Proposition 0.1 (Exercise 4). Let f be integrable on $[0, b]$. Define

$$g(x) = \int_x^b \frac{f(t)}{t} \, dt$$

for $0 < x \leq b$. Then

$$\int_0^b g(x) \, dx = \int_0^b f(t) \, dt$$

and hence g is integrable on $[0, b]$.

Proof. Note that

$$\chi_{[x, b]}(t)\chi_{[0, b]}(x) = \chi_{[0, b]}(t)\chi_{[0, t]}(x)$$

By applying Fubini and Tonelli theorems repeatedly, we have

$$\int_0^b g(x) \, dx = \int_0^b \int_x^b \frac{f(t)}{t} \, dt \, dx = \int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{[0, b]}(x)\chi_{[x, b]}(t)\frac{f(t)}{t} \, dt \, dx$$

$$= \int_{\mathbb{R}^2} \chi_{[0, b]}(t)\chi_{[0, t]}(x)f(t) \, dm = \int_0^b \int_0^t \frac{f(t)}{t} \, dx \, dt$$

Now $f(t)/t$ does not depend on x, so

$$\int_0^b g(x) \, dx = \int_0^b \frac{f(t)}{t} \left(\int_0^t dx \right) \, dt$$

And noting that

$$\int_0^t dx = t$$

we have

$$\int_0^b g(x) \, dx = \int_0^b \frac{f(t)}{t} \, t \, dt = \int_0^b f(t) \, dt$$

As f is integrable on $[0, b]$, the integral is finite, so g is also integrable on $[0, b]$. \qed
Proposition 0.2 (Exercise 7). Let \(f \) be a measurable function on \(\mathbb{R}^d \) and define
\[
\Gamma = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : f(x) = y\}
\]
Then \(\Gamma \) is measurable and \(m(\Gamma) = 0 \).

Proof. First we show that \(\Gamma \) is measurable. Define \(F : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R} \) by \((x, y) \mapsto f(x) \) and define \(\pi : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R} \) by \((x, y) \mapsto y \). By Corollary 3.7, \(F \) is measurable. It is obvious that \(\pi \) is measurable, as \(\pi^{-1}((a, \infty)) = \mathbb{R}^d \times (a, \infty) \). Thus \(F - \pi \) is measurable. Note that
\[
(F - \pi)^{-1}(\{0\}) = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : f(x) - y = 0\} = \Gamma
\]
so \(\Gamma \) is the preimage of a closed set under a measurable function. Thus by Property 1 of measurable functions (Chapter 1, page 28), \(\Gamma \) is measurable.

Now consider the slice
\[
\Gamma^x = \{y \in \mathbb{R} : f(x) = y\} = \{f(x)\}
\]
Then \(\Gamma^x \) is a finite set, so \(m(\Gamma^x) = 0 \). By Corollary 3.3,
\[
m(\Gamma) = \int_{\mathbb{R}^d} m(\Gamma^x) dx = \int_{\mathbb{R}^d} 0 \, dx = 0
\]

\(\square \)

Proposition 0.3 (Exercise 8, repeated from Homework 5). Let \(f \) be integrable on \(\mathbb{R} \) and define \(F : \mathbb{R} \to \mathbb{R} \) by
\[
F(x) = \int_{-\infty}^{\infty} f(t)dt
\]
Then \(F \) is uniformly continuous.

Proof. (repeated verbatim from Homework 5)
We need to show that for \(\epsilon > 0 \), there exists \(\delta > 0 \) such that
\[
|x - y| < \delta \implies |F(x) - F(y)| < \epsilon
\]
Let \(\epsilon > 0 \). Without loss of generality, assume that \(x < y \). Note that
\[
\int_{-\infty}^{y} f(t)dt = \int_{-\infty}^{x} f(t)dt + \int_{x}^{y} f(t)dt
\]
So then
\[
|F(x) - F(y)| = \left| \int_{-\infty}^{x} f(t)dt - \int_{-\infty}^{y} f(t)dt \right|
= \left| \int_{-\infty}^{x} f(t)dt - \int_{-\infty}^{x} f(t)dt - \int_{x}^{y} f(t)dt \right|
= \left| \int_{x}^{y} f(t)dt \right|
\leq \int_{x}^{y} |f(t)|dt
\]
By proposition 1.12(ii), there exists $\delta > 0$ such that

$$\int_E |f| < \epsilon$$

whenever $m(E) < \delta$. Then if $|x - y| < \delta$, $m((x, y)) < \delta$ so

$$\int_x^y |f(t)|dt < \epsilon$$

so combining our inequalities, we reach the desired inequality.

$$|F(x) - F(y)| \leq \int_x^y |f(t)|dt < \epsilon$$

whenever $|x - y| < \delta$. Thus F is uniformly continuous.

