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Abstract. In this note we prove the stochastic homogenization for a large class of fully non-
linear elliptic integro-differential equations in stationary ergodic random environments. Such
equations include, but are not limited to Bellman equations and the Isaacs equations for the
control and differential games of some pure jump processes in a random, rapidly varying en-
vironment. The translation invariant and non-random effective equation is identified, and the
almost everywhere in ω, uniform in x convergence of the family solutions of the original equa-
tions is obtained. Even in the linear case of the equations contained herein the results appear
to be new.

1. Introduction And Main Result

1.1. A brief Introduction. In this note we present the homogenization for viscosity solutions

of a stochastic family of nonlinear, integro-differential equations given by{
F (uε,

x

ε
, ω) = 0 in D

uε = g on Rn \D,
(1.1)

where D is an open, bounded domain in Rn and ω ∈ Ω for some probability space, (Ω,F ,P).

In this context the operator, F , will take the form:

F (u,
x

ε
, ω) =

inf
α

sup
β

{
fαβ(

x

ε
, ω) +

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))Kαβ(
x

ε
, y, ω)dy

}
,

(1.2)

with Kαβ(x, y, ω) satisfying particular assumptions below. Here the coefficients of the equation,

appearing as the kernels Kαβ(x, y, ω) as well as the forcing terms fαβ(x, ω), form a stationary

ergodic family (in the variable, x) for ω ∈ Ω, with respect to an ergodic group of transformations,

τx : Ω→ Ω (elaborated below, in (1.9)-(1.11)).

Such operators appear as the infinitesimal generators of pure jump processes (and the genera-

tors of the corresponding optimal control problems and differential games– see [14, 21, 31, 32, 35]

and the references therein for similar operators to (1.2) in a deterministic environment in the

context of, e.g. Mathematical Finance) in a rescaled random media with non-homogeneous

jump distributions randomly given as Kαβ(x/ε, y, ω)dy. Roughly speaking, it is expected that

the high frequency oscillations of the stationary ergodic family of equations, modeled by the
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scaling Kαβ(x/ε, y, ω), will lead to an averaging property of the solutions of (1.1), e.g. they

have a limiting behavior towards a translation invariant equation.

Recently, the homogenization for this class of integro-differential equations with rapidly oscil-

lating periodic coefficients was proved in [38]. There it was demonstrated, see [38, Remark 3.6],

that those methods would generalize to the random setting, if certain Aleksandrov-Bakelman-

Pucci type estimates would hold for the equations under consideration.

We briefly elaborate on this comment. For the sake of explanation, consider the linear case

of (1.1) with L as an integro-differential operator given by

L(u, x) =

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))K(x, y)dy, (1.3)

and uk as subsolutions of {
L(uk, x) ≥ −gk(x) in B

uk ≤ 0 on Rn \B,
where for simplicity we assume gk ≥ 0. Since the constant, 0, is also a subsolution, we may

without loss of generality replace uk by u+
k = max{uk, 0}, and so we assume without loss of

generality that uk ≥ 0.

If for example gk ≤ 1 (these choices will appear more relevant in the context of Lemma 3.5)

and

|{x : gk(x) > 0}| → 0 as k →∞,
then does it follow that ‖uk‖L∞ → 0 as well? We make this question for the nonlinear ana-

logue of this situation precise in Proposition 1.8 below, and refer to it as a “comparison with

measurable ingredients” (cf. [6] or [19, Chapter 9] for second order equations). Its specific

use for homogenization can be seen in Section 3. An affirmative answer to this question was

noted in [38, Remark 3.6 and Section 6] as being simultaneously both fundamental to making

the methods of homogenization for second order equations in [13] apply to the fractional order

setting and also as a basic result in the analysis of integro-differential which is missing from the

current literature.

Some partial results related to “comparison with measurable ingredients” have been presented

in [20, Theorem 1.3], and hence provide a stimulus for the current investigation. In this work we

extend the homogenization results of the periodic case in [38] to the general stationary ergodic

case given by (1.2). These methods are generic from the point of view of homogenization,

and are simply dependent upon a “comparison with measurable ingredients” result to hold

true within the corresponding class of elliptic equations. This is strongly believed to hold in

very general settings including the particular one of (1.2). This work draws upon many of the

techniques and results built up in [38], and so it may be considered as a sequel to [38].

For a general introduction to homogenization, the curious reader should consult the books [5]

and [22], and we will give a more complete list regarding stochastic homogenization in Section 2.

For definitions and basic results for viscosity solutions of equations related to and or including

(1.1) and (1.4), the reader should consult [2], [3], and [11, Sections 1-5]. For viscosity solutions

in the context of first and second order equations the reader should consult [15].

1.2. Main Theorems and Propositions. The results we prove will show the existence of

an effective nonlocal equation such that the family of solutions governed by (1.1) converges
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locally uniformly to the solution of this effective equation. The important features are that the

effective equation is nonlocal, elliptic, and translation invariant, given by{
F̄ (ū, x) = 0 in D

ū = g on Rn \D.
(1.4)

This behavior of uε is described in the main theorems of the note:

Theorem 1.1. Assume (1.9)-(1.12), (1.19), and that uniqueness holds for viscosity solutions

of (1.1). Then there exists a set of full measure, Ω̃, and a translation invariant operator,

F̄ , which describes a nonlocal “elliptic” equation such that for all ω ∈ Ω̃ and any choice of

uniformly continuous data, g, the solutions of (1.1) converge locally uniformly to the unique ū

which solves (1.4). Moreover F̄ is “elliptic” with respect to the same extremal operators as the

original operator, F , given in (1.16) and (1.17).

Theorem 1.2. Assume (1.9)-(1.15), that uniqueness holds for viscosity solutions of (1.1), and

that Conjecture 1.9 is true. Then the same outcome of Theorem 1.1 holds true.

Remark 1.3. In most stochastic homogenization results, the final set of full measure, Ω̃, on

which the convergence happens is an intersection of many auxiliary sets appears along the way

in the proof. For the curious reader, we give a reasonably detailed accounting of the origins of

Ω̃ in Remark 5.4.

Remark 1.4. In this work we are concerned with proving the homogenization of (1.1), and

therefore assume that the particular F does indeed admit unique solutions. The current un-

derstanding for uniqueness of (1.1) is still incomplete, and we do not focus on the myriad of

different assumptions which ensure unique solutions. Examples of some operators which do

admit unique solutions to (1.1) were presented in [38].

Remark 1.5. In the uniformly elliptic and Hamilton-Jacobi contexts, it is helpful to think of

homogenization very loosely as an outcome which is enforced by the solutions’ balance of the

simultaneous behavior of high frequency oscillations due to the coefficients of the equation and

the a priori regularity results imposed by the uniform ellipticity of the equation (or uniform

coercivity in the case of Hamilton-Jacobi). Therefore, it is natural to see the most important

assumptions of Theorems 1.1 and 1.2 to be aligned with those of stationary ergodicity (oscilla-

tions) and regularity (uniform ellipticity) as opposed to assumptions related to uniqueness.

Remark 1.6. The interested reader should consult [11, Sections 3-5] or [3] for the basic definitions

and properties of viscosity solutions for (1.1) and (1.4). For a general elliptic nonlocal operator,

we use the notion of [11, Definition 3.1] for ellipticity.

The heart of the homogenization result lies in what is referred to as the solution of the

“corrector” equation. This proposition is the main difficulty in proving Theorems 1.1 and 1.2

in stationary ergodic environments. We record it here, and expand upon its motivation and

notation below in Section 2.2. All of Sections 3 and 4 are dedicated to its proof.

