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Abstract. We continue the program initiated in a previous work, of applying integro-
differential methods to Neumann Homogenization problems. We target the case of linear
periodic equations with a singular drift, which includes (with some regularity assump-
tions) divergence equations with non-co-normal oscillatory Neumann conditions. Our
analysis focuses on an induced integro-differential homogenization problem on the bound-
ary of the domain. Also, we use homogenization results for regular Dirichlet problems to
build barriers for the oscillatory Neumann problem with the singular gradient term. We
note that our method allows to recast some existing results for fully nonlinear Neumann
homogenization into this same framework. This version is the “director’s cut”.

1. Introduction

In this paper, we study the periodic homogenization of linear elliptic equations with a
singular drift with oscillatory Neumann conditions. In particular, we study the ε → 0
behavior of the solutions, uε, to the equation

Tr(A(x
ε
)D2uε(x)) + 1

ε
B(x

ε
) · ∇uε = 0 in Σ1

uε = 0 on Σ1

∂nu
ε(x) = g(x

ε
) on Σ0.

(1.1)

The equation is posed in an infinite strip domain, with a normal vector given by n, which
is

Σ1 ⊂ Rd+1, Σ1 = {x ∈ Rd+1 : 0 < x · n < 1}.

The “top” and “bottom” boundaries are respectively

Σ1 ⊂ Rd+1, Σ1 = {x ∈ Rd+1 : x · n = 1},
Σ0 ⊂ Rd+1, Σ0 = {x ∈ Rd+1 : x · n = 0}.

The main goal is to prove that the “nonlinear averaging” effects of the equation in the
interior and on the boundary are “compatible”, and that uε will converge uniformly to ū,
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that is the unique solution of 
Tr(ĀD2ū(x)) = 0 in Σ1

ū = 0 on Σ1

∂nū(x) = ḡ on Σ0.

(1.2)

The matrix Ā is a unique constant, and it is the same one obtained in the homogenization
of (1.1) without oscillatory boundary data (see Section A.3 and A.7). Due to the flat
geometry of Σ1, ḡ will also be a unique constant (but in more general situations would
be a function of the normal vector, n(x)). Thus, this is simply another way of saying

that there is a unique affine function, ū, such that uε converges to ū uniformly in Σ1. We
note, that for the homogenization of equations of the form (1.1), assumption 2.4 involves
a compatibility condition between A(x) and B(x)– which is standard, and this condition
also forces the limit equation, (1.2), to be independent of ∇ū. The compatibility condition
is trivially satisfied when B = div(A). Our main result is:

Theorem 1.1. Assume that g : Rd+1 → R, B : Rd+1 → Rd+1, A : Rd+1 → S(d +
1) are all Zd+1 periodic functions, A ∈ Cγ(Rd+1) is uniformly elliptic, B ∈ Cγ(Rd+1),
g ∈ Cγ(Rd+1) for some γ ∈ (0, 1), that n is an irrational direction, and the standard
compatibility condition between A and B, all of which appear in detail as Assumptions
2.1-2.4. There exists a unique constant matrix, Ā, and a unique constant, ḡ, such that
uε → ū, uniformly in Σ1, where ū is the unique affine function that solves (1.2).

Remark 1.2. When A ∈ C1,γ and B = div(A), Theorem 1.1 includes that case of solv-
ing div(A(x/ε))∇uε = 0 with ∂nu

ε(x) = g(x/ε). The Neumann condition is oblique with
respect to the operator divA(y)∇u as opposed to the more frequently studied co-normal
condition, (n,A(x/ε)∇u) = g(x/ε). This means that variational methods are not ap-
propriate for (1.1), and so we appeal to those based on comparison principles and other
non-divergence type techniques.

Remark 1.3. In Section 7 we mention how a modification of Theorem 1.1 and its proof
give a new proof of a similar result for nonlinear equations without gradient dependence
that was proved in Choi-Kim [9].

