C0F . Let Q1 be the cokernel of this monomorphism, so we
have a short exact sequence.

0→ F → C0F → Q1 → 0

Then consider the flasque sheaf C0Q1, and repeat this to define Q2 as the cokernel of Q1 →
C0Q1, obtaining a short exact sequence

0→ Q1 → C0Q1 → Q2 → 0

Then iterate this construction to define Qn for n ≥ 1. Define CiF = C0Qi. Then we can
splice together all of these short exact sequences to obtain a long exact sequence

0→ F → C0F → C1F → C2F → · · ·

By construction/previous lemma, this is a flasque resolution of F . It is called the Godement
resolution of F .

Remark 10.19. Unfortunately, the Godement resolution isn’t really that much more useful
than the usual injective resolution which is guaranteed to exist, since the flasque sheaves in
the resolution are still really big and unwieldy for practical calculation.
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10.3.2 Fine sheaves

Definition 10.20. Let φ : F → G be a morphism of sheaves on X, and for x ∈ X, let
φx : Fx → Gx be the morphism on stalks. The support of φ is

supp(φ) = {x ∈ X : φx 6= 0}

where the overline denotes the topological closure.

Definition 10.21. Let X be a space. An open cover U = {Ui}i∈I of X is locally finite if
every x ∈ X has a neighborhood that has nonemtpy intersection with only finitely many Ui.

Definition 10.22. Let X be a space. X is paracompact if X is Hausdorff and every open
cover of X admits a locally finite refinement.

Example 10.23. Any smooth real manifold is paracompact.

Definition 10.24. Let X be a space and U = {Ui}i∈I a locally finite cover. Let F be a sheaf
on X. A partition of unity for F subordinate to U is given by a collection of morphisms

ηi : F → F i ∈ I

such that supp(ηi) ⊂ Ui and for each x ∈ X,∑
i∈I

ηi,x = IdFx

Note that since U is locally finite, each ηi,x is nonzero only for finitely many i ∈ I, so the
sum above has only finitely many nonzero terms for a fixed x ∈ X.

Definition 10.25. Let F be a sheaf on a space X. The sheaf F is fine if for every locally
finite open cover of X, there exists a partition of unity for F subordinate to U .

Theorem 10.26. Let X be a topological space such that every open subset of X is para-
compact. For any fine sheaf F on X, and an open subset U ⊂ X, the restriction F|U is an
acyclic sheaf on U .

Proof. Omitted.

Example 10.27. An example of a space X satisfying the hypothesis above is if X is a
smooth real manifold. That is, fine sheaves are acyclic on smooth manifolds.

Proposition 10.28. Let (X,O) be a ringed space, such that for every locally finite cover
U = {Ui}i∈I , O has a partition of unit subordinate to U . Then any sheaf of O-modules is
fine.

Proof. Omitted.

Example 10.29. A situation where the previous proposition holds is when X is a smooth
manifold, O is the sheaf of smooth R-valued functions, and F is the sheaf of differential
forms.
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10.4 Leray’s theorem

Our next goal is to set up and prove Leray’s theorem, which establishes an isomorphism
between Čech cohomology and sheaf cohomology, under certain hypotheses. The first step
is to describe a map from Čech cohomology to sheaf cohomology.

Definition 10.30. Let X be a topological space and F a sheaf of abelian groups on X. Let
n ∈ Z≥0. We will define a map

Ȟn(X,F)→ Hn(X,F)

Later, Leray’s theorem will establish conditions for this to be an isomorphism. Consider the
Čech resolution of F .

0→ F → Č0(U ,F)→ Č1(U ,F)→ · · ·

where Čn(U ,F) is the sheaf on X determined by its value on an open subset U ⊂ X as
below. 20

Čn(U ,F)(U) =
∏

(i0,...,in)∈In
F (U ∩ Ui0···in)

The Čech resolution is a long exact sequence of sheaves of abelian groups on X. Now consider
an injective resolution of F .

0→ F → I0 → I1 → · · ·

From general homological principles, the identity map Id : F → F extends to a morphism
of chain complexes Č•(U ,F)→ I•.

0 F Č0(U ,F) Č1(U ,F) · · ·

0 F I0 I1 · · ·

Id

Now take global sections of the previous diagram. That is, apply the functor Γ(X,−) to it.
We also drop the F term. What we obtain is

0 Č0(U ,F)(X) Č1(U ,F)(X) · · ·

0 I0(X) I1(X) · · ·

20For the next equation, recall the notation

Ui0···in = Ui0 ∩ · · · ∩ Uin
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The above is a morphism of chain complexes, and the cohomology of the bottom row is
Hn(X,F). On the other hand, 21

Čn(U ,F)(X) =
∏

(i0,···in)∈In+1

F (Ui0···in)

That is to say, the top row of the previous diagram is the chain complex of Čech cochains,
whose cohomology computes Ȟn(U ,F). Hence our chain map induces maps on cohomology
groups,

Ȟn(U ,F)→ Hn(X,F)

This map depends on the cover U , but the maps are compatible in the necessary manner
to take the direct limit, so we obtain a map on the direct limit over such covers (partially
ordered by refinement), and obtain the desired morphism

Ȟn(X,F)→ Hn(X,F)

We will call this the Leray map. We may also refer to the various maps Ȟn(U ,F) →
Hn(X,F) as a Leray maps.