Proposition 1.7 (Solving The “Corrector” Equation). Assume that the hypotheses of either

Theorem 1.1 or 1.2 are satisfied. Let φ ∈ C1,1(Rn)
⋂
L∞(Rn). Define the frozen operator at φ
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and x0 using (2.2) as:

Fφ,x0(v, x, ω) := inf
α

sup
β

{
fαβ(x, ω) + [Lαβ(ω)φ(x0)](x) + [Lαβ(ω)v(x)](x)

}
. (1.5)

Then there exists a unique number, F̄ (φ, x0), and a set of full measure Ωφ ⊂ Ω, such that for

ω ∈ Ωφ the unique solutions, vε(ω), of{
Fφ,x0(vε,

x

ε
, ω) = F̄ (φ, x0) in B1(x0)

vε = 0 on Rn \B1(x0),
(1.6)

also satisfy the decay property

‖vε‖L∞ → 0 as ε→ 0. (1.7)

The main technical lemma which allows for the leap from the periodic to the stationary

ergodic settings in the proof of Proposition 1.7 is the “comparison with measurable ingredients”

result. It is a direct corollary of the Aleksandrov-Bakelman-Pucci type estimate recently proved

in [20, Theorem 1.3] (also listed here in Section 6 for convenience).

Proposition 1.8 (Comparison With Measurable Ingredients). Assume that (1.19) holds. Sup-

pose that gε ∈ C(B), ‖gε‖L∞ ≤ C, and the sequence {vε} solves in the viscosity sense{
M+
A (vε, x) ≥ −gε(x) in B

vε ≤ 0 on Rn \B,
(1.8)

where M+
A is defined in (1.21). If |{gε > 0}| → 0 as ε→ 0, then ‖vε‖ → 0 as ε→ 0.

It is widely expected that Proposition 1.8 holds in much more general circumstances, but to

date has only been proved in the setting mentioned above. We therefore include these more

general circumstances in Theorem 1.2 and list the needed comparison result here as a conjecture.

Conjecture 1.9 (General Comparison With Measurable Ingredients). Assume (1.14) and

(1.15), then the outcome of Proposition 1.8 holds true with the operator M+
A replaced by M+

CS

(defined in (1.17)), which is the appropriate extremal operator for (1.15).

1.3. Organization of The Paper. It is worth commenting on the presentation of the proofs

of Theorems 1.1 and 1.2. In fact, as soon as either Proposition 1.8 or Conjecture 1.9 hold true,

there is no difference in the proof of Proposition 1.7 and hence also the two main theorems. For

this reason, we have chosen to present the proof of Proposition 1.7 in the most general setting.

In this case, the reader can appropriately substitute the particular extremal operators, M−+
A

or M−+
CS , for M−+ in the remainder of the note. The only difference being in the former, one

is operating under Proposition 1.8 and (1.19) which is known to be true, and in the latter one

is operating under Conjecture 1.9 and (1.15). The proof of Proposition 1.7 in the general case

is the content of Sections 3 and 4. Section 5 uses Proposition 1.7 to complete the proofs of

Theorems 1.1 and 1.2. The Appendix, Section 6 is used to collect helpful background results

required for the rest of the paper.
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1.4. Assumptions. Here we list the assumptions on F .

Stationary Ergodic: Kαβ(x, y, ω) : Rn × Rn × Ω→ R is stationary if

(Ω,F ,P) is a probability space

there is a group of measure preserving transformations, τx : Ω→ Ω , for x ∈ Rn,

and Kαβ satisfies the translation relationship, Kαβ(x+ z, y, ω) = Kαβ(x, y, τzω). (1.9)

Similarly we use this definition for

fαβ : Rn × Ω→ R, fαβ(x+ z, ω) = fαβ(x, τzω) (1.10)

Further, the family is stationary ergodic if it is stationary and also the group τx acts on Ω

ergodically in the sense that the only invariant sets of τ are either trivial or full measure, i.e.

the following assertion holds

if for all z, τ−1
z E ⊂ E, then P(E) = 0 or P(E) = 1. (1.11)

Boundedness of fαβ: It is important that F (0, x, ω) is uniformly bounded, and so we as-

sume

‖fαβ(·, ω)‖L∞ ≤ C ∀ α, β, ω. (1.12)

Scaling: In order that the rescaling εσu(·/ε) maps solutions between domains of size 1/ε

and 1 with the correctly scaled coefficients, it is necessary to assume that the operator F has

an appropriate scaling. Here we assume the scaling as

Kαβ(x, λy, ω) = λ−n−σKαβ(x, y, ω). (1.13)

Ellipticity: Going along with ellipticity, there is also an assumption of symmetry for the

kernels – it is simply to allow us to work with operators which do not have a drift. This

assumption appeared in [11, Section 2] concerning the related regularity theory for e.g. (1.1).

This requirement is

Kαβ(x,−y) = Kαβ(x, y). (1.14)

The notion of ellipticity comes from extremal operators which control the difference of the

operator evaluated on two different functions, as in [11, Section 3]. It says that there are

concave, respectively convex, extremal operators, M−, respectively M+, such that

M−(u− v, x) ≤ F (u, x)− F (v, x) ≤M+(u− v, x).

Here we present two of the main classes of elliptic operators:

Ellipticity requirement 1: one family is those operators, treated in [11], which are formed by

using kernels that are pointwise comparable to the kernel of the fractional Laplacian,

λ |y|−n−σ ≤ Kαβ(x, y) ≤ Λ |y|−n−σ . (1.15)

This family has extremal operators given as

M−CS(u, x) = inf
λ|y|−n−σ≤Kαβ(y)≤Λ|y|−n−σ

{∫
Rn
δu(x, y)Kαβ(y)dy

}
(1.16)

and

M+
CS(u, x) = sup

λ|y|−n−σ≤Kαβ(y)≤Λ|y|−n−σ

{∫
Rn
δu(x, y)Kαβ(y)dy

}
. (1.17)
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We have used the shorthand notation

δu(x, y) := u(x+ y) + u(x− y)− 2u(x) (1.18)

to abbreviate the writing of the integro-differential terms (a convenient consequence of (1.14)).

Ellipticity requirement 2: the second family, treated in [20], is smaller than the first, but not

completely contained within it. It consists of kernels which are quadratic modifications of the

fractional Laplacian, given as

Kαβ(x, y) =
yTAαβ(x)y

|y|n+σ+2 (1.19)

where Aαβ(x) ≥ 0, Tr(Aαβ) ≥ λ, and Aαβ ≤ ΛId.

This yields the relevant extremal operators as

M−A (u, x) = inf
Tr(A)≥λ and A≤ΛId

{∫
Rn
δu(x, y)

yTAy

|y|n+σ+2dy

}
(1.20)

and

M+
A (u, x) = sup

Tr(A)≥λ and A≤ΛId

{∫
Rn
δu(x, y)

yTAy

|y|n+σ+2dy

}
. (1.21)

1.5. Notation.

(1) The second difference operator: δu(x, y) := u(x+ y) + u(x− y)− 2u(x).

(2) v is C1,1 from above at x (respectively from below) [11, Definition 2.1] if there exists a

radius r, a vector p, and a constant M such that for all |y| ≤ r,

v(x+ y)− v(x)− p · y ≤M |y|2 (respectively ≥ −M |y|2).

If v is C1,1 from above and below at x, we say v ∈ C1,1(x)

(3) The maximal and minimal operators, M− and M+ are defined in (1.16) and (1.17) as

well as (1.20) and (1.21).

(4) The half relaxed limits (uε)∗ and (uε)∗ are

(uε)∗(x) = lim
ε→0

sup
{δ≤ε, |x−y|≤ε}

uδ(y); (uε)∗(x) = lim
ε→0

inf
{δ≤ε, |x−y|≤ε}

uδ(y).

(5) The contact set of an obstacle problem K(A) = {UA = 0} where UA is defined in (3.2).