Our treatment of Theorem 1.1 follows that of our earlier result in [20], and the main idea
is to recast (1.1) as a global, interior, almost periodic integro-differential homogenization
problem that takes place on Σ0 only. The simple geometry of Σ1, although particular, is
now known to be the most important one for resolving solutions of (1.1) in more general
domains. The issues of resolving the homogenization of (1.1) for all irrational directions,
and proving homogenization in general domains are separate ones. In Σ1, (1.1) can be
thought of as a fundamental corrector problem, whereas studying (1.1) in general domains
relies upon how the effective normal condition depends upon the normal direction, n, and
is of a different nature than the corrector problem.

The interior homogenization of (1.1) with regular boundary conditions that don’t de-
pend on ε is well understood, and Ā is determined by the same analysis that does not see
the oscillatory boundary condition (see Section A.3). The new part of Theorem 1.1 is of
course the ability to also have the oscillatory condition, ∂nu

ε = g(x/ε).
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2. Background and Assumptions

2.1. Background. We note that despite the many existing results about boundary ho-
mogenization (some listed below) to the best of our knowledge, there are none that can
treat (1.1) when n is irrational. The field of homogenization of elliptic, parabolic, and
Hamilton-Jacobi equations in the periodic, almost periodic, and random settings is by now
an enormous field with contributions from many authors. The background for general ho-
mogenization is not presented here, and we simply try to give the references for oscillatory
boundary problems. The interested reader can consult the books of Bensoussan-Lions-
Papanicolaou [6] and Jikov-Kozlov-Oleinik [22] for an introduction to the subject and the
survey of Engquist-Souganidis [12] for a somewhat current list of results. Since [12], there
has been a large amount of activity, especially in the case of random coefficients and rates
of convergence, which is not represented in [12]. Due to the irrationality of n, the problem
we study is related to that of Ishii [21] for almost periodic Hamilton-Jacobi equations.

Two origins of (1.1). An equation with oscillatory Neumann data, as in (1.1), nat-
urally arises in the study of a diffusion in an oscillatory environment with a prescribed
reflection at the boundary whose strength is dictated by g(x/ε). Studying this equation
with a regular boundary condition (no x/ε dependence) in the periodic setting goes back
at least to Freidlin [17] and Bensoussan-Lions-Papanicolaou [6]. Probabilistically, the os-
cillatory reflection is a natural consideration, for example in Tanaka [29]. Another place
where the condition ∂nu

ε = g(x/ε) arises is in the study of boundary layers for (1.1) with
regular boundary data. In this case, when one uses a corrector to expand the ε behavior
of uε around the smooth, effective solution, ū, they must investigate uε − ū − εu1, where
vaguely u1 is a first corrector. However, this function no longer satisfies the original bound-
ary conditions of uε and ū, and in general it will be a function of x/ε on Σ0. Hence, one
is forced to consider oscillatory terms on Σ0, as in (1.1). For the Dirichlet problem, the
appearance of the oscillatory boundary term due to the use of a corrector in the boundary
layer expansion was already present in [6, Chp. 3, Sec. 5] and Avellaneda-Lin [2, Sec.
3.2], although in [6] the precise boundary behavior was not under consideration, and the
oscillatory terms were not further studied because they were of lower order.

The rational case. The earliest results for linear non-divergence equations with os-
cillatory oblique Neumann data appear to go back to Tanaka [29], where the boundary
contains a subspace of the Zd+1 lattice, and the Neumann data is periodic with respect to
this subspace. Next came the works of Arisawa [1] and subsequently Barles-Da Lio-Lions-
Souganidis [4]. These works treat the oscillatory Neumann (and more general) boundary
conditions in a situation where effectively the hyperplane, Σ0, would share a periodic sub-
lattice with Zd+1. Basically, the corresponding results in those papers would match up with
a choice of n as a rational vector in (1.1). The work [4] also treats fully nonlinear versions of
(1.1) in this periodic, or rational, situation. Both [4] and [29] include the singular gradient
term that appears in (1.1). This common periodicity between the boundary condition and
the interior equation seems to be crucial in those works, as they solve coupled corrector (or
“ergodic”) problems with both the interior and boundary simultaneously. Our method, as
outlined in Section 3 effectively de-couples these two equations and searches for an effective
limit on the boundary of Σ1 by itself, which subsequently determines ḡ a posteriori. In
this same shared interior/boundary periodicity set-up, with a rational choice of n, some
problems of Dirichlet homogenization were studied in Barles-Mironescu [5].
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The co-normal case. In the case of divergence equations, with an oscillatory co-
normal condition, (n,A(x/ε)∇uε) = g(x/ε), (1.1) was treated in the classical work of
Bensoussan-Lions-Papanicolaou [6, Chp. 1 Sec. 7.3]. It in fact follows from the divergence
structure of the equation, exactly as in the same way as the problem with regular boundary
conditions. There, they identify the difference between the rational and irrational cases
of n, in domains that are more general than Σ1. The problem becomes more challenging
when one wishes to know more precise information about the boundary layer of uε near
Σ0. In that case, the analysis is much more delicate, and some works on this boundary
homogenization structure in the Dirichlet and co-normal Neumann setting for elliptic
systems include Avellaneda-Lin [2], Gérard-Varet-Masmoudi [18] and Kenig-Lin-Shen [23],
[24], where estimates for the boundary layer are determined.