Remark 10.31. Tracing through the construction, it is not too hard to see that the map
Ȟn(X,F)→ Hn(X,F) is natural in the sense that a morphism φ : F → G of sheaves induces
a commutative square

Ȟn(X,F) Hn(X,F)

Ȟn(X,G) Hn(X,F)

Ȟn(φ) Hn(φ)

where the horizontal maps are the maps constructed in the previous definition.

Definition 10.32. Let F be a sheaf on a space X. F is Čech ayclic if Ȟn(U ,F) = 0 for
all n ≥ 1 and any open cover U of X. Taking the direct limit, this obviously implies that
Ȟn(X,F) = 0 for all n ≥ 1, but note that it might happen that Ȟn(X,F) = 0 for all n ≥ 1
without F being Čech acyclic.

Proposition 10.33. Let F be a flasque sheaf on a space X. Then F is Čech acyclic.

Proof. Let U be an open cover of X. Since F is flasque, by Lemma 6.51, the Čech resolution
of F is a flasque resolution.

0→ F → Č•(U ,F)

Hence this is an acyclic resolution, and may be used to compute sheaf cohomology, by
Proposition 9.85. On the other hand, this complex computes the Čech cohomology for the

21Unfortunately we have used In+1 for two different things. It is the (n + 1)th term of the injective
resolution of F , but we also used I as the indexing set for the open cover U of X. In the formula below,
In+1 refers to the (n+ 1)-fold Cartesian product of this indexing set, not the injective sheaf.
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cover U as well. Hence Čech cohomology using U is isomorphic to sheaf cohomology, which
vanishes as F is ayclic (because it is flasque).

Ȟn(U ,F) ∼= Hn(X,F) = 0

Definition 10.34. Let X be a topological space, and F a sheaf on X, and U = {Ui}i∈I an
open cover of X. The cover U is acyclic for F if for any (n + 1)-tuple (i0, . . . , in) ∈ In+1

(where n ≥ 0), we have
Hk
(
Ui0···in ,F|Ui0···in

)
= 0

for all k ≥ 1.

Theorem 10.35 (Leray). Let F be a sheaf of abelian groups on a space X, and let U be an
open cover of X which is acyclic for F . Then the Leray maps are isomorphisms for p ≥ 0.

Ȟp(U ,F)
∼=−→ Hp(X,F)

We will give an attempt at a proof, but first a remark on the utility of the theorem. Leray’s
theorem is useful in algebraic geometry, since the hypotheses of the theorem in the following
situation: X is a Noetherian separated scheme with Zariski topology, and F is a quasi-
coherent sheaf on X, and U is any open cover.

Proof. We proceed by induction on p. The case p = 0 is straightforward, since both coho-
mology groups are just global sections of F .

Ȟ0(U ,F) ∼= F(X) ∼= H0(X,F)

To understand why this isomorphism is actually induced by the Leray map, just trace through
the construction of the Leray map.

Now for the induction. Let F ,U = {Ui}i∈I , X be as in the statement of the theorem,
and assume the theorem holds for some fixed value p0. Embed F into an injective sheaf I,
and let Q be the cokernel of the embedding F ↪→ I. That is, we have a short exact sequence
of sheaves (of abelian groups) on X.

0→ F → I → Q → 0

Let U ⊂ X be some intersection of elements of the open cover U .

U = Ui0···in = Ui0 ∩ · · · ∩ Uin

Let j : U ↪→ X be the inclusion. The functor

j−1 = (−)|U : Sh(X)→ Sh(U) F 7→ j−1F = F|U

is exact, and takes injectives to injectives, so we have a short exact sequence

0→ F|U → I|U → Q|U → 0 (10.1)
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of sheaves on U , where I|U is injective as a sheaf on U . By the hypothesis, F is acyclic for
U , so Hp(U,F|U) = 0 for all p ≥ 1. Also, since I is injective, Hp(U, I|U) = 0 for all p ≥ 1,
as injective sheaves are acyclic. Now consider the long exact sequence on sheaf cohomology
associated to the sequence 10.1. Two out of every three terms are zero.

