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Proposition 0.1 (Exercise 13a). Let A C R be closed and B C R? be open. Then A is a
G5 set and B is an F, set.

Proof. Let A, = {z : d(x,A) < 1/n}. We know that A, is open because we can write is as
a union of open balls,

An:UB(a,%)

a€A

We pause to justify this equality. If z € A,, then d(z,a) < 1/n for some a € A, so
x € B(a,1/n). If x € J, B(a,1/n), then d(z,a) < 1/n for all a € A, so d(z, A) < 1/n.

Now we claim that A = NyenA,. Let @ € A. Then B(a,1/n) C A, for all n, so
a € N,Ba,1/n) C N, A,. Thus A C N, A,.

Now suppose that x € N, A,. Then d(z, A) < 1/n for all n, so d(z, A) = 0. Then since
A is closed, and {x} is compact, by the contrapositive of Lemma 3.1, {z} and A are not
disjoint. But the only point at which they might intersect is x, hence x € A. Putting this
together, we have established that A can be written as a countable intersection of open sets;
hence A is a G5 set.

Now let B be open. Then let A = R?\ B be the complement. As A is closed, A is a
countable intersection of open sets (A = N, A,), as shown above. Then let B,, be the closed
set RY\ A, and we have

B=R'"\A=R"\[A4, = JR"\ 4,) UB

Thus we have written B as a countable union of closed sets, so B is an F, set. O
Proposition 0.2 (Exercise 13b). There ezists a set, namely Q, which is F, but not Gs.

Proof. Consider the set Q of rationals. We can enumerate the rationals as {¢;}3°,. Then we
can write Q as the countable union of singleton sets:

Q= U{Qz}



Singleton sets are closed, so Q is an F}, set.

We claim that Q is not a Gy set. Suppose to the contrary that Q can be written as
a countable intersection of open sets, Q = N,,0,,. Then O, is an open set containing all
rationals, and we know that because O,, is an open set in R, it can be written as a disjoint
union of open intervals,

On = (al, bl) U (a2, bg) Ce

where a1 < b; < ay < by < .... If for any ¢ we have b; # a;.1, then there is a rational between
b; and a;,1, but then O, would not contain Q. Hence each b; = a;;. Clearly, we cannot
have b; € Q, since Q C O,,, so O is a union of disjoint open intervals covering all of R except
for countably many irrationals. Then N, O, countains all but countably many irrationals.
Hence N, 0, is not equal to @, which contradicts our starting assumption. Hence Q is not

a G set. O
Corollary 0.3 (to Exercise 13b). The set R\ Q is not Gy.

Proof. 1t R\ Q were Gy, then its complement, Q would be F,, but we just showed that Q is
not F. ]

Proposition 0.4 (Exercise 13c). There ezists a set which is a Borel set but not Gs or F,.

Proof. Let B = (—00,0) N Q and let C' = (0,00) \ Q, and set A = BUC. We claim that A
is neither G5 nor F,. Suppose that A is F,, that is, A can be written as the countable union
of closed sets, A = U, A,. For each A, set

At = A,N[0,00)
A=A, N (00,0

n

Then we can rewrite A as
A=JATul 4,

In particular, since B, C are disjoint, B = |J,, A;, and C' =, A;}". But then C is an F, set,
but C' cannot be a F, set for the same reasons that R\ Q is not F,. Thus A is not F.

Now suppose that A is G5. Then R\ A is F,,, so ((—00,0)\ Q) U ((0,00) NQ)U{0} is F,.
We can then do the same construction as above, supposing R\ A to be a countable union of
A, and defining A7 A, Then again by the disjoint-ness, we would have to conclude that
(0,00) NQ is F,, but once again, this set is not F, for the same reasons that R \ Q is not
F,. Hence A is not Gs.

We have shown that A is neither F, nor GGs. But we claim that A is a Borel set. As
shown in part (b), Q is F,, so likewise B is F,. For analogous reasons, R\ C'is F,, so C'is
Gs. Hence A is a union of an F, set and a Gs set. But both the I, and G5 sets are Borel
sets, so their union is contained in the Borel sets (as the Borel sets form a o-algebra). Hence
A is a Borel set. m



Lemma 0.5 (for Exercise 14a). Let X be a topological space with subsets Ay, ... A,. Then

Ja=Ua

i=1 =1

~

that is, the closure of a finite union is equal to the union of the closures.