The gradient independent case. Recently, the boundary homogenization for both
cases of oscillatory Dirichlet and Neumann conditions with fully nonlinear uniformly el-
liptic equations in the interior (with x/ε dependence) has been solved in many situations,
including some general domains. All of the following works treat problems with purely
second order equations in the interior, hence the presence of the term (1/ε)B(x/ε) in (1.1)
is one aspect that separates this work from the following (also, they treat nonlinear equa-
tions, while we work with linear ones). The work of Choi-Kim-Lee [8] solved the problem
in a strip domain, as Σ1, with a translation invariant nonlinear equation and oscillatory
Neumann condition (subsequently the authors, in [20], gave a different proof along the lines
presented in this work). Then Choi-Kim [9] treated the problem in more general domains
with also an oscillatory equation, F (D2uε, x/ε) = 0, in the interior. In [9] it became clear
that equations in the simple domain, like (1.1), can serve as a sort of corrector problem for
the boundary behavior of uε in more general domains, and they also noted there are two
separate questions that must be addressed: the solvability of the corrector problem, such
as Theorem 1.1, and the continuity properties of ḡ as a function of the normal n(x), for x
in the boundary. The related Dirichlet homogenization in general domains was solved by
Feldman [14], where crucially it was noted that there may possibly be instances in which
the effective boundary condition will be discontinuous, but nonetheless one can control
the size of the set of discontinuities in a way that still guarantees the effective Dirichlet
problem admits unique solutions. The issue of continuity / discontinuity of the effective
boundary conditions has been further studied by Feldman-Kim [15]. Finally, the homoge-
nization of random oscillatory boundary data with a translation invariant uniformly elliptic
equation in the interior was recently obtained for some types of random environments by
Feldman-Kim-Souganidis [16].

As one final note, we mention that in Bal-Jing [3], a Dirichlet-to-Neumann mapping was
utilized– as we do here– for an equation that is translation invariant in the interior and
has a Robin boundary condition with a random, stationary ergodic term.

2.2. Assumptions.

Assumption 2.1. A : Rd+1 → S(d + 1) (symmetric (d + 1) × (d + 1) matrices) and for
some λ < Λ, for all x, λId ≤ A(x) ≤ ΛId. A ∈ Cγ(Rd+1) and is Zd+1 periodic.

Assumption 2.2. B : Rd+1 → Rd+1, B ∈ Cγ(Rd+1), and B is Zd+1 periodic.

Remark 2.3. Assume that Lu(y) = Aij(y)uyiyj(y)+B(y)·∇u(y) and that L∗u = (Aij(·)u)yiyj−
div(uB(·)) is the formal adjoint of L. Under Assumptions 2.1 and 2.2, there exists a unique
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invariant measure, m ∈ L2([0, 1]d+1), which is periodic and solves

L∗m = 0,

subject to m > 0 and ∫
[0,1]d+1

m(y)dy = 1.

(We mean that ∫
m(y)Lφ(y)dy = 0

for all periodic φ ∈ C2∩L∞.) Some details of m are briefly expanded upon in the appendix.

Assumption 2.4. B must satisfy the compatibility (or “centering”) condition that∫
[0,1]d+1

B(y)m(y)dy = 0.

It prevents trajectories of the related rescaled stochastic process from “escaping to infinity”,
and gives compactness of the measures for the law of the processes.