0→ F(U)→ I(U)→ Q(U)→ 0→ 0→ H1(U,Q|U)→ 0→ 0→ H2(U,Q|U)→ 0→ · · ·

By exactness of this, we get that Hp(U,Q|U) = 0 for all p ≥ 1. That is, Q is also acyclic for
U . We will use this later.

Recall the sheafified Čech complex, defined as

Čn(U ,F) =
∏

(i0,...,in)∈In+1

F(U ∩ Ui0···in)

Fix n ≥ 1. Taking the product over all (n+ 1)-tuples (i0, . . . , in), the short exact sequences
0→ F(U)→ I(U)→ Q(U)→ 0 give a short exact sequence of sheaves

0→ Čn(U ,F)→ Čn(U , I)→ Čn(U ,Q)→ 0

Furthermore, these maps are compatible with the boundary maps of the sheafified Čech com-
plex Č•(U ,F) (and same for I,Q), so we obtain a short exact sequence of chain complexes
of sheaves on X.

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0

Then by the usual procedure, from a short exact sequence of chain complexes, we obtain a
long exact sequence on cohomology. In particular, the cohomology of each of the complexes
involved above is Čech cohomology, so the resulting LES is

0→ Ȟ0(U ,F)→ Ȟ0(U , I)→ Ȟ0(U ,Q)→ Ȟ1(U ,F)→ · · ·

Since I is injective, it is Čech acyclic, for p ≥ 1, the I terms vanish in the long exact sequence
above. Hence we obtain isomorphisms from the boundary maps above,

0→ Ȟ i(U ,Q)
∼=−→ Ȟ i+1(U ,F)→ 0

for i ≥ 1. Using naturality of the Leray maps, we have a commutative diagram below, where
the vertical maps are Leray maps. Note that the degree zero Leray maps are isomorphisms
by the base case p = 0.

0 Ȟ0(U ,F) Ȟ0(U , I) Ȟ0(U ,Q) Ȟ1(U ,F) 0

0 H0(X,F) H0(X, I) H0(X,Q) H1(X,F) 0

∼= ∼= ∼=
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Then by a diagram chasing argument, the arrow on the far right must also be an isomorphism.
22 Again using naturality of the Leray maps, we get the following commutative square, where
the vertical maps are the Leray maps.

0 Ȟ i(U ,Q) Ȟ i+1(U ,F) 0

0 Ȟ i(X,Q) H i+1(X,F) 0

∼=

∼=

As Q is acyclic for U , the left vertical Leray map above is an isomorphism by inductive
hypothesis, so the right map must also be an isomorphism. Since we have such commutative
squares for all i ≥ 1, this completes the induction.

10.5 Unification of de Rham cohomology, singular cohomology,
and sheaf cohomology

The final goal of this course is to give an account of De Rham cohomology, singular coho-
mology, and an isomorphism between them for smooth manifolds. This isomorphism will be
obtained by identifying each with a particular sheaf cohomology, the sheaf cohomology of
the sheaf of locally constant real valued functions.

There are simpler treatments of the correspondence between de Rham and singular co-
homology, but we will approach it from the perspective of using the powerful tools of sheaf
theory. Many proofs will be omitted, especially details which are more geometric in nature.
Even some of the definitions will be a little bit less rigorous than usual. The main result is
the following.

Theorem 10.36 (De Rham). Let M be a smooth real manifold. Let C be the sheaf of locally
constant real valued functions on M . Then for all n ∈ Z≥0,

Hn
dR(M) ∼= Hn

sing(M,R) ∼= Hn(M, C)

Philosophically speaking, this result is a powerful justification for the great abstraction and
generality of sheaf cohomology. It tells us that sheaf cohomology is so much more powerful
and general than de Rham and singular cohomology that the sheaf cohomology of one of the
simplest sheaves imaginable contains the entirety of these two theories, at least for smooth
manifolds.

In another sense, this result is very intimidating. It tells us that sheaf cohomology is very
very difficult to compute in any sort of generality. The sheaf of locally constant real valued
functions is much simpler and easier to understand than a random sheaf, and a smooth
manifold already has a lot of structure. And still, to compute sheaf cohomology, we need to

22It must be surjective by simple commutativity of the square. To construct an inverse map, lift to
H0(X,Q), then use the isomorphism to get to Ȟ0(U ,Q), then apply the horizontal map. This does not
depend on choice of lift by some exactness/diagram chasing, so it gives a well-defined inverse.
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compute de Rham or singular cohomology, things which are in principle not too hard, but
still not trivial to compute.

What then, of computing sheaf cohomology for some less well understood sheaf, on some
less understood space than a smooth manifold? Given the above discussion, it seems nearly
impossible. And in some sense, it is. Nevertheless, we do not give up, since it is clear that
sheaf cohomology is a powerful tool, and any attempts to compute it should give a of useful
information, whether or not they succeed.