(6) The ball of radius r is Br(x) ⊂ Rn, and the cube of radius r is

Qr(x) = (x− r/2, x+ r/2)n ⊂ Rn

2. Background and Main Ideas

2.1. Background. Stochastic Homogenization for fully nonlinear equations is an important

field, which although is currently not nearly as well studied as the corresponding one for linear

equations, seems to be expanding quickly and gaining interest. The study of stochastic homog-

enization of linear equations goes back at least to [25], [33], and [34], and the case of nonlinear

equations to [4] and [16]. Similarly, the case of stochastic homogenization is not nearly as well

studied as that of the periodic case. Here we give a list of the related results for stochastic

homogenization. The list for the periodic setting is much longer, and we do not attempt at

a presentation. For first order equations and “viscous” versions of Hamilton-Jacobi equations
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with convex nonlinearities (“viscous” being a second order equations whose limit is a first order

equation), there are the works of: [23], [24], [27], [28], [29], [30], [36], [37], [39]. In the realm

of nonlinear second order elliptic equations, the results are much fewer with basically [7], [12],

[13]. Finally, moving to the nonlocal equations, much less has been done in the stochastic

setting. For homogenization of random obstacle problems for a fractional operator there are

the works of [10] and [18]. For homogenization for any equations related to (1.1), even for the

linear version of F , there seems to be no existing literature.

Proving Theorem 1.1 contains two separate steps. First, one must identify how to extract

the influence on uε of the averaging property of the equation itself (from the stationary ergodic

family fαβ and Kαβ). This comes with a good choice for an expansion of uε and the identifica-

tion of the “corrector” equation as the main tool to identify the limit equation for ū. Moreover

this method must also be compatible with the notion of convergence for the weak solutions, uε.

Second, one must actually prove that the “corrector” equation has a solution.

In the context of elliptic equations (both Hamilton-Jacobi and second order elliptic equa-

tions), the correct expansion to extract the averaging properties of uε has been more or less

known since the seminal book [5, Chapter 1, Section 2] and was first used in nonlinear elliptic

equations in [26]. Correspondingly the operator appearing in the corrector equation for first

and second order equations has been known for as long as those references, and possibly even

longer. Two recent developments paved the way for the stochastic homogenization for nonlocal

equations. First was the realization that the expansion does not require one v to be rescaled

and used for all ε simultaneously, but rather a whole sequence of vε will suffice (see [27, Section

1], also mentioned in [28, Proposition 7.3], and fundamentally used in [13, Sections 1 and 3]).

Second was the observation in [38, Section 2.1] of how the heuristic expansion for uε identifies

the appropriate new operator, Fφ,x0 , for the solution of the “corrector” equation in the nonlocal

periodic setting. The operator identified there is the same one which is used for the “correc-

tor” equation in the current work. The main contribution of this note is the solution of the

“corrector” equation in the nonlocal, stationary ergodic setting (Proposition 1.7). The rest of

the homogenization result is a very straightforward application or minor modification of the

existing techniques.

2.2. Main Ideas For Proposition 1.7. The main ingredient of the proof of Theorems 1.1

and 1.2 is the solution to the “corrector” equation, Proposition 1.7. A reasonably detailed

explanation for this proposition was presented in [38, Section 2.1] (and is more useful when

read together with the discussion of [13, Section 1]). We briefly mention here the key ideas.

The key step in proving Theorem 1.1 is to decide for any admissible test function, φ, and

any x fixed, whether or not φ satisfies

F̄ (φ, x) ≥ 0 or F̄ (φ, x) ≤ 0.

(This is simply the statement that we know the set where F̄ = 0 over the class of necessary test

functions.) The correct choice of inequality(ies) is enforced by the behavior of uε and ū, and in

particular whether or not ū − φ can have a local maximum or minimum at x (or both). This

information is encoded in uε and (1.1). We can extract it informally with an expansion of uε.

Heuristically, the correct ansatz for uε is

uε(x) = ū(x) + εσv(
x

ε
) + o(εσ). (2.1)
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To better recognize the two scales inherent in the operators (local and global variables) when

using the expansion (2.1), we rewrite the integro-differential terms (for a generic φ) as

[Lαβ(ω)φ(z)](x) =

∫
Rn

(φ(z + y) + φ(z − y)− 2φ(z))Kαβ(x, y, ω)dy, (2.2)

where z is the location of the center of the second difference, and x is the variable in the

coefficients, Kαβ(x, y, ω) (one should note that using z = x in [Lαβ(ω)φ(x)](x) gives back the

expressions in (1.2)). Plugging in (2.1) into, e.g., the linear case of (1.1) with fαβ = 0 and

using (1.13) to scale the integro-differential terms with εσv(·/ε), suppressing the ω from the

notation, we obtain

[Luε(x)](
x

ε
) = [Lū(x)](

x

ε
) + [Lv(

x

ε
)](
x

ε
).

If we could possibly find a special function, v, which would make this right hand side indepen-

dent of ε, we would have an equation that reads (thanks also to [Luε(x)](x/ε) = 0)

F̄ (ū, x) = 0,

where F̄ (ū, x) = [Lū(x)](x/ε) + [Lv(x/ε)](x/ε). Although this is not exactly possible, we

can push the motivation a little further. As ε → 0, we see that x can be considered a fixed

parameter, and the true variable of interest is y = x/ε. Then we see, we are looking to find a

particular v (as a function of y!) such that

[Lū(x)](y) + [Lv(y)](y) = constant. (2.3)

In order for this v to be useful to (2.1), we need the compatibility condition that

‖εσv(·/ε)‖L∞ → 0 as ε→ 0,

and so it will be the case that not just any constant in (2.3) will work. Finally, it turns out that

it is completely unnecessary to require that there is one function v, such that εσv(·/ε) works

as the correction to the function ū at all ε scales. This can be replaced by a more generic, vε,

and the compatibility condition correspondingly reads as

‖vε‖L∞ → 0 as ε→ 0.

Hence we have arrived at the statement of Proposition 1.7.

The main idea to solving the appropriate “corrector” equation relevant to (1.1) was intro-

duced in [13, Sections 1 and 3] for second order equations. One of the key observations was to

view the choice of F̄ (φ, x0) in (1.6) as a sort of variational problem on the choice of a constant

for the right hand side of (1.6). The second key observation was to introduce a somewhat

natural subadditive quantity for (1.6), being the measure of the contact set with the obstacle

problem in the same domain and with the same operator.

Fixing x0 = 0, the investigation looks at (1.6) for a generic choice of constant right hand

side, l, given as {
Fφ,0(w0,ε

l ,
y

ε
, ω) = l in B1(0)

wεl (y) = 0 on Rn \B1(0).
(2.4)

The compatibility condition which allows for the correct choice of l (ultimately taken as the F̄ )

is the decay of w0,ε
l – is it possible to find a particular l so that

‖w0,ε
l ‖L∞ → 0 as ε→ 0?
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At least for l negative enough, the function

P+(x) = (1− |x|2)2 · 1B1(x)

will be a subsolution of (2.4). By comparison, we can conclude that the lower limit of w0,ε
l (x)

will be larger than P+(x). Thus the compatibility condition was violated in that the limit was

too big. Similarly, for l large enough the function

P−(x) = −(1− |x|2)2 · 1B1(x)

is a supersolution of (2.4), and this implies that the upper limit of w0,ε
l is too negative. So then

there is some hope that with an appropriate choice of l, exactly the upper and lower limits of

w0,ε
l can be balanced to give

‖w0,ε
l ‖L∞ → 0 as ε→ 0.

Indeed this is the case, and the correct choice for l is given in Section 4. Before one can say

which is the correct choice of l above, the effect of generic choice of l on the possible limits of

w0,ε
l must be determined. This is done using the contact set of an obstacle problem and the

Subadditive Theorem in Section 3.

3. Subadditive Limits Centered At x0 = 0

In preparation for a solution to the “corrector” equation of Proposition 1.7, this section is

dedicated to the investigation of how the choice of l and the ergodicity of τ affect the solutions,

w0,ε
l (ω), of the equation: {

Fφ,0(w0,ε
l ,

y

ε
, ω) = l in Q1(0)

wεl (y) = 0 on Rn \Q1(0).
(3.1)

(We have switched from B1 to Q1 simply for the convenience of a later analysis involving the

Subadditive Theorem, for which the natural choice of sets are cubes.) The key point is that the

limiting behavior of w0,ε
l (ω) from above and or below can be characterized a.s.ω by applying the

Subadditive Ergodic Theorem (found in multiple places, but we refer to [1]) to an appropriate

quantity related to (3.1). In applying the Subadditive Theorem, it is important to keep the

equations centered at x0 = 0; this restriction will be expanded upon and relaxed in Section 4.