The main point of our method is that we study an almost periodic homogenization
problem on Σ0. We use the following definition for almost periodic functions.

Definition 2.5. f : Σ0 → R is almost periodic if for any δ > 0, the set of δ-almost periods
of f ,

Eδ := {τ ∈ Σ0 : sup
x∈Σ0

|f(x+ τ)− f(x)| < δ},

satisfies the following property: there exists a compact set, K ⊂ Σ0, such that

(z +K) ∩ Eδ 6= ∅ for all z ∈ Σ0.

Remark 2.6. [27, Proposition 1.2] Two other equivalent and classical formulations are
that f : Σ0 → R is almost periodic if

(i) f can be uniformly approximated on Σ0 by trigonometric polynomials.
(ii) The set {f(·+ z) : z ∈ Σ0} is precompact in the space L∞(Σ0).

2.3. Notation.

• We will assume that x ∈ Rd+1 is written in the coordinates relative to Σ0, that is
x = (x̂, xd+1), where x̂ ∈ Σ0 and xd+1 ∈ span(n).
• Σr = {x ∈ Rd+1 : 0 < x · n < r}
• Σr = {x ∈ Rd+1 : x · n = r}
• Σ0 = {x ∈ Rd+1 : x · n = 0}
• typically, x, is the original macroscopic variable, as in (1.1)
• typically, y, is the microscopic variable, as in (3.2), which results from a rescaling

such as v(y) = (1/ε)uε(εy).
• Lu(y) = Aij(y)uyiyj(y) +B(y) · ∇u(y)

• BR ⊂ Rd+1, B′R ⊂ Σ0, B+
R = BR ∩ Σr for r > R.
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3. Main Ideas of The Proof

In this section, we give the sketch of the proof, without explicit justifications. The
details appear in Sections 4, 5, 6. Our strategy in this approach centers on the Dirichlet-
to-Neumann (D-to-N) operator at two different scales. First is the original scale of the
macroscopic variables, with W ε

u the unique (classical) solution of
Tr(A(x

ε
)D2W ε

u) + 1
ε
B(x

ε
) · ∇W ε

u = 0 in Σ1

W ε
u = 0 on Σ1

W ε
u = u on Σ0,

(3.1)

and we define

I1 : C1,γ(Σ0)→ C γ̃(Σ0)

via

I1(u, x) = ∂nW
ε
u(x).

Similarly, we will also need the D-to-N mapping for the equation in microscopic variables.
This changes the domain of definition of the equation, to the larger set, Σ1/ε:

Tr(A(y)D2V ε
u ) +B(y) · ∇V ε

u = 0 in Σ1/ε

V ε
u = 0 on Σ1/ε

V ε
u = u on Σ0.

(3.2)

We define

I1/ε : C1,γ(Σ0)→ C γ̃(Σ0)

via

I1/ε(u, y) = ∂nV
ε
u (y). (3.3)

We note that u ∈ C1,γ(Σ0), implies that V ε
u ,W

ε
u ∈ C1,γ(Σ1), which makes I1 and I1/ε well

defined.
Many subsequent arguments will invoke various regularity estimates involving uε and

g(·/ε). However, these will not be useful unless it can first be shown that ‖uε‖L∞ ≤ C,
independently from ε. Without assumptions on B, such as the “centering condition” in
Assumption 2.2, such estimates are false. However, it turns out that one can use the
interior homogenization for an auxiliary barrier equation to derive the needed control on
‖uε‖L∞ . Thus, since g ∈ Cγ(Σ0), standard regularity theory (see Proposition A.2 as well

as the L∞ estimate in Section 4.2) indicates that uε ∈ C1,γ(Σ1) with [uε]Cγ independent of
ε and [∇uε]Cγ depending on ε. Thus, this says that up to subsequences, uε will have local

uniform limits in Σ1. The main question is, can we characterize all possible such limits?
For the moment, assume that there is a unique v̄ ∈ Cγ(Σ0) such that uε|Σ0 → v̄. Letting

ū be any possible local uniform limit of uε in Σ1, we know by the perturbed test function
method for viscosity solutions of (1.1), that ū must solve (see Proposition A.8)

Tr(ĀD2ū) = 0 in Σ1,
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where Ā is the unique constant matrix defined (A.7). Hence, by the global Cγ continuity
of ū and the assumed convergence of uε|Σ0 → v̄ for a unique v̄, we see that ū is the unique
solution of 

Tr(ĀD2ū) = 0 in Σ1,

ū = 0 on Σ1

ū = v̄ on Σ0.