Proposition 0.4 (Exercise 15, repeated from Homework 6). Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^{-1/2} & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Fix an enumeration $\{r_n\}_{n=1}^\infty$ of \mathbb{Q} and let

$$F(x) = \sum_{n=1}^\infty 2^{-n} f(x - r_n)$$

Then F is integrable, and the series defining F converges almost everywhere. Also, F is unbounded on every interval, and any function \tilde{F} that agrees with F almost everywhere is unbounded on any interval.

Proof. (repeated verbatim from Homework 6)

By Corollary 1.10 (Stein),

$$\int F(x)dx = \int \sum_{n=1}^\infty 2^{-n} f(x - r_n) = \sum_{n=1}^\infty \int 2^{-n} f(x - r_n)dx$$

Consider the integral on the far right. Since $f(x - r_n) = 0$ outside of $(r_n, r_n + 1)$, we have

$$\int 2^{-n} f(x - r_n)dx = 2^{-n} \int f(x - r_n)dx = 2^{-n} \int_{r_n}^{r_n+1} (x - r_n)^{-1/2}dx$$

The integral on the far right is Riemann integrable, and we have

$$\int_{r_n}^{r_n+1} (x - r_n)^{-1/2}dx = 2$$
So we have
\[
\int F(x)dx = \sum_{n=1}^{\infty} 2^{-n}(2) = 2
\]
Thus \(F \) is integrable. Then also by Corollary 1.10, since the series of integrals converges, the series defining \(F \) converges almost everywhere.

Now we show that any function \(\tilde{F} \) that agrees with \(F \) almost everywhere is unbounded on any interval. Let \(A = (a, b) \) be an interval in \(\mathbb{R} \). Then there exists a rational \(r_k \) in \(A \). As \(f(x) \) is unbounded near \(x = 0 \), we have \(f(x - r_k) \) unbounded near \(x = r_k \). Since \(\tilde{F} \) differs from \(F \) only on a set of measure zero, there is some irrational \(y \) in \((r_k, r_k + 1)\) such that \(F(y) = \tilde{F}(y) \), and we may choose \(y \) to be as close to \(r_k \) as we like. Thus \(\tilde{F} \) is unbounded on every interval.

Proposition 0.5 (Exercise 18). Let \(f \) be a measurable finite-valued function on \([0, 1] \). Define \(g(x, y) = \chi_{[0,1]}(x)\chi_{[0,1]}(y)|f(x) - f(y)| \) and suppose \(g \) is integrable on \(\mathbb{R}^d \). Then \(f \) is integrable on \([0, 1] \).

Proof. By Fubini’s Theorem, \(g^y \) is integrable for a.e. \(y \), so
\[
\infty > \int_{\mathbb{R}} g^y(x)dx = \int_{\mathbb{R}} \chi_{[0,1]}(x)\chi_{[0,1]}(y)|f(x) - f(y)| = \chi_{[0,1]}(y) \int_0^1 |f(x) - f(y)|dx
\]
By the triangle inequality, \(|f(x)| \leq |f(x) - f(y)| + |f(y)|\) for all \(y \), so
\[
\int_0^1 |f(x)|dx \leq \int_0^1 |f(x) - f(y)| + |f(y)|dx \leq \int_{\mathbb{R}} g^y(x)dx + \int_0^1 |f(y)|dx = \int_{\mathbb{R}} g^y(x)dx + |f(y)| < \infty
\]
because \(f \) is finite-valued so we have \(|f(y)| < \infty \). Thus \(\int_0^1 |f(x)|dx \) is finite so \(f \) is integrable on \([0, 1] \).

Proposition 0.6 (Exercise 19). Let \(f \) be integrable on \(\mathbb{R}^d \). For \(\alpha > 0 \), let
\[
E_\alpha = \{x \in \mathbb{R}^d : |f(x)| > \alpha \}
\]
Then
\[
\int_{\mathbb{R}^d} |f(x)|dx = \int_0^\infty m(E_\alpha)d\alpha
\]
Proof. Note that $m(E_{\alpha}) = \int_{\mathbb{R}^d} \chi_{E_{\alpha}}(x)dx$. Then by Fubini’s Theorem,

$$\int_0^\infty m(E_{\alpha})d\alpha = \int_0^\infty \left(\int_{\mathbb{R}^d} \chi_{E_{\alpha}}dx \right) d\alpha = \int_{\mathbb{R}^d} \left(\int_0^\infty \chi_{E_{\alpha}}(x)d\alpha \right)dx$$

We have

$$\chi_{E_{\alpha}}(x) = \begin{cases}
0 & |f(x)| \geq \alpha \\
1 & |f(x)| < \alpha
\end{cases}$$

thus

$$\int_0^\infty \chi_{E_{\alpha}}(x)d\alpha = \int_0^{\|f(x)\|} 1d\alpha + \int_{\|f(x)\|}^\infty 0d\alpha = |f(x)|$$

so finally we get

$$\int_0^\infty m(E_{\alpha})d\alpha = \int_{\mathbb{R}^d} \int_0^\infty \chi_{E_{\alpha}}(x)d\alpha dx = \int_{\mathbb{R}^d} |f(x)|dx$$

Lemma 0.7 (for Exercise 21a). Let f, g be measurable function on \mathbb{R}^d. Then fg is measurable on \mathbb{R}^d.

