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Proposition 0.1 (Exercise 13a). Let A ⊂ Rd be closed and B ⊂ Rd be open. Then A is a
Gδ set and B is an Fσ set.

Proof. Let An = {x : d(x,A) < 1/n}. We know that An is open because we can write is as
a union of open balls,

An =
⋃
a∈A

B

(
a,

1

n

)
We pause to justify this equality. If x ∈ An, then d(x, a) < 1/n for some a ∈ A, so
x ∈ B(a, 1/n). If x ∈

⋃
aB(a, 1/n), then d(x, a) < 1/n for all a ∈ A, so d(x,A) < 1/n.

Now we claim that A = ∩n∈NAn. Let a ∈ A. Then B(a, 1/n) ⊂ An for all n, so
a ∈ ∩nB(a, 1/n) ⊂ ∩nAn. Thus A ⊂ ∩nAn.

Now suppose that x ∈ ∩nAn. Then d(x,A) < 1/n for all n, so d(x,A) = 0. Then since
A is closed, and {x} is compact, by the contrapositive of Lemma 3.1, {x} and A are not
disjoint. But the only point at which they might intersect is x, hence x ∈ A. Putting this
together, we have established that A can be written as a countable intersection of open sets;
hence A is a Gδ set.

Now let B be open. Then let A = Rd \ B be the complement. As A is closed, A is a
countable intersection of open sets (A = ∩nAn), as shown above. Then let Bn be the closed
set Rd \ An, and we have

B = Rd \ A = Rd \
⋂
n

An =
⋃
n

(Rd \ An) =
⋃
n

Bn

Thus we have written B as a countable union of closed sets, so B is an Fσ set.

Proposition 0.2 (Exercise 13b). There exists a set, namely Q, which is Fσ but not Gδ.

Proof. Consider the set Q of rationals. We can enumerate the rationals as {qi}∞i=1. Then we
can write Q as the countable union of singleton sets:

Q =
∞⋃
i=1

{qi}
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Singleton sets are closed, so Q is an Fσ set.
We claim that Q is not a Gδ set. Suppose to the contrary that Q can be written as

a countable intersection of open sets, Q = ∩nOn. Then On is an open set containing all
rationals, and we know that because On is an open set in R, it can be written as a disjoint
union of open intervals,

On = (a1, b1) ∪ (a2, b2) . . .

where a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . .. If for any i we have bi 6= ai+1, then there is a rational between
bi and ai+1, but then On would not contain Q. Hence each bi = ai+1. Clearly, we cannot
have bi ∈ Q, since Q ⊂ On, so O is a union of disjoint open intervals covering all of R except
for countably many irrationals. Then ∩nOn countains all but countably many irrationals.
Hence ∩nOn is not equal to Q, which contradicts our starting assumption. Hence Q is not
a Gδ set.

Corollary 0.3 (to Exercise 13b). The set R \Q is not Gδ.

Proof. If R \Q were Gδ, then its complement, Q would be Fσ, but we just showed that Q is
not Fσ.

Proposition 0.4 (Exercise 13c). There exists a set which is a Borel set but not Gδ or Fσ.

Proof. Let B = (−∞, 0) ∩Q and let C = (0,∞) \Q, and set A = B ∪ C. We claim that A
is neither Gδ nor Fσ. Suppose that A is Fσ, that is, A can be written as the countable union
of closed sets, A = ∪nAn. For each An, set

A+
n = An ∩ [0,∞)

A−n = An ∩ (−∞, 0]

Then we can rewrite A as

A =
⋃
n

A+
n ∪

⋃
n

A−n

In particular, since B,C are disjoint, B =
⋃
nA
−
n and C =

⋃
nA

+
n . But then C is an Fσ set,

but C cannot be a Fσ set for the same reasons that R \Q is not Fσ. Thus A is not Fσ.
Now suppose that A is Gδ. Then R \A is Fσ, so ((−∞, 0) \Q)∪ ((0,∞)∩Q)∪{0} is Fσ.

We can then do the same construction as above, supposing R \A to be a countable union of
An, and defining A+

n , A
−
n . Then again by the disjoint-ness, we would have to conclude that

(0,∞) ∩ Q is Fσ, but once again, this set is not Fσ for the same reasons that R \ Q is not
Fσ. Hence A is not Gδ.