Ultimately we must answer the question given a particular l, will (w0,ε
l )∗ ≤ 0 or will (w0,ε

l )∗ ≥
0? For the answers to these two questions, we appeal to the fundamental observation to use

an appropriate obstacle problem, introduced for homogenization in [13, Sections 1 and 3].

Specifically, we consider the solution of the obstacle problem given in (3.2), e.g. as the least

supersolution, in the same domain, with the same operator as (3.1), and with an obstacle of

the constant 0 function (chosen as 0 because of the questions of (w0,ε
l )∗ ≤ 0 and (w0,ε

l )∗ ≥ 0).

The observation is that w0,ε
l and the obstacle solution will have the same behavior asymptot-

ically if the measure of the contact set between the obstacle solution and the obstacle goes to

zero, which is fundamental to Lemma 3.5 and crucially uses Proposition 1.8. In particular since

the obstacle solution is always above 0, then (w0,ε
l )∗ ≥ 0 as well. Furthermore, if the obstacle

solution and the obstacle keep positive contact as ε→ 0, then since w0,ε
l is below the obstacle

solution, the positive contact with the obstacle forces (w0,ε
l )∗ ≤ 0. These observations are the

key points of this section and appear as Lemmas 3.5 and 3.6.
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3.1. The Subadditive Quantity. Given a bounded domain, A, we can solve the obstacle

problem with a 0 obstacle by considering the least supersolution of the equation in (3.1):

U lA(ω) = inf
{
u : Fφ,0(u, y, ω) ≤ l in A and u ≥ 0 in Rn

}
. (3.2)

It will also be important to solve the same equation, but in a rescaled domain, εA, with rescaled

coefficients, F (uε, x/ε):

uε,lA (ω) = inf
{
u : Fφ,0(u,

y

ε
, ω) ≤ l in εA and u ≥ 0 in Rn

}
.

Thanks to (1.13), the relationship between the two obstacle solutions is

uε,lA (x, ω) = εσU lA(
x

ε
, ω). (3.3)

(Basic properties of the obstacle problem are listed without proof in the Appendix, Section

6.3.) Finally, to connect with w0,ε
l , we make the choice of A = Q1/ε(0), which gives our obstacle

solutions of interest as:

U lQ1/ε
(ω) = inf

{
u : Fφ,0(u, y, ω) ≤ l in Q1/ε and u ≥ 0 in Rn

}
(3.4)

and

uε,lQ1
(ω) = inf

{
u : Fφ,0(u,

y

ε
, ω) ≤ l in Q1 and u ≥ 0 in Rn

}
. (3.5)

The solution of the obstacle problem gives us a very convenient random set function with

which to work; namely the measure of the contact set between the solution and the obstacle,

M l(A,ω) :=
∣∣∣{U lA(x, ω) = 0}

∣∣∣ . (3.6)

For convenience, we will denote the contact set as

K l(A,ω) := {U lA(x, ω) = 0}, (3.7)

in which case we have

M l(A,ω) :=
∣∣∣K l(A,ω)

∣∣∣ . (3.8)

The main point is that we will be able to use the Subadditive Theorem to extract limits of

M l(Q1/ε, ω)/
∣∣Q1/ε

∣∣. Since our original question pertains to w0,ε
l in Q1, it will be useful to have

the analogous quantities to M l and K l for Q1:

kε,l(ω) = {uε,lQ1
(x, ω) = 0} (3.9)

mε,l(ω) :=
∣∣∣kε,l(ω)

∣∣∣ . (3.10)

The scaling assumption, (1.13), tells us the relationship between U lQ1/ε
and uε,lQ1

:

mε,l(ω) =
1∣∣Q1/ε

∣∣M l(Q1/ε, ω). (3.11)

At this point it is important to recall that the operator in the definition of (3.1) and (3.4),

and hence all results derived from them, depend on φ and l. For right now, φ and l are fixed

parameters, and their use will come up again later, in Section 4.

The main point of using the function M l(A,ω) is that it is stationary and subadditive,

presented in the next lemma.
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Lemma 3.1. The set function M l(A,ω) is stationary and subadditive. Specifically, for z ∈ Rn
and A = B1 ∪B2 with B1 and B2 having disjoint interiors:

M l(A+ z, ω) = M l(A, τzω), and

M l(A,ω) ≤M l(B1, ω) +M(B2, ω).

Proof of Lemma 3.1. The stationarity is a direct consequence of the translation property of

the obstacle solutions, given in Lemma 6.9, which is simply inherited from the stationarity of

the operator Fφ,0. The subadditivity follows from the monotonicity property of the obstacle

solutions, given in Lemma 6.10. Indeed, we have that because B1 ⊂ A and also B2 ⊂ A, then

U lA is an admissible supersolution in both of the domains B1 and B2, which gives

U lA ≥ U lB1
and also U lA ≥ U lB2

.

Thus

K l(A,ω)
⋂
B1 ⊂ K l(B1, ω) and K l(A,ω)

⋂
B2 ⊂ K l(B2, ω).

Hence ∣∣∣K l(A,ω)
∣∣∣ =

∣∣∣K l(A,ω)
⋂
B1

∣∣∣+
∣∣∣K l(A,ω)

⋂
B2

∣∣∣ ≤ ∣∣∣K l(B1, ω)
∣∣∣+
∣∣∣K l(B2, ω)

∣∣∣ .
�

The stationarity and subadditivity of M l allow to use the Subadditive Theorem (see [1]) to

extract a limit. This is the content of the next lemma.

Lemma 3.2. The exists a set of full measure, Ωφ,l, (depending on φ and l) such that the

following limits hold for ω ∈ Ωφ,l:

lim
ε→0

mε,l(ω) = m̄l(φ). (3.12)

Remark 3.3. It is very important that the limiting quantity depends upon the function, φ, for

its use in Section 4. However for this current section, φ is fixed and so we drop the explicit

dependence of m̄l on φ.

Proof of Lemma 3.2. The Subadditive Theorem (see [1]) directly applies to M l(Q1/ε, ω). More-

over, the translation group appropriate for the stationarity of M l is exactly the group, τx, from

the stationarity of the original equations (1.1), which is ergodic (this is not always the case, cf.

[37, Section 4] where the transformation corresponding to the stationarity of the subadditive

quantity was not the original τx). Therefore, there is a constant, m̄l, and a set of full measure,

Ωφ,l, such that for ω ∈ Ωφ,l

1∣∣Q1/ε

∣∣M l(Q1/ε, ω)→ m̄l.

Thus the conclusion of the lemma follows from the relationship between mε,l and M l, given in

(3.11). �

Lemma 3.4. m̄l is increasing in l.

Proof of Lemma 3.4. Let l1 ≤ l2. By Lemma 6.11, we know that U l1Q1/ε
≥ U l2Q1/ε

. Hence

K l1(Q1/ε, ω) ⊂ K l2(Q1/ε, ω). Taking limits as ε→ 0 gives the result. �
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3.2. How The Subadditive Limit Controls The Solution To (3.1). Now that we know

there is a subadditive limit we can extract from uε,lQ1
(given as m̄l), it must still be related back

to the behavior of the solutions of (3.1). The behavior of w0,ε
l is characterized in Lemmas 3.5

and 3.6. At this point, we suppress the explicit dependence upon ω as much as possible.

Lemma 3.5. If m̄l = 0, then (w0,ε
l )∗ ≥ 0.

Proof of Lemma 3.5. In this scenario, we will show that the obstacle solution and free solution

coincide in the limit. Therefore, since uε,l ≥ 0, we conclude that (w0,ε
l )∗ ≥ 0 as well.

Because uε,l is a supersolution of the equation for w0,ε
l , (3.1), we have immediately that

uε,l−w0,ε
l ≥ 0. Therefore, we focus on the reverse inequality. By definition of elliptic equations,

we know that in the viscosity sense

M+(uε,l − w0,ε
l , x) ≥ Fφ,x0(uε,l, x)− Fφ,x0(w0,ε

l , x).