10.5.1 De Rham cohomology

Definition 10.37. Let M be a smooth real manifold of dimension n. The structure sheaf
of M , denoted O, is the sheaf of smooth R-valued functions. That is, for U ⊂M , O(U) is the
ring of smooth functions U → R. (The ring structure comes from adding and multiplying
functions pointwise.) Thus O is a sheaf of commutative rings. The restriction maps are
literal function restrictions.

Definition 10.38. Let M be a smooth real manifold of dimension n, and let p ∈ M . The
tangent space of M at p is a real vector space of dimension n, denoted TpM . One can
think of it as derivations at p, or various other things, but we omit the details here.

A choice of local chart near p, that is, a diffeomorphism h : U → Rn where U is an open
neighborhood of p, gives a basis for TpM . We will write this basis as

∂

∂x1

(p), · · · , ∂

∂xn
(p)

Definition 10.39. The tangent bundle of M , denoted TM , is a smooth manifold of
dimension 2n, with a map

π : TM →M

such that for each p ∈ M , the fiber π−1(p) is a real vector space of dimension n, identified
with the tangent space TpM .

We have not been nearly precise enough to really understand TM and its topology, but we’re
just going for the general ideas here.

Definition 10.40. Let M be a smooth manifold with tangent bundle π : TM →M . Smooth
sections of π are called vector fields on M . That is, a vector field on M is a smooth map

s : M → TM

such that πs = IdM . Given a local chart h : U → Rn where U is a neighborhood of p, we
have our basis of ∂

∂xi
(p) for TpM , and using these we can write a vector field/section of π

locally as

sp = f1(p)
∂

∂x1

(p) + · · ·+ fn(p)
∂

∂xn
(p)
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where the fi are functions U → R. In particular, the condition that s is smooth is equivalent
to the functions fi all being smooth.

Note that for U ⊂M open, U is a submanifold, and the tangent bundle for U is just the
restriction of π.

π|π−1(U) : π−1(U)→ U

Definition 10.41. Let M be a smooth manifold of dimension n, with tangent bundle π :
TM →M . The collection of all vector fields (sections of π) on M is denoted Vect(M).

For an open subset U ⊂ M (which we might also refer to as an open submanifold),
we may also talk about the vector fields on U , which we call Vect(U). Since Vect(U) is a
collection of sections, we get a sheaf on M , which we denote V .

V(U) = Vect(U)

The restriction maps for V are just literal function restrictions.

Remark 10.42. Vect(U) is an abelian group under pointwise addition, so V is a sheaf of
abelian groups on M .

Definition 10.43. Let M be a smooth real manifold, with structure sheaf O. For U ⊂M ,
we have a local coordinate function h : U → Rn. We can give V(U) the structure of an
O(U)-module, as follows. Recall that s ∈ V(U) can be written as

sp = f1(p)
∂

∂x1

(p) + · · ·+ fn(p)
∂

∂xn
(p)

where fi are smooth functions U → R. Then given any g ∈ O(U), a smooth function U → R,
we can multiply g pointwise with each fi, and define

gsp = g(p)f1(p)
∂

∂x1

(p) + · · ·+ g(p)fn(p)
∂

∂xn
(p)

This makes V(U) into a O(U)-module. We omit the structural details, but this makes V
into a sheaf of O-modules on M .

Now we dualize a lot of what just happened.

Definition 10.44. Let M be a smooth manifold of dimension n with p ∈ M , and tangent
space TpM . The cotangent space at p is the dual space of TpM , which we denote (TpM)∗.

(TpM)∗ = HomR(TpM,R)

where the homomorphisms are R-linear maps. If one chooses a local chart h : U → Rn where
U ⊂M is an open neighborhood of p, then there is a basis of (TpM)∗, which is just the dual
basis of the basis that h determines for TpM . We denote this basis

dx1, . . . , dxn

That this is dual to the basis ∂
∂x1

(p), . . . , ∂
∂xn

(p) just means that

dxi

(
∂

∂xj
(p)

)
= δij
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We omit the full details of the definition, but there is a dualized version of the tangent
bundle, called the cotangent bundle. We denote the cotangent bundle by T ∗M . It has a
map

π∗ : T ∗M →M

T ∗M is also a smooth manifold of dimension 2n, where n = dimM . As one would expect,
the map π∗ is such that the fiber above p ∈M is identified with the cotangent space (TpM)∗.
The cotangent bundle as a whole is the disjoint union of these,

T ∗M =
⊔
p∈M

(TpM)∗

But of course this is not the full story, since then one needs to put the appropriate topology
and smooth structure on T ∗M so that π∗ is a smooth map.