We have shown that A is neither Fσ nor Gδ. But we claim that A is a Borel set. As
shown in part (b), Q is Fσ, so likewise B is Fσ. For analogous reasons, R \ C is Fσ, so C is
Gδ. Hence A is a union of an Fσ set and a Gδ set. But both the Fσ and Gδ sets are Borel
sets, so their union is contained in the Borel sets (as the Borel sets form a σ-algebra). Hence
A is a Borel set.
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Lemma 0.5 (for Exercise 14a). Let X be a topological space with subsets A1, . . . An. Then

n⋃
i=1

Ai =
n⋃
i=1

Ai

that is, the closure of a finite union is equal to the union of the closures.

Proof. Suppose x ∈
⋃n
i=1Ai. Then x ∈

⋃
iAi or x is a limit point of this union. If x is in this

union, then x ∈ Ai for some i, so then x ∈ Ai and we’re done. So suppose x is a limit point
of this union. Then there exists a sequence xn converging to x where each xn ∈ Ai for some
i. Since there are only finitely many Ai, there must be some Ai containing infinitely many
xn. Choose the subsequence of xn lying within Ai. Then this subsequence also converges to
x, so x ∈ Ai. Hence

⋃n
i=1Ai ⊂

⋃n
i=1Ai.

Now suppose x ∈
⋃
iAi. Then x ∈ Ai for some i or x is a limit point of some Ai. If

x ∈ Ai, then x is in the union over all Ai and hence in the closure of that union. If x is a limit
point of Ai, then x is also a limit point of the union over all Ai. Hence

⋃n
i=1Ai ⊃

⋃n
i=1Ai.

We have shown two-way containment of these sets, thus they are equal.

Proposition 0.6 (Exercise 14a). The outer Jordan content J∗(E) of a set E ⊂ R is defined
by

J∗(E) = inf

{
N∑
j=1

|Ij|

}

where Ij are intervals such that E ⊂
⋃N
j=1 Ij. We claim that J∗(E) = J∗(E) for E ⊂ R.

Proof. Every covering of E by intervals {Ij} is a covering of E, so J∗(E) is an infimum over
a subset of the set over which J∗(E) is an infimum, hence J∗(E) ≤ J∗(E).

Let {Ij} be a covering of E by intervals. Then E is covered by the intervals {Ij},
since the closure of a finite union is equal to the union of the closures (see above lemma).
But |Ij| = |Ij|, so every covering of E extends to a covering of E with the same sum, so
J∗(E) ≤ J∗(E).

Thus we have inequalities going both ways, so the quantities J∗(E), J∗(E) are equal.

Proposition 0.7 (Exercise 14b). There exists a countable subset E ⊂ [0, 1] such that
J∗(E) = 1 and m∗(E) = 0. In particular, E = Q ∩ [0, 1].

Proof. Let E = Q ∩ [0, 1]. As we know, m∗(Q) = 0 so m∗(E) = 0. Suppose that {Ij} is a
covering of E by finitely many intervals,

E =
n⋃
i=1

(ai, bi)

(The intervals might not be open, they might be of the form [ai, bi) or something, but this
doesn’t affect the argument.) This complement of this union must not contain any intervals
contained in [0, 1], since if there is such an interval, then that interval contains a rational,
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contradicting the fact that E contains all rationals in [0, 1]. Thus the intervals covering E
must contain something of the form

[0, a1) ∪ (a1, a2) ∪ (a2, a3) ∪ . . . ∪ (an, 1]

where a1, . . . an are irrational. But the sum over the lengths of these intervals is one, so for
any covering of E by intervals, the sum over the lengths of those intervals is at least one.
Hence J∗(E) ≥ 1. Of course, the single interval [0, 1] is a covering for E, so J∗(E) ≤ 1, which
with the previous inequality yields J∗(E) = 1.

Proposition 0.8 (Exercise 15). Define, for E ⊂ Rd,

mR∗ (E) = inf

{
∞∑
j=1

|Rj| : E ⊂
∞⋃
j=1

Rj

}
where Rj are closed rectangles. Then for m∗(E) = mR∗ (E) for E ⊂ Rd.