Proof. Suppose x € |J_; A;. Then z € |J; A; or z is a limit point of this union. If z is in this
union, then z € A; for some i, so then € A; and we're done. So suppose z is a limit point
of this union. Then there exists a sequence x,, converging to = where each x,, € A; for some
1. Since there are only finitely many A;, there must be some A; containing infinitely many
Z,. Choose the subsequence of x,, lying within A;. Then this subsequence also converges to
z,s0 z € A;. Hence U, A4 c U, A;.

Now suppose z € |J, A;. Then x € A; for some i or z is a limit point of some A;. If
x € A;, then z is in the union over all A; and hence in the closure of that union. If x is a limit
point of A;, then z is also a limit point of the union over all A;. Hence U?Zl A; D U?:l A

We have shown two-way containment of these sets, thus they are equal. O]

Proposition 0.6 (Exercise 14a). The outer Jordan content J.(E) of a set E C R is defined
by

J.(E) = inf {Z ym}

where I; are intervals such that E C Ujvzl I;. We claim that J,(E) = J.(E) for E C R.

Proof. Every covering of E by intervals {I;} is a covering of E, so J,(E) is an infimum over
a subset of the set over which J,(F) is an infimum, hence J,(E) < J.(E).

Let {I;} be a covering of E by intervals. Then E is covered by the intervals {I;},
since the closure of a finite union is equal to the union of the closures (see above lemma).

But |I;| = |I;], so every covering of E extends to a covering of E with the same sum, so

J.(E) < J.(E). B
Thus we have inequalities going both ways, so the quantities J,(E), J.(F) are equal. [

Proposition 0.7 (Exercise 14b). There exists a countable subset E C [0,1] such that
J(E) =1 and m.(F) = 0. In particular, E = QnN 0, 1].

Proof. Let E = QN [0,1]. As we know, m,(Q) = 0 so m,(E) = 0. Suppose that {/,} is a
covering of E by finitely many intervals,

n

E = U(ai, bz>

i=1

(The intervals might not be open, they might be of the form [a;, b;) or something, but this
doesn’t affect the argument.) This complement of this union must not contain any intervals
contained in [0, 1], since if there is such an interval, then that interval contains a rational,
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contradicting the fact that E contains all rationals in [0,1]. Thus the intervals covering E
must contain something of the form

[0,a1) U (ay,az) U (ag,a3) U...U (a,1]

where aq,...a, are irrational. But the sum over the lengths of these intervals is one, so for
any covering of E by intervals, the sum over the lengths of those intervals is at least one.
Hence J.(F) > 1. Of course, the single interval [0, 1] is a covering for E, so J.(E) < 1, which
with the previous inequality yields J,(E) = 1. ]

Proposition 0.8 (Exercise 15). Define, for E C R¢,

mPX(E) = inf {Z |R;| : E C U Rj}
s j=1

where R; are closed rectangles. Then for m.(E) = mF(E) for E C RY.

Proof. Let E C R%. Since every covering of F by closed cubes is also a covering by closed
rectangles, it is immediate that m®(E) < m.(E) for all E, since the former is an infimum
over a subset of the set over which the latter is an infimum. We just need to show that the
opposite inequality also holds.

If m®(E) = oo, then m.(E) < m®(E) holds trivially, so suppose that m*(E) < co. Let
€ > 0. Then there exists a covering { R;}52, of E by closed rectangles such that

o0

D IRl <m(E) +e

j=1

For each rectangle R;, m.(R;) = |R;|, so by definition of m., there exists a covering {Q;;}
of R; by closed cubes such that

00
=1

[e.9]

> 1Qul < IRl +¢/2

i=1
Then {Q;;} is a countable covering of E by closed cubes, so
m(E) <Y 3 1Qul <Y (IRl +¢/2) =mE(E) + e+ Y /2 =mF(E) + 2
j=1 i=1 j=1 j=1
Since € > 0 is arbitrary, we get m.(E) < m*(F), and hence we have equality. O

Proposition 0.9 (Exercise 16, Borel-Cantelli Lemma). Let {E}32, be a countable family
of measurable subsets of R such that

Z m(Ey) < oo

Define
E = {z € R?: x € E, for infinitely many k} = limsup(E})

k—o00

Then E is measurable, and m(E) = 0.



Proof. First, we claim that

o0
e-N (U=

n=1 \k>n
Suppose that = € E, that is, € E, for infinitely many k. Then for any n € N, z € |, ~,, Ex,
hence z is in the intersection over all such sets. For the other inclusion, suppose that
r € Ups, Ex. If @ were in only finitely many Ej, then we could take the max over
those k and we would have r ¢ Up>x where N is that maximum. But by assumption, z is
in every such union, so it must be that x is in infinitely many FEj. Hence x € E. Thus we
have two way containment, and hence equality of sets.