Definition 10.45. Let M be a smooth manifold with cotangent bundle π∗ : T ∗M → M .
Smooth sections of π∗ are called differential 1-forms. So a differential 1-form is a smooth
map

ω : M → T ∗M p 7→ ωp ∈ (TpM)∗

The set of such differential 1-forms is denoted A(1)(M). For U ⊂ M an open submanifold
(just an open subset), we then have A(1)(U), the differential 1-forms on U . Combining this
data, we get a sheaf A(1) on M , given by

A(1)(U) = A(1)(U)

where restriction maps are just literal function restriction. The sheaf A(1) is called the sheaf
of differential 1-forms.

Definition 10.46. If we fix a local chart h : U → Rn where U ⊂M is an open neighborhood
of p, we can write ωp ∈ (TpM)∗ in terms of the basis dx1, . . . , dxn.

ωp = φ1(p)dx1 + . . .+ φn(p)dxn

where φ1, . . . , φn are smooth functions U → R, that is, φ1, . . . , φn ∈ O(U). Then we can
pointwise multiply g ∈ O(U) by ωp, hence making A(1)(U) into a O(U)-module. We omit
some details, but this is compatible in such a way to make A(1) into a sheaf of O-modules
on M .

Now things start get really sketchy - we’re going to start using somethings which we really
aren’t prepared to define or discuss in detail.

Definition 10.47. Let M be a smooth manifold of dimension n. Generalizing the cotangent
bundle π∗ : T ∗M →M , for 1 ≤ k ≤ n there are bundles

π(k) : E(k) →M
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where π(1) is the cotangent bundle. For p ∈M , the fiber of π(k) looks like(
π(k)
)−1

(p) ∼= Λk(TpM)∗

where Λk is the k-fold exterior algebra of (TpM)∗. In analogy with A(1)(M), we define
A(k)(M) to be smooth sections of π(k). Hence ω ∈ A(k)(M) is multilinear alternating function

ω :
k∏
i=1

TpM → R

As before, given a local chart h : U → Rn, we can write ω ∈ A(k)(U) in terms of coordinates,
although it gets very notationally confusing to do so.

ω =
∑

1≤i1≤···≤ik≤n

φi1 · · ·φik dxi1 ∧ · · · ∧ dik

And as before, we sheafify this construction to obtain a sheaf A(k) on M , given by

A(k)(U) = A(k)(U)

where restriction maps are literal function restrictions. Following the same song and dance,
this is once again a sheaf of O-modules. This defines sheaves A(k) for k = 1, . . . , n. By
convention, we set A(0) = O.

This mostly concludes our whirlwind tour of setup and sloppy definitions for building up de
Rham cohomology in the language of sheaves. We’ll need a few more definitions, but now
we can start stating some results.

Theorem 10.48. Let M be a smooth real manifold.

1. M is paracompact.

2. For every locally finite cover U of M , there exists a partition of unity for O subordinate
to U .

Proof. Standard result from intro differential geometry, see various textbooks.

Remark 10.49. From the previous theorem and Proposition 10.28, every sheaf ofO-modules
on M is fine, hence acyclic. In particular, the sheaves A(k) defined above are acyclic.

Hn(M,A(k)) = 0 ∀k ≥ 0, n ≥ 1

Definition 10.50. There is a map called the exterior derivative

d : A(k)M → A(k+1)M
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which in local coordinates looks like

d(φ dxi1 ∧ · · · ∧ dxik) = dφ ∧ dxi1 ∧ · · · ∧ dxik

where

dφ =
n∑
i=1

∂φ

∂xi
dxi

It is mostly straightforward from these definitions that d2 = 0, along with properties of the
exterior algebra. The details are not so important for us, just mainly the fact that d gives a
morphism of sheaves

d : A(k) → A(k+1)

Note that d is NOT a morphism of O-modules, merely a morphism of sheaves of abelian
groups.

Definition 10.51. Fix U ⊂ M an open subset, and let d = d(k) : A(k)(U) → A(k+1)(U) be
the exterior derivative. A differential k-form ω ∈ A(k)(U) is closed if it lies in the kernel of
d. A differential k-form η ∈ A(k) is exact if it lies in the image of d : A(k−1)(U)→ A(k)(U).

Since d2 = 0, the differnetial k-forms form a chain complex,

0→ A(0)(U)→ A(1)(U)→ · · · → A(n)(U)→ 0

The kth de Rham cohomology of M is the kth cohomology of this complex, that is, the
quotient of closed k-forms on U by exact k-forms on U .

Hk
dR(U) =

closed k-forms on U

exact k-forms on U
=

ker d(k)

im d(k−1)

Remark 10.52. For φ ∈ O(U), if dφ = 0, then φ is locally constant.

Definition 10.53. As always, let M be a smooth real manifold. Let C be the locally constant
sheaf on M with value ring R. It is then clear that we have a short exact sequence of sheaves
(of abelian groups) on M

0→ C → A(0) → A(1)

This is exact as a sequence of presheaves since the sequence on sections over an open subset
U ⊂M is exact, hence it is exact as a sequence of sheaves.