Proof. Let E ⊂ Rd. Since every covering of E by closed cubes is also a covering by closed
rectangles, it is immediate that mR∗ (E) ≤ m∗(E) for all E, since the former is an infimum
over a subset of the set over which the latter is an infimum. We just need to show that the
opposite inequality also holds.

If mR∗ (E) =∞, then m∗(E) ≤ mR∗ (E) holds trivially, so suppose that mR∗ (E) <∞. Let
ε > 0. Then there exists a covering {Rj}∞j=1 of E by closed rectangles such that

∞∑
j=1

|Rj| < mR∗ (E) + ε

For each rectangle Rj, m∗(Rj) = |Rj|, so by definition of m∗, there exists a covering {Qij}∞i=1

of Rj by closed cubes such that

∞∑
i=1

|Qij| < |Rj|+ ε/2j

Then {Qij} is a countable covering of E by closed cubes, so

m∗(E) ≤
∞∑
j=1

∞∑
i=1

|Qij| ≤
∞∑
j=1

(
|Rj|+ ε/2j

)
= mR∗ (E) + ε+

∞∑
j=1

ε/2j = mR∗ (E) + 2ε

Since ε > 0 is arbitrary, we get m∗(E) ≤ mR∗ (E), and hence we have equality.

Proposition 0.9 (Exercise 16, Borel-Cantelli Lemma). Let {Ek}∞k=1 be a countable family
of measurable subsets of Rd such that

∞∑
k=1

m(Ek) <∞

Define

E = {x ∈ Rd : x ∈ Ek for infinitely many k} = lim sup
k→∞

(Ek)

Then E is measurable, and m(E) = 0.
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Proof. First, we claim that

E =
∞⋂
n=1

(⋃
k≥n

Ek

)

Suppose that x ∈ E, that is, x ∈ Ek for infinitely many k. Then for any n ∈ N, x ∈
⋃
k≥nEk,

hence x is in the intersection over all such sets. For the other inclusion, suppose that
x ∈

⋂∞
n=1

⋃
k≥nEk. If x were in only finitely many Ek, then we could take the max over

those k and we would have x 6∈ ∪k≥N where N is that maximum. But by assumption, x is
in every such union, so it must be that x is in infinitely many Ek. Hence x ∈ E. Thus we
have two way containment, and hence equality of sets.

Each Ek is measurable by hypothesis, so
⋃
k≥nEk is measurable, and hence the countable

intersection of such sets is also measurable. Thus E is measurable. Now we claim that
m(E) = 0.

Let ε > 0. Since we have that the series
∑∞

k=1m(Ek) converges and is finite, we can
always go out far enough that the tail of the series is less than ε. Formally, there exists
N ∈ N such that

∞∑
k=N

m(Ek) < ε

Using our established expression for E, we have the inclusion

E =
∞⋂
n=1

(⋃
k≥n

Ek

)
⊂
⋃
k≥N

Ek

And then by monotonicity of measure,

m(E) ≤ m

(⋃
k≥N

Ek

)
≤

∞∑
k=N

m(Ek) < ε

Thus m(E) < ε for every ε > 0, hence m(E) = 0.

Proposition 0.10 (Exercise 17). Let {fn} be a sequence of measurable functions on [0, 1]
with |fn(x)| < ∞ for a.e. x. Then there exists a sequence cn of positive real numbers such
that

fn(x)

cn
→ 0 a.e. x

Proof. For any sequence cn of positive reals, let En be the sequence of sets given by

En =

{
x :

∣∣∣∣fn(x)

cn

∣∣∣∣ > 1

n

}
We claim that for every n there exists cn ∈ R such that

m∗(En) < 2−n
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Suppose no such cn exists. Then for every cn ∈ R+, we have

m∗

({
x : |fn(x)| > cn

n

})
≥ 2−n

In particular, for cn = n, 2n, 3n, . . . we have

{x : |fn(x)| > 1} ⊃ {x : |fn(x)| > 2} ⊃ {x : |fn(x)| > 3} ⊃ . . .

2−n ≤ m({x : |fn(x)| > 1}) ≤ m({x : |fn(x)| > 2}) ≤ m({x : |fn(x)| > 3}) ≤ . . .