Each Ej, is measurable by hypothesis, so | J,,, £ is measurable, and hence the countable
intersection of such sets is also measurable. Thus E is measurable. Now we claim that
m(E) = 0.

Let € > 0. Since we have that the series Y ;- m(E})) converges and is finite, we can
always go out far enough that the tail of the series is less than e. Formally, there exists
N € N such that

[e.9]

Z m(Eg) < €

k=N
Using our established expression for F, we have the inclusion
Ezﬂ (UEk> C UEk;
n=1 \k>n k>N

And then by monotonicity of measure,

m(E) <m < Ek) < i m(Ey) < e

k=N
Thus m(E) < € for every € > 0, hence m(FE) = 0. O

Proposition 0.10 (Exercise 17). Let {f,} be a sequence of measurable functions on [0, 1]
with | f(x)] < oo for a.e. x. Then there exists a sequence ¢, of positive real numbers such
that

M —0Qae x
Cn

Proof. For any sequence ¢, of positive reals, let F,, be the sequence of sets given by
nlx 1
En:{x: Jul@) >—}
n

Cn
We claim that for every n there exists ¢, € R such that

ma(E,) <27"



Suppose no such ¢, exists. Then for every ¢, € Rt, we have

m. ({o: 1fal@)] > 2}) 22
n
In particular, for ¢, = n,2n,3n, ... we have

{z: /(@) > 13 D {z: [fule)] > 2} D {z: | fulz) >3} D ...
27" <m({z: | fu(@)] > 1}) <m({e = [fu(@)] > 2}) <m({z: [ful2)] > 3}) < ...

Then if we take the intersection over all such sets, the measure is still at least 27", that is,

2" <m (ﬂ{x fule)] > k})

But this intersection is {z : |f(z)| = oo}, which by hypothesis has measure zero. Hence
there must be a ¢, € R such that

m(E,) <27"

(Specifically, we just showed that we can take ¢, to be a positive integer multiple of n.) Now
we consider the set

E ={z : x € Ej for infinitely many k}
Suppose z € E. Then z is in at most finitely many FEj, that is,

fi(z)

Ck

1
< =
~ k

for infinitely many k. Hence for = € [0,1] \ E, we have

lim Jn(2)

n—oo C'I”L

=0

By the Borel-Cantelli lemma, since we showed that ) >, m(E,) < > 27" <1 < oo, we
have m(E) = 0. Hence

lim fn(2)

n—o0 CTL

=0ae x

[]

Proposition 0.11 (Exercise 18). Every measurable function is the limit a.e. of a sequence
of continuous functions.

Proof. First we prove this in the case that f is finite-valued. Let f : A — R be a measurable
function (where A C R? is measurable). By Theorem 4.3, there exists a sequence of step
functions 1y such that limy ¢y (z) = f(x) for almost every x, that is, there exists B C A
such that ¢ (x) — f(z) on B and m(A\ B) = 0.
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Let E, = B(0,n) N A for n € N. Then 1 is measurable and finite-valued on E,, so by
Lusin’s theorem there exists a closed set F), such that F,, C E,, and m(E, \ F,,) < 27", and
Yg|r, is continuous. By the Tietze extension theorem, there exists a continuous function
fn: A — Rsuch that f,(a) = f(a) for a € F,,. So we have f,(x) — f(z) for x € F,.

Suppose that f,, does not converge to f almost everywhere, in particular, suppose that
fn(z) does not converge to f(z) for some = € A. Then x € A\ F, for infinitely many n. We
know that

A\ Fy € ((Ba\ Fa) U(RT\ B(0,n)))

and since x € R?\ B(0,n) for only finitely many n, we have x € E,, \ F, for infinitely many
n. Since >~ m(E, \ F,) <1 < oo, by the Borel-Cantelli lemma (Exercise 16 above), we
have

m ({x: x € Ej \ Fy for infinitely many k}) =0
But
{z : x € E} \ F}, for infinitely many k} = U{x € A\ F,}

={z € A: f,(x) does not converge to f(x)}

hence the set of non-convergence of f,, to f has measure zero, so f,, — f a.e.
Now suppose that f : A — [—o00,00] is a measurable function. Define a function g, :
A — [—00, 00| by

The sequence of functions g, converges pointwise to f on A. Furthermore, each g, is mea-
surable and finite-valued, so by the above there exist continuous functions h,, such that
limy, hi(z) = gn(x) a.e. We claim that

lim h,,(x) = f(z) a.e.

n—oo

for all z € A. Let € > 0. If f(x) is finite, then there exists NV such that for all n € N,
k>N = |gn(z) — hpi(2)| = | f(x) — hpr(x)| < € (this holds for x a.e.)
Since this holds for all n € N, it holds in particular for n > N. Thus
k>N = |f(z) — hix(z)| < € (a.e.)

and hence h,,(z) — f(x) a.e. for f(z) finite. Now suppose that f(z) = co and let M > 0.
Then there exist Ny, Ny such that

n>N = gn(v)>M
k> Ny = |gn(x) — hax(z)] <1 (ae.)