Owing to (6.6), we have

Fφ,x0(uε,l, x)− Fφ,x0(w0,ε
l , x) ≥ (Fφ,x0(0, x)− l)1kεl (x),

and since Fφ,x0(0, x) is bounded from below (depending on φ), we get the equation for uε,l−w0,ε
l :{

M+(uε,l − w0,ε
l , x) ≥ −C1kεl (x) in Q1

uε,l − w0,ε
l = 0 on Rn \Q1.

To apply Proposition 1.8, we let gε(x) be a continuous approximation of 1kεl (x) from above.

Thus as ε → 0, gε can be chosen so that {gε > 0} → 0 because we are assuming kε → 0.

Therefore, by Proposition 1.8, (uε,l − w0,ε
l )∗ ≤ 0. This can be rewritten as

(w0,ε
l − 0)∗ ≥ (w0,ε

l − u
ε,l)∗ ≥ 0,

which concludes the lemma. �

Now we will see which conditions on m̄ imply (w0,ε
l )∗ ≤ 0.

Lemma 3.6. If m̄l > 0, then (w0,ε
l )∗ ≤ 0.

Proof of Lemma 3.6. This is a direct consequence of the uniform Hölder regularity of uε,l com-

bined with Lemma 3.7. Indeed, we know that uε,l ≥ w0,ε
l and given any r > 0 and x ∈ Q1

Lemma 3.7 implies at least one point x̂ with |x− x̂| ≤ r and uε,l(x̂) = 0. Therefore

(w0,ε
l )∗ ≤ (uε,l)∗ ≤ Crγ

for a uniform C and γ corresponding to the regularity of uε,l (given by Lemma 6.8). Since r

was arbitrary, we conclude. �

The key point used in Lemma 3.6 is the idea that if asymptotically the measure of the contact

set is positive, then that positive measure should be spread around Q1 evenly (hence at least

one contact point in any subcube of Q1). This is indeed the case, which is made precise in the

next lemma.

Lemma 3.7 (Positive Contact in Sub-cubes). Assume that m̄l = α > 0. For any r > 0 and any

η > 0 fixed, there exists a family of centers, {ŷεj} and their corresponding cubes, {Qr+2ρ(ε)(ŷ
ε
j )},

such that
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i) Q1(0) ⊂
⋃
Qr+2ρ(η)(ŷ

ε
j )

ii)
∣∣∣{uε,lQ1

= 0}
⋂
Qr+2ρ(η)(ŷ

ε
j )
∣∣∣ > 0

iii) ρ(η)→ 0 as η → 0.

The main idea behind Lemma 3.7 is that the knowledge of the limit of mε,l(ω) can be rescaled

and translated using τx to any other subcube in Q1. The problem is that this heuristic is

correct only under very careful translations using τ . Indeed, we note that moving mε,l to

another cube centered at e.g. y corresponds to looking at M l(Qr/ε(y/ε), ω), and hence by the

stationarity M l(Qr/ε(0), τy/εω). But the problem is that the translation of this cube back to

Q1/ε(0) introduces the factor τy/εω on the random parameter. This is a priori not compatible

with the Subadditive Theorem and requires more careful attention. Nonetheless, the desired

outcome can be reached, and it is the culmination of Lemmas 3.7 and 3.8.

Lemma 3.8. Given any η > 0, there exists a set, Gη(l, φ), such that P(Gη(l)) > (1 − η) and

the convergence of mε,l(ω) is uniform for ω ∈ Gη(l, φ).

Proof of Lemma 3.8. This is simply Egorov’s Theorem applied to the convergence from Lemma

3.2. �

Proof of Lemma 3.7. Without loss of generality we assume that r = 1/N for some N . We begin

with a partition of Q1(0) into Nn subcubes given by {Qr(yj)} with appropriate y1, . . . , yNn .

Let Ωη be the sets corresponding to Lemma 6.7 applied to Gη in Lemma 3.8 and define the set

of full measure,

Ω0 =
⋂

η∈Q,η>0

Ωη.

We now shift the original {yj} slightly to obtain a new collection, {ŷεj} so that we can make

sure τŷεj/εω ∈ Gη(l, φ) even though τyj/εω may not be. The family {ŷεj} is given by Lemma 6.7

and we know that ∣∣yj − ŷεj ∣∣ ≤ ρ(η).

This gives that

Q1(0) ⊂
⋃
Qr+2ρ(η)(ŷ

ε
j ) (3.13)

and

mε,l(Qr+2ρ(η)(ŷ
ε
j ), ω) = mε,l(Qr+2ρ(η)(0), τŷεj/εω)→ m̄l uniformly in ŷεj (3.14)

Now we collect some facts about
∣∣∣K l(Q1, ω)

⋂
Qr(ŷ

ε
j )
∣∣∣. It will be easier to work with the 1/ε

scale picture, and so we are considering Q1/ε and Qr/ε. Because

Q1/ε

⋂
Q(r+2ρ(η))/ε(ŷ

ε
j/ε) ⊂ Q(r+2ρ(η))/ε(ŷ

ε
j/ε),

the Monotonicity property (Lemma 6.10) tells us that∣∣∣K l(Q1/ε, ω)
⋂
Q(r+2ρ(η))/ε(ŷ

ε
j/ε)

∣∣∣ ≤ ∣∣∣K l(Q(r+2ρ(η))/ε(ŷ
ε
j/ε), ω)

∣∣∣ . (3.15)

Furthermore, we know that uniformly the limit holds:

1∣∣Q(r+2ρ(η))/ε

∣∣M l(Q(r+2ρ(η))/ε + ŷεj/ε, ω)→ α. (3.16)
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Thus for γ > 0 given, we choose ε small enough that

1∣∣Q(r+2ρ(η))/ε

∣∣M l(Q(r+2ρ(η))/ε + ŷεj/ε, ω) ≤ (1 + γ)α (3.17)

and

1∣∣Q1/ε

∣∣M l(Q1/ε, ω) ≥ (1− γ)α. (3.18)

We can now estimate ∑
j

∣∣∣K(Q1/ε)
⋂
Q(r+2ρ(η))/ε(ŷ

ε
j )
∣∣∣

from below and above as

(1− γ)
∣∣Q1/ε

∣∣α
≤M l(Q1/ε, ω)

≤
1/rn∑
j=1

∣∣∣K l(Q1/ε, ω)
⋂
Q(r+2ρ(η))/ε(ŷ

ε
j/ε)

∣∣∣ (3.19)

≤
1/rn∑
j=1

∣∣∣K l(Q(r+2ρ(η))/ε(ŷ
ε
j/ε), ω)

∣∣∣
=

1/rn∑
j=1

M l(Q(r+2ρ(η))/ε, τŷεj/εω)

≤ 1

rn
∣∣Q(r+2ρ(η))/ε

∣∣ (1 + γ)α

=
(r + 2ρ(η))n

εnrn
(1 + γ)α.

Because we have the upper bound on each of the sets,∣∣∣K l(Q1/ε, ω)
⋂
Q(r+2ρ(η))/ε(ŷ

ε
j/ε)

∣∣∣ ≤ ((r + 2ρ(η))/ε)n (1 + γ)α,

and taking ε, γ, η all small enough, we conclude that all the terms in the summation of (3.19)

must be positive. This concludes the lemma. �

4. Solving The “Corrector” Equation

Going back to the brief discussion of Section 2.2 and considering the results of Lemmas 3.5

and 3.6, we now see that to balance the possible upper and lower limits of w0,ε
l , the good choice

for F̄ will be the one such that it is at the boundary between the collection of l giving a zero

contact limit and the collection of l giving a positive contact limit. Indeed by the monotonicity

of m̄l in l, this is a reasonable choice.