Then if we take the intersection over all such sets, the measure is still at least 2−n, that is,

2−n ≤ m

(
∞⋂
k=1

{x : |fn(x)| > k}

)

But this intersection is {x : |f(x)| = ∞}, which by hypothesis has measure zero. Hence
there must be a cn ∈ R such that

m(En) < 2−n

(Specifically, we just showed that we can take cn to be a positive integer multiple of n.) Now
we consider the set

E = {x : x ∈ Ek for infinitely many k}

Suppose x 6∈ E. Then x is in at most finitely many Ek, that is,∣∣∣∣fk(x)

ck

∣∣∣∣ ≤ 1

k

for infinitely many k. Hence for x ∈ [0, 1] \ E, we have

lim
n→∞

fn(x)

cn
= 0

By the Borel-Cantelli lemma, since we showed that
∑∞

n=1m(En) ≤
∑

n 2−n < 1 < ∞, we
have m(E) = 0. Hence

lim
n→∞

fn(x)

cn
= 0 a.e. x

Proposition 0.11 (Exercise 18). Every measurable function is the limit a.e. of a sequence
of continuous functions.

Proof. First we prove this in the case that f is finite-valued. Let f : A→ R be a measurable
function (where A ⊂ Rd is measurable). By Theorem 4.3, there exists a sequence of step
functions ψk such that limk ψk(x) = f(x) for almost every x, that is, there exists B ⊂ A
such that ψk(x)→ f(x) on B and m(A \B) = 0.
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Let En = B(0, n) ∩ A for n ∈ N. Then ψk is measurable and finite-valued on En so by
Lusin’s theorem there exists a closed set Fn such that Fn ⊂ En and m(En \ Fn) ≤ 2−n, and
ψk|Fn is continuous. By the Tietze extension theorem, there exists a continuous function
fn : A→ R such that fn(a) = f(a) for a ∈ Fn. So we have fn(x)→ f(x) for x ∈ Fn.

Suppose that fn does not converge to f almost everywhere, in particular, suppose that
fn(x) does not converge to f(x) for some x ∈ A. Then x ∈ A \Fn for infinitely many n. We
know that

A \ Fn ⊂
(
(En \ Fn) ∪ (Rd \B(0, n))

)
and since x ∈ Rd \B(0, n) for only finitely many n, we have x ∈ En \ Fn for infinitely many
n. Since

∑∞
n=1m(En \ Fn) ≤ 1 < ∞, by the Borel-Cantelli lemma (Exercise 16 above), we

have

m ({x : x ∈ Ek \ Fk for infinitely many k}) = 0

But

{x : x ∈ Ek \ Fk for infinitely many k} =
⋃
n

{x ∈ A \ Fn}

= {x ∈ A : fn(x) does not converge to f(x)}

hence the set of non-convergence of fn to f has measure zero, so fn → f a.e.
Now suppose that f : A → [−∞,∞] is a measurable function. Define a function gn :

A→ [−∞,∞] by

gn(x) =


f(x) f(x) <∞
n f(x) =∞
−n f(x) = −∞

The sequence of functions gn converges pointwise to f on A. Furthermore, each gn is mea-
surable and finite-valued, so by the above there exist continuous functions hnk such that
limk hnk(x) = gn(x) a.e. We claim that

lim
n→∞

hnn(x) = f(x) a.e.

for all x ∈ A. Let ε > 0. If f(x) is finite, then there exists N such that for all n ∈ N,

k ≥ N =⇒ |gn(x)− hnk(x)| = |f(x)− hnk(x)| < ε (this holds for x a.e.)

Since this holds for all n ∈ N, it holds in particular for n ≥ N . Thus

k ≥ N =⇒ |f(x)− hkk(x)| < ε (a.e.)

and hence hnn(x) → f(x) a.e. for f(x) finite. Now suppose that f(x) = ∞ and let M > 0.
Then there exist N1, N2 such that

n ≥ N1 =⇒ gn(x) > M

k ≥ N2 =⇒ |gn(x)− hnk(x)| < 1 (a.e.)
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Then let N = max(N1, N2). So then

n ≥ N =⇒ hnn(x) > M − 1 (a.e.)

and hence hnn(x) → ∞ = f(x) a.e.. A symmetric argument shows that hnn(x) → −∞
a.e. if f(x) = −∞. Thus the sequence of continuous functions hnn converges pointwise
to f for almost every x ∈ A, so every measurable function is the limit a.e. of continuous
functions.