Proof. By Theorem 4.2, there exists sequences f_n, g_n of simple functions such that $f_n(x) \rightarrow f(x)$ and $g_n(x) \rightarrow g(x)$ for all $x \in \mathbb{R}^d$. Then by the properties of limits,

$$(f_n g_n)(x) = f_n(x)g_n(x) \rightarrow f(x)g(x) = (fg)(x)$$

for all x. As f_n, g_n are simple functions, their product is a simple function. Thus fg is a pointwise limit of the simple functions $f_n g_n$, so by Property 4 (pg 29), fg is measurable.

Proposition 0.8 (Exercise 21a). Let f, g be measurable functions on \mathbb{R}^d. Then $f(x-y)g(y)$ is measurable on \mathbb{R}^{2d}.

Proof. By Proposition 3.9, $f(x-y)$ is measurable on \mathbb{R}^{2d}. By Corollary 3.7, $g(y) = \tilde{g}(x, y)$ is measurable on \mathbb{R}^{2d}. Then by the above lemma, the product $f(x-y)g(y)$ is measurable.

Proposition 0.9 (Exercise 21b). Let f, g be integrable on \mathbb{R}^d. Then $f(x-y)g(y)$ is integrable on \mathbb{R}^{2d}.

Proof. By Fubini’s Theorem,

$$\int_{\mathbb{R}^{2d}} |f(x-y)g(y)| = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)|dx \, dy = \int_{\mathbb{R}^d} |g(y)| \left(\int_{\mathbb{R}^d} |f(x-y)|dx \right)dy$$

By translation invariance of the integral,

$$\int_{\mathbb{R}^d} |f(x-y)|dx = \int_{\mathbb{R}^d} |f(x)|dx$$
so the integral under consideration is equal to
\[
\int_{\mathbb{R}^d} |g(y)| \left(\int_{\mathbb{R}^d} |f(x)|dx \right) dy = \int_{\mathbb{R}^d} |f(x)|dx \int_{\mathbb{R}^d} |g(y)|dy
\]
As \(f, g\) are integrable, each of the integrals on the RHS are finite, so the integral of
\(f(x - y)g(y)\) is also finite.

Proposition 0.10 (Exercise 21c). Let \(f, g\) be integrable functions on \(\mathbb{R}^d\). Then the convolution of \(f\) and \(g\), given by
\[
(f \ast g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y)dy
\]
is well defined for a.e. \(x\). That is, \(f(x - y)g(y)\) is integrable on \(\mathbb{R}^d\) for a.e. \(x\).

Proof. Let \(h(x, y) = f(x - y)g(y)\). By part (b), \(h\) is integrable on \(\mathbb{R}^d\). Then by part (i) of Fubini’s Theorem (Theorem 3.1), the slice
\[
h_x(y) = f(x - y)g(y)
\]
is integrable with respect to \(y\) for a.e. \(x\).

Proposition 0.11 (Exercise 21d). Let \(f, g\) be integrable on \(\mathbb{R}^d\). Then \(f \ast g\) is integrable on \(\mathbb{R}^d\) and
\[
\|f \ast g\| \leq \|f\|\|g\|
\]
(all norms are \(L^1(\mathbb{R}^d)\).) Equality holds if \(f, g\) are non-negative.

Proof. Let \(h(x, y) = f(x - y)g(y)\). As \(h\) is integralbe on \(\mathbb{R}^{2d}\) by part (b), by part (ii) of Fubini’s Theorem (Theorem 3.1),
\[
\int_{\mathbb{R}^d} h^y(x)dy = \int_{\mathbb{R}^d} f(x - y)g(y)dy = (f \ast g)(x)
\]
is integrable for a.e. \(x\). Then we compute
\[
\|f \ast g\| = \int_{\mathbb{R}^d} |(f \ast g)(x)|dx = \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}^d} f(x - y)g(y)dy \right| dx
\]
\[
\leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x - y)g(y)|dy \ dx = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x - y)||g(y)| \ dx \ dy
\]
\[
= \int_{\mathbb{R}^d} |g(y)| \left(\int_{\mathbb{R}^d} |f(x - y)| \ dx \right) dy = \int_{\mathbb{R}^d} |g(y)| \left(\int_{\mathbb{R}^d} |f(x)| \ dx \right) dy
\]
\[
= \int_{\mathbb{R}^d} |g(y)|dy \int_{\mathbb{R}^d} |f(x)|dx = \|f\|\|g\|
\]
Thus \(\|f \ast g\| \leq \|f\|\|g\|\). If \(f, g\) are non-negative, then
\[
\left| \int_{\mathbb{R}^d} f(x - y)g(y)dy \right| = \int_{\mathbb{R}^d} |f(x - y)g(y)|dy
\]
so the one step that introduces an inequality becomes an equality. Thus if \(f, g\) are non-negative, we have equality.
Proposition 0.12 (Exercise 21e). Let \(f, g \) be integrable on \(\mathbb{R}^d \). Then for \(\xi \in \mathbb{R}^d \),