Next we want to give a big result about how to continue the above exact sequence using the
other sheaves A(k), but first we should state Poincaré’s lemma, since it is involved in the
proof.

Definition 10.54. A subset X ⊂ Rn is star shaped with respect to x ∈ X if for any
y ∈ X, the line segment from x to y lies in X. X is star shaped if it star shaped with
respect to any point x ∈ X.
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Lemma 10.55 (Poincaré). Let X ⊂ Rn be star shaped and open. Then X has no de Rham
cohomology, that is,

Hk
dR(X) = 0 ∀k ≥ 1

Proof. This is essentially a computation in multivariable calculus.

Remark 10.56. If M is a smooth manifold, then every point p ∈ M has a neighborhood
which is isomorphic to a star shaped region in Rn, so locally speaking, every closed form on
M is exact. Of course, there may be globally closed forms which are not exact, on regions
such as the circle or sphere.

Theorem 10.57. Let M be a smooth manifold. The following sequence of abelian groups on
M is exact.

0→ C → A(1) → A(2) → A(3) → · · · → A(n) → 0

Proof. The fact that d2 = 0 is easy enough, this basically follows from the description of d
in local coordinates and the definition of the exterior algebra. The proof involves using local
coordinates, Clairaut’s theorem on mixed partials, and the fact that the wedge product is
alternating.

The proof of exactness needs to be checked on stalks, and involves Poincaré’s lemma
about the vanishing of de Rham cohomology for star-shaped regions.

Remark 10.58. For our purposes, we will think of the exact sequence above as a resolution
of C, the locally constant sheaf on M , by acyclic (fine) sheaves. In particular, it is a resolution
which can be used to compute sheaf cohomology groups Hk(M, C) by the usual process -
take global sections, drop the first term, take cohomology.

On the other hand, if we take sections over M of the above exact sequence (and drop the
first term), then we get an exact sequence of abelian groups

0→ A(0)(M)→ A(1)(M)→ · · · → A(n)(M)→ 0

and this sequence is exactly the chain complex used to compute the de Rham cohomology
groups of M . That is, we obtain a isomorphisms

Hk
dR(M) ∼= Hk(M, C)

Since this is the main result of this section, we codify it as a theorem.

Theorem 10.59. Let M be a smooth manifold, and C be the sheaf of locally constant R-
valued functions. Then sheaf cohomology of C computes de Rham cohomology of M .

Hk
dR(M) ∼= Hk(M, C)
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10.5.2 Singular cohomology

In the previous section, the main result was that we may compute de Rham cohomology
of a smooth manifold using sheaf cohomology of the locally constant sheaf with R-valued
functions. In this section, we pursue a similar goal of identifying singular cohomology with
the same sheaf cohomology. From this, we will obtain the well-known result that, under
appropriate circumstances, de Rham cohomology and singular cohomology are isomorphic.

As we reviewed de Rham cohomology in the previous section, we start with a review of
singular cohomology in this section.

Definition 10.60. Let n ∈ Z≥1. The n-simplex ∆n in Rn is the convex hull of n points. For
concreteness, one may think of it as the convex hull of (1, 0, . . .), (0, 1, 0, . . .), . . . , (0, . . . , 0, 1).

Definition 10.61. Let M be a smooth real manifold and let n ∈ Z≥1. A singular n-
simplex in M is a continuous map f : ∆n →M . The word “singular” is used to emphasize
that f need not be smooth, merely continuous, so the image may look much stranger than
if smoothness were required.

Definition 10.62. We define Cn(M), or sometimes written Cn(M,R) to be the R-vector
space spanned by all singular n-simplices in M . That is, Cn(M) consists of formal R-linear
combinations of continuous maps ∆n → M . It is a very large, infinite dimensional vector
space.

We denote the dual space of Cn(M) by Cn(M). That is,

Cn(M) = (Cn(M))∗ = HomR(Cn(M),R)

where the homomorphisms are just R-linear maps.

Definition 10.63. Let ∆n, Cn(M) be as above. The ith face map is

dni : ∆n−1 → ∆n

which includes ∆n−1 as the ith face of ∆n. There is some hidden business of ordering the
faces of ∆n here, but don’t worry about it. The nth boundary map

∂n : Cn(M)→ Cn−1(M)

is given by

∂n(f) =
n∑
i=0

(−1)i(f ◦ dni )

Definition 10.64. The dualized version of the boundary map above is the coboundary
map

∂n : Cn(M)→ Cn+1(M)

described by
(∂nφ)(f) = (−1)n+1φ (∂n+1(f))

where f ∈ Cn+1(M) and φ ∈ Cn(M).
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Definition 10.65. Let Cn(M), ∂n be as above. It is a somewhat tedious calculation to
verify that ∂n+1 ◦ ∂n = 0. Hence we get a chain complex

C0(M)
∂0−→ C1(M)

∂1−→ C2(M)→ · · ·

The cohomology of this complex is called the singular cohomology of M with coefficients
in R. It is denoted Hn

sing(M,R).