Thus, assuming v̄ ∈ C1,γ(Σ0), then ū ∈ C1,γ(Σ1). We obtain, a posteriori that the unique
effective Neumann condition is then

ḡ = ∂nū.

(We note that in the flat geometry of Σ1, it will be that ḡ is a constant.)
Now, why will it be true that there is a unique v̄, such that uε|Σ0 → v̄? Because

uε ∈ C1,γ, the equation (1.1) implies that uε|Σ0 is the unique classical solution of

I1(uε|Σ0 , x) = g(
x

ε
). (3.4)

However, it is well known that I1, as an operator with the global comparison principle, is
an integro-differential operator on functions on Σ0, [10]. This, combined with the fact that
we have periodic ingredients restricted to the irrational hyperplane, Σ0, puts (3.4) into the
realm of almost periodic integro-differential homogenization on Σ0, which we can view in
a similar light to [21]. The main contribution of this work is the analysis of (3.4), and the
main result is

Proposition 3.1. There exists a unique constant, c̄, such that uε|Σ0 → c̄ uniformly in Σ0.

The majority of this paper is focused on establishing Proposition 3.1. We note that an
interesting aspect of our work is the need to establish estimates on ‖uε‖L∞ and ‖∂nuε‖L∞ ,
which begins in the next section.

4. The Construction of Barriers and a bound for ‖uε‖L∞

This section is dedicated to a deceptively simple result; the construction of barriers,
contained in Proposition 4.1, below. The interesting part is that when B ≡ 0 in (1.1),
even for fully nonlinear equations, this proposition is trivial from the observation that affine
functions solve the equation in Σ1 (more on this in Section 7). Even more intriguing is that
the outcome of Proposition 4.1 is false, unless there is homogenization occurring in the
interior of Σ1. In fact, as the reader will see, the result utilizes the convenient result that
the interior homogenization of the regular Dirichlet problem enjoys a global rate up to the
boundary of Σ1; this was proved in the original work of Bensoussan-Lions-Papanicolaou
for the non-divergence equation, (1.1), [6, Chp. 3, Sec 5, Thm. 5.1] and in the divergence
setting by Avellaneda-Lin [2]. We are not certain if such heavy machinery is necessary,
but it sufficed for the present investigation.

We then use the barriers to obtain the crucial estimate that is needed to begin the
homogenization procedure, namely that

‖uε‖L∞(Σ1) ≤ C, uniformly in ε.
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It is interesting in this case, that the “centering” assumption on B and the homogenization
for regular boundary conditions are used to get and estimate for ‖uε‖L∞ . This seems to
not be an issue in existing works.

4.1. The barrier.

Proposition 4.1 (Barrier). There exist (universal) constants, c1 and c2, 0 < c1 < c2, such
that

−c2 ≤ ∂nφ
ε ≤ −c1 < 0, (4.1)

where φε is the unique solution of the problem
Tr(A(y)D2φε(y)) +B(y) · ∇φε(y) = 0 in Σ1/ε

φε = 0 on Σ1/ε

φε = 1/ε on Σ0.

(4.2)

An immediate consequence of the barrier behavior in Proposition 4.1 is

Proposition 4.2 (Estimates for The Neumann Problem). If for some c ≥ 0, ηε solves
Tr(A(y)D2ηε(y)) +B(y) · ∇ηε(y) = 0 in Σ1/ε

|ηε| ≤ c on Σ1/ε

|∂nηε| ≤ c on Σ0,

(4.3)

then it holds that

‖ηε‖
L∞(Σ1/ε)

≤ C
c

ε
.

First we will prove the estimates for the Neumann problem, Proposition 4.2, and then
we will prove the Barrier, Proposition 4.1.