Proposition 0.12 (Exercise 19a). Let A,B ⊂ Rd such that either A or B is open. Then
A+B is open.

Proof. Let x ∈ A + B. Then there exist a ∈ A, b ∈ B such that a + b = x. Since A is
open, there exists ε > 0 such that B(a, ε) ⊂ A. Then b + B(a, ε) ⊂ A + B. Note that
b + B(a, ε) = B(b + a, ε), since translating the center of a ball is the same as translating
the ball by the same amount. Hence B(a + b, ε) = B(x, ε) ⊂ A + B, so A + B is open.
By interchanging the labels for A and B, we can see that if B is open the A + B must be
open.

Lemma 0.13 (for Exercise 19b). If A,B ⊂ Rd are compact, then A+B is compact.

Proof. Let xn be a sequence in A + B. Then for each n, there exist an ∈ A, bn ∈ B such
that xn = an + bn. Since A,B are compact, they are sequentially compact, thus an, bn have
convergent subsequences ank

, bnk
. Then xnk

is a convergent subsequence of xn. Hence A+B
is sequentially compact, so it is compact.

Lemma 0.14 (for Exercise 19b). Every closed set in Rd can be written as a countable union
of compact sets.

Proof. Let A ⊂ Rd be closed. Then A∩B(0, n) is compact, and A =
⋃∞
n=1(A∩B(0, n).

Proposition 0.15 (Exercise 19b). Let A,B ⊂ Rd be closed. Then A+B is measurable.

Proof. We will show that A + B is Fσ. Each A,B is closed, so they can be written as a
countable union of compact sets, A =

⋃
iAi, B =

⋃
j Bj. Then

A+B =
⋃
i,j

(Ai +Bj)

By a previous lemma, since Ai, Bj are compact, Ai +Bj is compact. Hence we have written
A+B as a countable union of closed sets, so A+B is Fσ. Thus A+B is measurable.

Proposition 0.16 (Exercise 19c). There exist closed sets A,B such that A+B is not closed.

Proof. Let

A = {2 + 1/2, 3 + 1/3, 4 + 1/4, . . .} = {n+ 1/n : n = 2, 3, . . .}
B = {−1,−2,−3,−4, . . .} = {−n : n ∈ N}
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Then A and B are both closed. But A+ B is not closed, since it does not contain all of its
limit points. In particular, the sequence(

1

2
,
1

3
,
1

4
, . . .

)
is in A+B. However, its limit (zero) is not in A+B, since there are no positive integers in
A.

Proposition 0.17 (Exercise 20a). There exist closed sets A,B ⊂ R such that m(A) =
m(B) = 0 and m(A+B) > 0.

Proof. Let A = C be the middle thirds Cantor set, and let B = (1/2)C (the dilation of the
Cantor set by 1/2). Let x ∈ [0, 1]. Then x has a ternary representation,

x =
∞∑
k=1

ak3
−k

where each ak ∈ {0, 1, 2}. We form a partition of K0, K1, K2 of N where Ki = {k ∈ N : ak =
i}. Since the infinite sum for x converges and the terms are positive, we can rearrange terms
to rewrite it as

∞∑
k=1

ak3
−k =

∑
k∈K0

(0)3−k +
∑
k∈K1

(1)3−k +
∑
k∈K2

(2)3−k =
∑
k∈K1

3−k +
∑
k∈K2

(2)3−k

Then notice that
∑

k∈K1
(2)3−k ∈ C by Exercise 4a, and

∑
k∈K2

3−k ∈ (1/2)C (since multi-
plying it by 2 puts it in C for the same reason). Hence x is a sum of something in A and B,
so x ∈ A+ B. Thus [0, 1] ⊂ A+ B. Then by monotonicity, m(A+ B) ≥ 1. However, as we
know, m(A) = m(B) = 0.

Proposition 0.18 (Exercise 20b). There exist closed sets A,B ⊂ R2 such that m(A) =
m(B) = 0 and m(A+B) > 0.

Proof. Let A = [0, 1] × {0} and B = {0} × [0, 1]. Then A + B = [0, 1] × [0, 1] since any
(x, y) ∈ [0, 1] × [0, 1] is equal to (x, 0) + (0, y). Hence m(A + B) = 1, but m(A) = m(B) =
0.
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