Our next goal is to sheafify the above complex in a similar way to what we did with the de
Rham complex, so that we may get a relation (isomorphism) with sheaf cohomology.

Definition 10.66. Let M be a smooth manifold. For an open subset U ⊂ M , consider
Cn(U), the R-vector space with basis given by singular n-simplices f : ∆n → U . For V ⊂ U ,
the embedding V ↪→ U gives an embedding

Cn(V ) ↪→ Cn(U)

In fact, (the image of) Cn(V ) is a direct summand of Cn(U), but this will not be important
until later. For the moment, what is more important is that restriction of functions gives a
map

Cn(U)→ Cn(V ) φ 7→ φ|Cn(V )

This defines a presheav Cn(−) on M . This is not in general a sheaf, so we sheafify it. Let Cn
be the sheafification of Cn. The boundary maps ∂n : Cn(U) → Cn+1(U) then induce sheaf
maps

∂n : Cn → Cn+1

leading to a chain complex of sheaves

C0 ∂0−→ C1 ∂1−→ C2 → · · ·

We will prove in a moment that this is exact.

Remark 10.67. For U ⊂ M , the presheaf C0 has sections over U which are just functions
U → R. The condition φ ∈ ker ∂0 is then equivalent to the property that φ(x) = φ(y) if and
only if x, y can be connected by a curve in U . since the boundary map ∂0 just evaluates φ
as φ(x)−φ(y). Hence φ ∈ ker ∂0 if and only if φ is locally constant. Passing to sheaves does
not impact this discussion, so we have a short exact sequence of sheaves of abelian groups
on M ,

0→ C → C0 ∂0−→ C1

where C, as before, is the sheaf of locally constant R-valued functions U → R.

The previous remark gives some reason to hope that we may extend it to a long exact
sequence using the sheaves Cn, and we may. First, we need to state a lemma from alge-
braic topology, which gives slightly more concrete description of the sections of the sheaf Cn
obtained by sheafifying Cn.
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Lemma 10.68. Let M be a smooth manifold and U ⊂M be open. Define

Cn(U)0 =
{
φ ∈ Cn(U) | ∃ an open cover {Ui}i∈I of U such that φ|Cn(Ui) = 0 ∀i

}
Then there is a natural isomorphism, compatible with the differentials and restriction maps,

Cn(U) ∼=
Cn(U)

Cn(U)0

Proof. This is purely topological, so we omit it. A proof can be found in Foundations of
Differentiable Manifolds and Lie Groups, by Warmer as Proposition 5.27.

Proposition 10.69. Let M be a smooth manifold, and Cn be the sheaves above. Then

0→ C → C0 ∂0−→ C1 ∂1−→ C2 → · · ·

is a flasque (hence acyclic) resolution of C.

The important aspect of the previous proposition is that the resolution above computes sheaf
cohomology groups Hk(M, C).

Proof. The exactness aspect of the claim is not too bad to prove. It must be check on stalks,
so the sheafification aspect can be basically ignored. This part of the proof utilizes homotopy
invariance of singular cohomology - each point p ∈M has a contractible open neighborhood
U with trivial singular homology, so the sequence

Cn−1(U)
∂n−1

−−−→ Cn(U)
∂n−→ Cn+1(U)

is exact. Hence we get exactness on the stalks at x. Since x was arbitrary, this gives exactness
at every stalk, so the sequence is exact.

The flasqueness aspect of the claim is not too bad, assuming the previous lemma charac-
terizing sections of Cn in Lemma 10.68. If V ⊂ U , then Cn(V ) ⊂ Cn(U) is a direct summand,
so passing to the dual space,

Cn(U)→ Cn(V )

is surjective. Hence the presheaf Cn is flasque. Then by the lemma, since Cn(U) ∼=
Cn(U)/Cn(U)0 in a way which is compatible with restriction maps, so the restriction maps
for Cn are also surjective, which is to say, Cn is flasque.

Taking global sections of the previous chain complex, we obtain a computation of sheaf
cohomology groups for M using the locally constant sheaf C.