Proof of Proposition 4.2. We will only prove one side of the bound for ηε, and the reverse
inequality is analogous. We begin with a note that due to the positive 1-homogeneity of
the operator, L, any positive multiple of φε will be a supersolution, i.e. Lφε ≤ 0. We claim
that for an appropriate b > 0, the function,

φ̃ε = bφε + c (4.4)

is a supersolution of (4.3). Indeed, choosing b > 0 large enough (w.l.o.g. b > 1), we obtain

∂nφ̃
ε < −bc1 < −c ≤ ∂nη on Σ0,

where c1 is the constant appearing in Proposition 4.1. Furthermore, by the construction
of φε,

φ̃ε|Σ1/ε
= c ≥ η|Σ1/ε

.

Finally, by the positive 1-homogeneity of (4.2), we have not changed the equation for φε

and φ̃ε.
The upper bound on ηε is now immediate from the comparison of sub and super solutions

of Neumann problems (Remark A.1), which implies

ηε ≤ φ̃ε ≤ 1/ε+ c in Σ1/ε.

�
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Proof Proposition 4.1. The key component for our proof of Proposition 4.1 is the result
in [6, Chp. 3, Sec 5, Thm 5.1] regarding rates of convergence in homogenization, which
shows that φε must stay within a fixed distance of order 1 of a hyperplane. (Note, we
state the rates result of [6] as Proposition A.3 and provide modifications to allow for our
assumptions on A and B, which do not require as much regularity as the presentation in
[6].)

Let us define the rescaling of φε as

ρε(x) = εφε(
x

ε
),

so we have

D2ρε(x) = ε−1D2φε(
x

ε
), ∇ρε(x) = ∇φε(x

ε
)

Hence, ρε is the unique solution of
Tr(A(x

ε
)D2ρε(y)) + 1

ε
B(x

ε
) · ∇ρε(y) = 0 in Σ1

ρε = 0 on Σ1

ρε = 1 on Σ0.

(4.5)

Furthermore, by standard homogenization results, e.g. Bensoussan-Lions-Papanicolaou [6,
Chp. 3, Sec 4 and 5], also summarized here in Section A.3 we know that there is a unique
constant matrix Ā so that ρε → ρ̄, and ρ̄ is the unique solution of

Tr(ĀD2ρ̄(y)) = 0 in Σ1

ρε = 0 on Σ1

ρε = 1 on Σ0.

(4.6)

Since this equation is purely second order, we see that ρ̄(x) = 1 − xd+1. Now we use the
fact that there is a global rate of convergence of ρε, for example in [6, Chp. 3, Thm 5.1]
(see also Proposition A.3). Namely, there is a universal constant, C, so that

‖ρε − ρ̄‖L∞(Σ1) ≤ Cε.

We note also, for the divergence case (B = div(A)), we could utilize the global rate from
[2, Theorem 5]. In the microscopic variables, this says

‖φε − 1

ε
ρ̄(ε·)‖

L∞(Σ1/ε)
≤ C. (4.7)

Finally, we note that since we are ultimately concerned with only ∂nφ
ε, we assume that

we have subtracted 1/ε from both φε and ε−1ρ̄(ε·) so that

φε = 0 on Σ0, φ
ε = −1/ε on Σ1/ε, and ρ̄(y) = −yd+1.

These observations are now enough to build a barrier for φε. The most important
observation of φε and ρ̄ is that (4.7) shows that there will be a fixed distance, t∗, that is
independent of ε so that φε(y) ≤ −1 for all yd+1 = t∗. The fact that t∗ is independent of ε
allows to construct a good barrier. Indeed, we simply choose t∗ = C + 1, so from (4.7)

φε(y) ≤ −1 for all yd+1 = t∗.
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We will construct an upper barrier, M , for φε. M will be a super solution in Σt∗ , with
M = 0 on Σ0, and M = −1 on Σt∗ . We note that M is constructed to be a function only
of yd+1 and M ′ ≤ 0 globally. We need

L(M) = Tr(A(y)D2M) +B(y) · ∇M ≤ 0 in Σt∗ .

By the uniform ellipticity of A,

L(M) = Tr(A(y)D2M) +B(y) · ∇M ≤ ΛM ′′ − ‖B‖M ′,

and so we seek a solution of the form

M ′′ − C

Λ
M ′ = 0, M(0) = 0, M(t∗) = −1.