Definition 4.1. The constant F̄ (φ, 0) is defined as

F̄ (φ, 0) := sup{l : m̄l(φ) = 0}, (4.1)

and the constant F̄ (φ, x0) is defined as

F̄ (φ, x0) := F̄ (φ(·+ x0), 0). (4.2)
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4.1. Solving The “Corrector” Equation At x0 = 0. Here we briefly comment on the proof

of Proposition 1.7 for the case that the cube is centered at x0 = 0, Q1(0). It is carried out

almost exactly as in [38]. It consists of two lemmas which together yield Proposition 1.7, and

the proofs of which are almost identical to [38, Lemmas 3.5 and 3.7], so we omit them. The

main feature to note is that item (i) of the dichotomy in [38, p.2661] corresponds to m̄l > 0,

and item (ii) of the dichotomy corresponds to m̄l = 0. We simply note that it will be important

to take as a definition of Ωφ,

Ωφ :=
⋂
l∈Q

Ωφ,l.

Once this is done, the proofs of the next two propositions go almost identically as to the proofs

given in [38], with some very minor modifications to account for the fact that one must work

with l ∈ Q and ω ∈ Ωφ.

Lemma 4.2 (Lemma 3.5 of [38]). If l = F̄ (φ, 0) then for ω ∈ Ωφ w
0,ε
l (ω) solving (3.1) also

satisfies ‖w0,ε
l ‖L∞ → 0 as ε→ 0.

Lemma 4.3 (Lemma 3.7 of [38]). If ω ∈ Ωφ and l is any number such that w0,ε
l solving (3.1)

satisfies ‖w0,ε
l ‖L∞ → 0 as ε→ 0, then l = F̄ (φ, 0).

4.2. Solving The “Corrector” Equation At a Generic x0. We now arrive at the proof

of Proposition 1.7 for a generic x0. This is where the random homogenization deviates slightly

from the periodic case in the sense that the arguments applied in Section 3 do not carry over

directly to a generic x0 6= 0. Instead, the information of the proof of Proposition 1.7 must

be obtained in a “local uniform” fashion near x0 = 0, and then the ergodicity of the problem

allows for the behavior of a generic x0 to be captured by translating the equation to a point

nearby x0 = 0 and using the “local uniform” nature of the information there. This argument is

becoming a standard part of homogenization for nonlinear equations and can be seen explicitly

used in: [23, Lemmas 4.3, 4.4, Proof of Theorem 2.1], [24, Lemma 3.3, Theorem 3.5], [30,

Lemmas 2.1, 2.2], and [37, Lemmas 5.1, 5.2, Proposition 5.3].

Proof of Proposition 1.7 at x0 6= 0. At x0 = 0, we already identified the set Ωφ where Propo-

sition 1.7 holds. Now we appeal to Lemma 6.7 in order to translate the behavior at a generic

x back to the origin. Thus, we must take one more family of intersections to pick up the full

measure sets from Lemma 6.7. So for φ(·+x0), we let Ωη
φ(·+x0) be the set obtained by applying

Lemma 6.7 to Ωφ(·+x0), and so finally we set Ω̃φ(·+x0) as

Ω̃φ(·+x0) =
⋂

η∈Q
⋂

(0,1)

Ωη
φ(·+x0).

Let R be fixed so that x0 ∈ BR(0). Given any η ∈ Q
⋂

(0, 1), Lemma 6.7 provides an x̂ε such

that

|x− x̂ε| ≤ ρ(η)

and for all ε and ω ∈ Ω̃φ(·+x0)

τx̂ε/εω ∈ Ωφ(·+x0).

Now we can use the uniform continuity of (3.1) with respect to a change in the domain

combined with the translation via x̂ε in order to use the result already established at x0 = 0.

Let us record the proper auxiliary equation here:
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{
Fφ,x0(wx0,εl ,

y

ε
, ω) = l in Q1(x0)

wεl (y) = 0 on Rn \Q1(x0).
(4.1)

We begin with the observation that if wx0,εl and ŵε solve (4.1) with l as a right hand side

in Q1(x0) and Q1(x̂ε) respectively, then their difference is controlled by the uniform Hölder

continuity (Theorem 6.3) and the facts that they share the same boundary data and that for

x̂ε small, the domains are very close. Indeed since wx0,εl and ŵε solve the same equation in

Q1(x0)
⋂
Q1(x̂ε),

sup
Q1(x0)

⋂
Q1(x̂ε)

∣∣wx0,εl − ŵε
∣∣ ≤ sup

Rn\(Q1(x0)
⋂
Q1(x̂ε))

∣∣wx0,εl − ŵε
∣∣

≤ C |x0 − x̂ε|γ .

Hence also using again the regularity of w0,ε
l and ŵε and their respective boundary data,

‖wx0,εl − ŵε‖L∞ ≤ C |x0 − x̂ε|γ .

Next we can use the stationarity of the equations to move the equation for ŵ in Q1(x̂ε) back

to the origin in Q1(0). Therefore, we define

w̃ε(x) := ŵε(x+ x̂ε).

The equation for w̃ε (as the unique solution) is now{
Fφ(·+x0),0(w̃ε, xε , τx̂ε/εω) = l in Q1(0)

w̃ε = 0 on Rn \Q1(0).

Because x̂ε is chosen so that τx̂ε/εω ∈ Ωφ(·+x0), we know by the part of Proposition 1.7 already

proved that l = F̄ (φ(·+ x0), 0) gives the unique choice such that ‖w̃ε‖L∞ → 0. Hence

lim sup
ε→0

‖w0,ε
l ‖L∞ ≤ C(ρ(η))γ .

Thus letting η → 0 we see that for a.s.ω, l = F̄ (φ(·+x0), 0) is the unique choice of right hand

side which gives the convergence of ‖wx0,εl ‖ → 0. Proposition 1.7 is concluded by Definition

4.1,

F̄ (φ, x0) := F̄ (φ(·+ x0), 0).

�

5. The Effective Operator and Proof of Theorems 1.1 and 1.2

The “corrector” equation has been resolved, but before we can show the convergence of

uε → ū, it still must be shown that the function F̄ (φ, x0)) is an elliptic operator with respect

to M− and M+ and prove uniqueness for (1.4). This is basically the first half of Theorem

1.1. These properties appear as Proposition 5.1 below and are proved almost exactly as in the

periodic setting, [38, Section 4]. So we state Proposition 5.1 without proof and refer to the

results of [38, Lemmas 4.1, 4.2, Proposition 4.4].
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Proposition 5.1 (Properties of F̄– First Half of Theorem 1.1). F̄ is a nonlocal elliptic operator

in the sense of [11, Definition 3.1], and hence has a comparison principle. That is to say that

for u and v both C1,1(x), then (for M−, M+ in either (1.16), (1.17) or (1.20), (1.21))

M−(u− v, x) ≤ F̄ (u, x)− F̄ (v, x) ≤M+(u− v, x);

if φ ∈ C1,1(D)
⋂
L∞(Rn) then F̄ (φ, ·) ∈ C(D); and if u and v are respectively a usc subsolution

and lsc supersolution of (1.4), then

sup
D

(u− v) ≤ sup
Rn\D

(u− v).

Before we prove the statement in Theorem 1.1 regarding convergence, we must identify the

set Ω̃ ⊂ Ω. In order to do so, we will need a special countable collection of smooth functions

described below. The existence of such a set is a straightforward exercise.

Lemma 5.2. There exists a countable family of smooth functions and dense points, {φk}∞k=1 and

{xk}∞k=1, such that for any smooth φ and x0, there are φk and xk with the following properties:

φ− φk has a maximum at xk, (5.1)

xk → x0, (5.2)

M−(φ− φk)(xk)→ 0, (5.3)

‖D2φk‖∞ ≤ C(φ), depending only on φ (5.4)

φk → φ locally uniformly in D. (5.5)

Remark 5.3. We remark that there are many choices for the set of test functions in the definitions

of viscosity solutions, which are all equivalent in this context. The largest class would be those

functions for which a subsolution, u, has a local maximum of u − φ over an open set, N , at

x0, and φ is only required to be punctually C1,1 at x0. A smaller class would be those φ which

are globally C2 (or even smoother), and u − φ is required to attain a global maximum at x0.