Corollary 10.70. The cohomology groups of the complex

0→ C0(M)
∂0−→ C1(M)

∂1−→ C2(M)→ · · ·

are the sheaf cohomology groups Hk(M, C).
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Remark 10.71. On the other hand, we can also use the flasque resolution to compute
singular cohomology, but it takes a few mores steps. Recall that singular cohomology groups
Hk

sing(M,R) are the cohomology groups of the un-sheafified complex

0→ C0(M)
∂0−→ C1(M)

∂1−→ C2(M)→ · · ·

Using Lemma 10.68, we have a short exact sequence of chain complexes

0→ C•(M)0 → C•(M)→ C•(M)→ 0

The left term is the one defined in the lemma, the middle term computes singular cohomol-
ogy, and the right term is the sheafified version, which the lemma specifies as the quotient
C•(M)/C•(M)0. Note that the compatiblity with the boundary maps is necessary to make
this a sequence of chain complexes.

To complete the identification of singular cohomology and sheaf cohomology (of C), we
will pass to the long exact sequence associated with the above sequence of chain complexes.

0→ H0(C•(M)0)→ H0(C•(M))→ H0(C•(M))→ H1(C•(M)0)→ · · ·

We are going to show that C•(M)0 is acyclic, which means that in that LES, every third
term vanishes and we obtain isomorphisms between the cohomology of C•(M) (which is
singular cohomology) and C•(M) (which is sheaf cohomology)

First, we need to cite another result from algebraic topology.

Definition 10.72. Let M be a smooth manifold, and U = {Ui}i∈I be an open cover of
M . Define the small chains CUn (M) to be the subspace of Cn(M) spanned by singular
n-simplices whose image lies inside some Ui.

CUn (M) = spanR {f ∈ Cn(M) : ∃i ∈ I, im f ⊂ Ui}

Then define the small cochains Cn
U(M) to be the dual space of of CUn .

Cn
U(M) = HomR(CUn ,R)

By dualizing the inclusion CUn (M) ↪→ Cn(M), we obtain a surjection Cn(M) → Cn
U(M).

Define Cn
U(M)0 to be the kernel of this surjection, so that we have a short exact sequence

(of abelian groups)
0→ Cn

U(M)0 → Cn(M)→ Cn
U(M)→ 0

Lemma 10.73. Let M be a smooth manifold, and for an open cover U , let Cn
U(M)0 be as

above. These form a directed system with indexing set given by open covers U , and

Cn(M)0 = lim−→
U
Cn
U(M)0

Proof. Omitted.
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Theorem 10.74. Let M be a topological space and U be an open cover of M . The natural
embedding of complexes

ι• : CU• (M)→ C•(M)

is a chain equivalence. That is, there exists a morphism of complexes

f : C•(M)→ CU• (M)

such that f• ◦ ι• and ι• ◦ f• are each chain homotopic to the identity.

Proof. This is very technical, involving such things as barycentric subdivision. See Algebraic
Topology by Tom Dieck, Theorem 9.4.5.

Now we are set up to show that C•(M) is acyclic, which will shortly thereafter complete the
proof that Hn

sing(M,R) ∼= Hn(M, C).

Lemma 10.75. The chain complex C•(M)0 is acyclic.

Proof. Consider the short exact sequence of chain complexes

0→ C•U(M)0 → C•(M)→ Cn
U(M)→ 0

Then consider the long exact sequence on cohomology.

0→ H0(C•U(M)0)→ H0(C•(M))→ H0(Cn
U(M))→ H1(C•U(M)0)→ · · ·

Passing to the dual spaces in Theorem 10.74, we get that

C•(M)→ C•U(M)

is also a chain equivalence, hence induces isomorphisms of cohomology, which implies that in
the long exact sequence above the terms Hn(C•U(M)0) are all zero for n ≥ 1, which is to say,
the complex C•U(M)0 is acyclic. Passing to the direct limits using Lemma 10.73, the complex
C•(M)0) is acyclic, as claimed. Note that in this last step, we are utilizing an exactness
property of the direct limit functor, which has not been entirely spelled out here.

Theorem 10.76. Let M be a smooth manifold, and C be the locally constant sheaf of R-
valued functions on M . Singular cohomology of M with coefficients in R may be identified
with sheaf cohomology of M using the sheaf C. That is, for k ∈ Z≥0,

Hk
sing(M,R) ∼= Hk(M, C)

Proof. Following Remark 10.71, we have a long exact sequence

0→ H0(C•(M)0)→ H0(C•(M))→ H0(C•(M))→ H1(C•(M)0)→ · · ·

By Lemma 10.75, the C•(M)0 terms vanish for k ≥ 1, so we get isomorphisms

Hk(C•(M)) ∼= Hk(C•(M))

Corollary 10.70 tell us that the right term is isomorphic to Hk(M, C), and the left term is
Hk

sing(M,R) by definition.
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As one final statement collecting everything together, we give one last theorem.

Theorem 10.77. Let M be a smooth manifold and C the sheaf of locally constant R-valued
functions on M . Let k ∈ Z≥0. Then

Hk(M, C) ∼= Hk
sing(M,R) ∼= Hk

dR(M)
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