\[
\hat{f} \ast \hat{g}(\xi) = \hat{f}(\xi) \hat{g}(\xi)
\]

Proof. The proof is an uninspiring sequence of equalities, involving several applications of Fubini’s Theorem and the translation invariance of the Lebesgue integral.

\[
(\hat{f} \ast \hat{g})(\xi) = \int_{\mathbb{R}^d} (f \ast g)(x)e^{-2\pi i x \cdot \xi} dx = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(x-y)g(y)dy \right) e^{-2\pi i x \cdot \xi} dx
\]

\[
= \int_{\mathbb{R}^d} f(x-y)g(y)e^{-2\pi i (x+y) \cdot \xi} dy = \int_{\mathbb{R}^d} g(y) \left(\int_{\mathbb{R}^d} f(x-y)e^{-2\pi i y \cdot \xi} dx \right) dy
\]

\[
= \int_{\mathbb{R}^d} g(y)e^{-2\pi i y \cdot \xi} \hat{f}(\xi) dy = \hat{f}(\xi) \int_{\mathbb{R}^d} g(y)e^{-2\pi i y \cdot \xi} dy = \hat{f}(\xi) \hat{g}(\xi)
\]

Proposition 0.13 (Exercise 22). Let \(f \in L^1(\mathbb{R}^d) \) and define

\[
\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi i x \cdot \xi} dx
\]

Then

\[
\lim_{|\xi| \to \infty} \hat{f}(\xi) = 0
\]

Proof. First let, \(\xi' = \frac{\xi}{2|\xi|^2} \). First, note that

\[
\xi' \cdot \xi = \frac{\xi \cdot \xi}{2|\xi|^2} = \frac{1}{2}
\]

so therefore

\[
e^{-2\pi i \xi' \cdot \xi} = e^{-\pi i} = -1
\]

Then we compute

\[
\frac{1}{2} \int_{\mathbb{R}^d} [f(x) - f(x - \xi')]e^{-2\pi i x \cdot \xi} dx = \frac{1}{2} \int_{\mathbb{R}^d} f(x)e^{-2\pi i x \cdot \xi} dx - \frac{1}{2} \int_{\mathbb{R}^d} f(x - \xi')e^{-2\pi i x \cdot \xi} dx
\]

\[
= \frac{1}{2} \hat{f}(\xi) - \frac{1}{2} \int_{\mathbb{R}^d} f(x)e^{-2\pi i (x + \xi') \cdot \xi} dx
\]

\[
= \frac{1}{2} \hat{f}(\xi) - \frac{1}{2} \int_{\mathbb{R}^d} f(x)e^{-2\pi i x \cdot \xi} e^{-2\pi i \xi' \cdot \xi} dx
\]

\[
= \frac{1}{2} \hat{f}(\xi) + \frac{1}{2} \hat{f}(\xi) = \hat{f}(\xi)
\]
Now we have

\[
2 \hat{f}(\xi) = \int_{\mathbb{R}^d} [f(x) - f(x - \xi')]e^{-2\pi i x \cdot \xi} dx \leq \int_{\mathbb{R}^d} \left| f(x) - f(x - \xi') \right| e^{-2\pi i x \cdot \xi} dx
\]

\[
= \int_{\mathbb{R}^d} \left| f(x) - f(x - \xi') \right| e^{-2\pi i x \cdot \xi} dx = \int_{\mathbb{R}^d} \left| f(x) - f(x - \xi') \right| dx
\]

\[
= \| f - f_{\xi'} \|_{L^1(\mathbb{R}^d)}
\]

As \(\xi' = \frac{\xi}{2|\xi|^2} \to 0 \), we have \(|\xi| \to \infty\), so by Proposition 2.5,

\[
\lim_{|\xi| \to \infty} \hat{f}(\xi) = \frac{1}{2} \lim_{|\xi| \to \infty} 2 \hat{f}(\xi) = \frac{1}{2} \lim_{|\xi| \to \infty} \| f - f_{\xi'} \| = \frac{1}{2}(0) = 0
\]

□