Each class of test functions has its convenient time and place in these proofs, and that is why

we have been vague with the presentation. The interested reader can check the definitions and

equivalence in [3] combined with [11].

Let F̄ (φ, x) be the nonlocal operator defined for a smooth φ by Definition 4.1, let ū be the

solution of (1.4), and let uε(ω) be the solution of (1.1). We will prove the second part of

Theorem 1.1, namely that for a.e. ω, uε → ū locally uniformly as ε → 0. Once the correct

set Ω̃ ⊂ Ω is identified, the convergence is a straightforward application of the Perturbed Test

Function Method of [17, Section 3].

Proof of Theorems 1.1 and 1.2– Convergence of uε → ū. Here we are concerned with the con-

vergence issue. Define the set Ω̃ using the countable dense class of test functions as

Ω̃ =
∞⋂
k=1

Ωφk,xk , (5.6)

where Ωφk,xk are give by Proposition 1.7. The point being that for any ω ∈ Ω̃, we know that

Proposition 1.7 holds simultaneously for all φk and xk. Thanks to the countability of φk, xk,

we still have P (Ω̃) = 1. We suppress the dependence on ω for the remainder of the proof and

therefore work with uε instead of uε(ω) for the remainder of the proof.
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We only prove that (uε)∗ is a subsolution of (1.4). The proof that (uε)∗ is a supersolution

follows similarly. In what follows, we use one of the equivalent definitions of solutions of (1.4)

as given in [3, Definition 1]. This definition is equivalent to that of [9, Definition 2.2] under the

assumption that the boundary data, g, is bounded and continuous on all of Rn \D. Therefore,

we must show that whenever (uε)∗ − φ has a strict global maximum at x0 for any smooth

φ ∈ C1,1(Rn)
⋂
L∞(Rn), that the inequality holds:

F̄ (φ, x0) ≥ 0.

Proceeding by contradiction, suppose that φ is smooth and u−φ attains a strict global max

at x0 but the viscosity inequality fails:

F̄ (φ, x0) ≤ −δ < 0,

for some δ > 0. The goal will be to use Proposition 1.7 to construct a local supersolution of

(1.1) near x0 and contradict the strict maximum of u − φ at x0. First we must transfer the

previous inequality to the functions in the countable class of Lemma 5.2. Using the uniform

ellipticity of F̄ , the uniform continuity of F̄ (given by Lemma 6.2), and the uniform bound on

‖D2φk‖, we have

F̄ (φ, x0) = F̄ (φ, xk) + F̄ (φ, x0)− F̄ (φ, xk)

= F̄ (φk, xk) + F̄ (φ, xk)− F̄ (φk, xk) + F̄ (φ, x0)− F̄ (φ, xk)

≥ F̄ (φk, xk) +M−(φ− φk)(xk)− ρφ(|xk − x0|).

Thus for k large enough by Lemma 5.2, we can make

F̄ (φk, xk) ≤ −
δ

2
.

Let vε be the solution of (1.6) in Q1(x0) for F̄ (φk, xk). We will now show that ψε given by

ψε(y) = φk(y) + vε(y)

is in fact a supersolution of (1.1) on an appropriately restricted ball, BR(xk), for R small

enough. We argue as though vε were a classical (C1,1) solution. This may not be the case,

but converting the argument from the classical case to the viscosity solution case is by now

standard (see [38, Lemma 7.10]).

Indeed by Lemma 6.5, we have for y restricted to BR(x0)∣∣∣F (φk + vε,
y

ε
)− Fφk,xk(vε,

y

ε
)
∣∣∣ =

∣∣∣Fφk,y(vε, yε )− Fφk,xk(vε,
y

ε
)
∣∣∣ ≤ ρφ(R),

and this holds anytime vε is C1,1, but is independent of the function vε and y. Thus

restricting R small enough so that ρφ(R)− δ/2 ≤ 0, we conclude that

F (φk + vε,
y

ε
) ≤ 0 in BR(xk).

Applying the comparison theorem, we see that for each ε,

sup
BR(xk)

(uε − φk − vε) ≤ sup
Rn\BR(xk)

(uε − φk − vε).
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First we keep k fixed and take upper limits as ε → 0. Proposition 1.7 implies the vε term

vanishes and we obtain

sup
BR(xk)

((uε)∗ − φk) ≤ sup
Rn\BR(xk)

((uε)∗ − φk).

Finally using the uniform continuity of uε (hence (uε)∗) and the uniformity of φk → φ, we

conclude

sup
BR(x0)

((uε)∗ − φ) ≤ sup
Rn\BR(x0)

((uε)∗ − φ).

This contradicts the fact that the maximum of u − φ at x0 was strict, and so we must have

F̄ (φ, x0) ≥ 0.

The proof that (uε)∗ is a supersolution of (1.4) follows analogously. It is worth pointing out

that due to the uniform continuity estimates on uε that are independent of ε, both (uε)∗ and

(uε)∗ are equal to g on Rn \D. Thus since (1.4) has comparison, (uε)∗, (uε)∗, and ū attain the

same boundary data, and using that ū is a solution, we conclude that

ū ≤ (uε)∗ ≤ (uε)∗ ≤ ū.

This implies local uniform convergence to ū. �

Remark 5.4 (Accounting of Ω̃). First, φ, and l are fixed, and this gives a unique solution of the

obstacle problems (3.4), (3.5). Then full measure sets which arise from the Subadditive Ergodic

Theorem listed in Lemma 3.2 are generated for a countable, dense family of l. Lemma 6.7 is

used for a countable family of tolerances, η, in conjunction with Egoroff’s Theorem, which is

relevant for Lemma 3.6 via Lemma 3.7. Finally all of the preceding sets are intersected along

a countable family of η and l, as well as the particular set from Lemma 3.2 applied to the

actual F̄ (φ, x0). In order that this set will work at all x0, Lemma 6.7 is applied once more to

account for translating the equation from x0 back to x = 0 (in Section 4.2). Another countable

intersection is performed for these sets as well. This gives rise to the set of full measure which is

referred to as Ωφ appearing in the statement of Proposition 1.7. At this point, the full measure

set still depends on the test function, φ, and so in the conclusion of Theorems 1.1 and 1.2, there

is one more countable intersection taken over the countable “dense” family of test functions

mentioned in 5.2. Then one has reached the actual set, Ω̃.

6. Appendix– Useful Facts

In this section we briefly collect some useful facts used in this note. Most items will be listed

without proof, but specific references will be provided.

6.1. Basic Properties of Equations (1.1), (1.4), and (3.1). Some of the major aspects

of solutions to integro-differential equations used in this note are the Aleksandrov-Bakelman-

Pucci estimate, regularity, and uniqueness. Here we collect these results and state them without

proof.

Theorem 6.1 (ABP Type Estimate, Theorem 9.1 of [20]). Suppose that M+
A is as in (1.21)

and {
M+
A (v, x) ≥ −g(x) in B

v ≤ 0 on Rn \B.
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Then

sup
B
{v} ≤ C(n)

λ
diam(B)(‖g‖L∞)(2−σ)/2(‖g‖Ln)σ/2.

Theorem 6.2 (Interior Hölder Regularity, Theorem 12.1 of [11]). If u is bounded on Rn and

is simultaneously a subsolution and a supersolution in B1 of respectively

M−u ≤ C0 and M+u ≥ −C0 in B1,

then u is uniformly γ- Hölder continuous in B1/2 with γ depending only on the dimension, a

lower bound on σ, and ellipticity:

[u]Cγ(B1/2) ≤ C(sup
Rn
{u}+ C0).

Theorem 6.3 (Boundary Regularity, Theorem 3.3 of [8]). Assume (1.15). Then the solutions

of (1.1), (1.4), and (3.1) are uniformly continuous with a modulus that only depends on λ, Λ,

σ, n, the domain, the boundary data, and ‖fαβ‖∞. Moreover if the boundary data is Hölder

continuous, then so is the solution with a possibly different Hölder exponent.