Then let N = max(Ny, N2). So then
n>N = hp(r)>M—1 (ae.)

and hence h,,(xr) — oo = f(z) a.e.. A symmetric argument shows that h,n(z) — —oo

a.e. if f(x) = —oo. Thus the sequence of continuous functions h,, converges pointwise
to f for almost every x € A, so every measurable function is the limit a.e. of continuous
functions. O

Proposition 0.12 (Exercise 19a). Let A, B C R such that either A or B is open. Then
A+ B is open.

Proof. Let ©x € A+ B. Then there exist a € A,b € B such that a +b = z. Since A is
open, there exists € > 0 such that B(a,e) C A. Then b+ B(a,e) C A+ B. Note that
b+ B(a,e) = B(b+ a,¢), since translating the center of a ball is the same as translating
the ball by the same amount. Hence B(a + b,¢) = B(z,¢) C A+ B, so A+ B is open.
By interchanging the labels for A and B, we can see that if B is open the A + B must be
open. ]

Lemma 0.13 (for Exercise 19b). If A, B C R? are compact, then A+ B is compact.

Proof. Let x, be a sequence in A + B. Then for each n, there exist a, € A,b, € B such
that z, = a, + b,. Since A, B are compact, they are sequentially compact, thus a,, b, have
convergent subsequences a,, , b,,. Then z,, is a convergent subsequence of z,,. Hence A+ B
is sequentially compact, so it is compact. O

Lemma 0.14 (for Exercise 19b). Every closed set in R? can be written as a countable union
of compact sets.

Proof. Let A C R? be closed. Then AN B(0,n) is compact, and A = |2, (AN B(0,n). O
Proposition 0.15 (Exercise 19b). Let A, B C R be closed. Then A + B is measurable.

Proof. We will show that A + B is F,. Each A, B is closed, so they can be written as a
countable union of compact sets, A = J, 4;, B = Uj B;. Then
2%

By a previous lemma, since A;, B; are compact, A; + B; is compact. Hence we have written
A + B as a countable union of closed sets, so A+ B is F,. Thus A + B is measurable. [

Proposition 0.16 (Exercise 19¢). There exist closed sets A, B such that A+ B is not closed.

Proof. Let

A=1{241/23+1/3,4+1/4,.. Y ={n+1/n:n=2.3,..)
B={-1,-2,-3,—-4,...} ={-n:neN}



Then A and B are both closed. But A + B is not closed, since it does not contain all of its
limit points. In particular, the sequence

1
2’
is in A+ B. However, its limit (zero) is not in A + B, since there are no positive integers in
A. O

C.oIH
|

Proposition 0.17 (Exercise 20a). There exist closed sets A, B C R such that m(A) =
m(B) =0 and m(A+ B) > 0.

Proof. Let A = C be the middle thirds Cantor set, and let B = (1/2)C (the dilation of the
Cantor set by 1/2). Let « € [0,1]. Then x has a ternary representation,

(o)
T = E akB_k
k=1

where each a; € {0,1,2}. We form a partition of Ky, K1, Ky of N where K; = {k € N: q; =
i}. Since the infinite sum for x converges and the terms are positive, we can rearrange terms
to rewrite it as

iak?)_k =D (37 W3F+ > @3 => 3 > (237

keKo keK, keKo keK, keKo

Then notice that Y, . (2)37% € C by Exercise 4a, and Y, .. 37" € (1/2)C (since multi-
plying it by 2 puts it in C for the same reason). Hence z is a sum of something in A and B,
sox € A+ B. Thus [0,1] C A+ B. Then by monotonicity, m(A + B) > 1. However, as we
know, m(A) = m(B) = 0. O

Proposition 0.18 (Exercise 20b). There exist closed sets A, B C R* such that m(A) =
m(B) =0 and m(A+ B) > 0.

Proof. Let A = [0,1] x {0} and B = {0} x [0,1]. Then A+ B = [0,1] x [0, 1] since any
(x,y) € [0,1] x [0,1] is equal to (z,0) + (0,y). Hence m(A + B) = 1, but m(A) = m(B) =
0. [