Remark 6.4. It is worth remarking that Theorems 6.2 and 6.3 both carry over to the setting

of (1.19), with extremal operators (1.20), (1.21). The main details are discussed in [20, Section

10].

Lemma 6.5. The operator Fφ,x(v, y) is uniformly continuous in x, independent of v and y.

That is there exists a modulus, ρφ, depending only on φ, such that if v and y are any function

and any point for which F (v, y) is well defined, then for any x1, x2 ∈ Rn,

|Fφ,x1(v, y)− Fφ,x2(v, y)| ≤ ρφ(|x1 − x2|),
independent of v and y.

Sketch of Proof of Lemma 6.5. The proof of this lemma is a direct application of the results

found in [11, Lemma 4.2], specifically it follows from the assertion that Lαβφ(·) is uniformly

continuous, uniformly in α and β. We recall

Fφ,x0(v, y) = inf
α

sup
β

{
fαβ(y) + [Lαβφ(x0)](y) + Lαβv(y)

}
, (6.1)

where [Lαβφ(x0)](y) is defined in (2.2). Thanks to the bounds on Kαβ from (1.15) and the

result [11, Lemma 4.2], we know that for y fixed, [Lαβφ(x0)](y) is a uniformly equicontinuous

(in x0) family in α and β. Therefore, for each α, β,(
fαβ(y) + [Lαβφ(x1)](y) + Lαβv(y)

)
−
(
fαβ(y) + [Lαβφ(x2)](y) + Lαβv(y)

)
= [Lαβφ(x1)](y)− [Lαβφ(x2)](y)

≤ ρφ(|x1 − x2|),
for some modulus, ρφ. Due to the uniformity in α and β the result holds under operations of

taking the infimum and supremum, and hence for Fφ,x0 . �

Lemma 6.6 (Comparison for (1.4)). Given uniformly continuous boundary data, g, the equation

(1.4) has a unique solution.

Proof of Lemma 6.6. This is a direct application of the comparison results of [11, Section 5]

once it has been established that F̄ is indeed elliptic with respect to M− and M+. �
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6.2. Pushing The Subadditive Limit Around By τx/εω. The following is an incredibly

useful lemma for nonlinear stochastic homogenization. It seems to have been first used for this

purpose in [23, Proof of Theorem 2.1]. The need for such a result stems from the fact that it

is natural to prove results at different spacial locations by using the translations uε(·+ x, ω) =

uε(·, τx/εω). However, one must be careful that τx/εω is still in an appropriate subset of Ω. We

state the results here and copy the proof presented in [37, Lemma 5.7].

Lemma 6.7 (Kosygina-Rezakhanlou-Varadhan). Let Gη be such that P(Gη) → 1 as η → 0.

Then there exists a function, ρ(η), and a set of full measure, Ωη, such that for ε chosen small

enough:

ρ(η)→ 0 as η → 0, (6.2)

∀ω ∈ Ωη and ∀x ∈ B1/ε(0), there is x̂ such that x̂ ∈ {x : τxω ∈ Gη}
⋂
B1/ε(0), (6.3)

and |x− x̂| ≤ ρ(η)

ε
. (6.4)

Proof of Lemma 6.7. This proof will be a consequence of the Ergodic Theorem combined with

the regularity of Lebesgue measure on Rn.

We begin by applying the ergodic theorem to the function Fη, defined as:

Fη(ω) =

{
1 if ω ∈ Gη
0 otherwise .

The ergodic theorem says there exists Ωη with P (Ωη) = 1 and ∀ω ∈ Ωη

lim
r→∞

1

|Br|

∫
Br

Fη(τx,sω)dxds =

∫
Ω
Fη(ω)dP(ω).

Specifically, for ε small enough and ∀ω ∈ Ωη:∣∣{x : τxω ∈ Gη} ∩B1/ε

∣∣∣∣B1/ε

∣∣ ≥ P (Gη)− η ≥ 1− 2η.

In other words, ∣∣{x : τxω ∈ Gη} ∩B1/ε

∣∣ ≥ (1− 2η)
∣∣B1/ε

∣∣ .
In order to find the function m(η), we will use the regularity property of Lebesgue measure.

Let us call the good set G = {x : τxω ∈ Gη} ∩ B1/ε and the bad set will be Gc ∩ B1/ε. The

outer regularity of Lebesgue measure says that there is a basic set (a finite union of balls),

E =

M⋃
i=1

Bri ,

such that Gc ∩B1/ε ⊂ E and

|E| − η ≤
∣∣Gc ∩B1/ε

∣∣ .
We also know from above that∣∣Gc ∩B1/ε

∣∣ =
∣∣B1/ε

∣∣− |G| ≤ 2η
∣∣B1/ε

∣∣ .
Hence

|E| ≤ 2η
∣∣B1/ε

∣∣+ η.
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The worst case scenario regarding the distance from x ∈ E to x̂ ∈ Ec ∩ B1/ε is when E is one

ball, and x is at its center. Thus

|x− x̂| ≤
(2ηCn
εn

+ η
)1/(n)

=
((2Cnη + εnη)

εn
)1/(n) ≤ (3Cnη)1/(n)

ε

:=
m(η)

ε
.

Which completes the proof of the lemma. �

6.3. Facts About The Obstacle Problem. Finally, we collect a few facts about the obstacle

problem which are useful above. The first is the representation of the least supersolution (3.2)

as the solution of a variational inequality:{
max(Fφ,x0(U lA, x)− l, 0− U lA) = 0 in A

U lA = 0 on Rn \A.
(6.5)

Furthermore, by comparison between U lA and the obstacle at points on the contact set, we know

that for all x ∈ K(A)

Fφ,x0(U lA, x) ≥ Fφ,x0(0, x), (6.6)

where on the right hand side of the inequality the operator is applied to the constant, 0, function.

The first result we mention about the obstacle problem is its a priori uniform continuity.

This follows as a direct analog to the nonlocal setting of the proof provided in [13, Theorem

2.1 (i)] using the penalization method of approximating the obstacle solution and so we omit

the proof.

Lemma 6.8 (Regularity For The Obstacle Problem). There exists an exponent, γ, depending

only on λ, Λ, σ, n, and A, such that U lA is Hölder continuous with exponent γ.

Lemma 6.9 (Translation). The obstacle solution, U lA, satisfies the translation property: for

any z ∈ Rn, on the set A+ z,

U lA+z(·, ω) = U lA(· − z, τzω).

Proof of Lemma 6.9. Without loss of generality we take Fφ,x0 to simply be F (the argument

does not see any dependence on [Lαβφ(x0)](x)). We will show that U lA+z(·, ω) ≤ U lA(·− z, τzω),

and the reverse inequality follows similarly. The equation for U lA and the stationarity of F

implies that for y ∈ A+ z, hence y = x+ z for some x ∈ A, we have

F (U lA(· − z, τzω), y, ω) = F (U lA(· − z, τzω), x+ z, ω) = F (U lA(·, τzω), x, τzω).

Hence from the equation for U lA, we have

F (U lA(· − z, τzω), y, ω) ≤ l. (6.7)

Moreover, U lA(· − z, τzω) ≥ 0 in Rn. Since U lA+z is the least such supersolution, we conclude

U lA+z(·, ω) ≤ U lA(· − z, τzω).

�
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Lemma 6.10 (Monotonicity In The Domain). If A ⊂ B, then U lA ≤ U lB.

Proof of Lemma 6.10. As in the previous proof, we work without loss of generality with F

instead of Fφ,x0 . Since A ⊂ B, F (U lB, x) ≤ l in A and U lB ≥ 0 in Rn. Since U lA is the least such

supersolution, we conclude U lA ≤ U lB. �

Lemma 6.11 (Monotonicity In The RHS). If l1 ≤ l2, then U l1A ≥ U
l2
A .

Proof of Lemma 6.11. We notice that for any u solving Fφ,x0(u, x) ≤ l1, then also u solves

Fφ,x0(u, x) ≤ l2. Hence taking the infimum over all such supersolutions, we find

U l2A ≤ U
l1
A .

�
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