Let us denote C2 = (C/Λ). The good choice of M will be

M(t) =
a0

C2

(eC2t − 1),

where a0 is chosen to obtain M(t∗) = −1. That means that

a0 =
−C2

(eC2t∗ − 1)
< 0,

and without loss of generality, C2 ≥ 1, and t∗ ≥ 1. Thus M is a super solution of L(M) ≤ 0
in Σt∗ , φε is a solution of L(φε) = 0 in Σt∗ , φε = M on Σ0, and M ≥ φε on Σt∗ . Thus

φε ≤M in Σt∗ , and ∂nφ
ε(y) ≤M ′(0) = a0 < 0 for y ∈ Σ0.

This concludes the claimed upper bound of the proof, with c1 = a0.
Next, we construct a lower barrier for φε, which we will call m. For the lower bound

construction, we can simply choose s∗ = 10. We will build m so that

m′ ≤ 0 globally,

and

L(m) = Tr(A(y)D2M) +B(y) · ∇M ≥ 0, m = 0 on Σ0, m = −1/ε on Σs∗

the sign of m′ plus the ellipticity says

L(m) ≥ λm′′ + ‖B‖m′

so we choose it concretely to solve

m′′ + (C/λ)m′ = 0 with m(0) = 0, and m(10) = −10− C.
Hence,

m(t) =
a1

C3

(1− e−C3t),

where C3 = (C/λ).
We make the choice

a1 =
C2(−10− C)

(1− e−C2∗10)
< 0.

Furthermore, the rates of convergence of φε → ρ̄ show that

φε(y) ≥ −10− C for all y such that yd+1 = 10,
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and hence

m(10) = −10− C ≤ φε(y) for yd+1 = 10.

So, again, we conclude that m is a subsolution in Σs∗ , and so φε ≥ m. We note

m′(0) = a1 < 0,

and thus the lower bound holds with c2 = a1. �

Remark 4.3. The proof of the previous proposition is basically the one feature that sep-
arates the proofs for the case where L is independent from the gradient and the case of
(1.1). When the equation is independent of the gradient, Proposition 4.1 is trivial because
affine functions are solutions of the equation.

We conclude this section with one last result that captures the limiting behavior of
φε − 1/ε as ε → 0. It will be useful for proving the uniqueness of the limiting boundary
condition in Theorem 1.1.

Lemma 4.4. Assume that ψε solves
Tr(A(y)D2ψε(y)) +B(y) · ∇ψε(y) = 0 in Σ1/ε

ψε = −1/ε on Σ1/ε

ψε = 0 on Σ0.

Then there exists ψ∞ such that ψε → ψ∞ uniformly in Σ1 as ε→ 0.

Proof. This is a consequence of uniqueness in various classes of functions for{
Tr(A(y)D2u(y)) +B(y) · ∇u(y) = 0 in Σ∞

u = u0 on Σ0,
(4.8)

where

Σ∞ = {x ∈ Rd+1 : 0 < x · n}.
In particular, there is a unique bounded solution of (4.8). Thus if there are u and v that
solve (4.8) and for a fixed constant, satisfy

|u(y)− yd+1| ≤ C, and |v(y)− yd+1| ≤ C for all y ∈ Σ∞,

then u− v is bounded, solves (4.8) with u− v = 0 on Σ0, and hence is the unique solution,
which is u− v ≡ 0.

To identify ψ∞, we note that ψε does indeed have local uniform limits. This is due to
the fact that its oscillation in any ball of a fixed radius is uniformly bounded– as seen in
the proof of Proposition 4.1– and hence enjoys a global estimate on [ψε]Cγ , by uniformly
using the local estimate to cover Σ1/ε. But then if ψ∞ is any local uniform limit of ψε, it
follows as in the proof of Proposition 4.1 that

|ψε(y)− yd+1| ≤ C,

as well as ψ∞ satisfies (4.8) by the stability of (viscosity) solutions. Hence any possible
ψ∞ will indeed satisfy

|ψ∞ − yd+1| ≤ C,

and is thus unique.
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Now, to conclude, we need to check that the convergence is in fact uniform in the strip
Σ1. We note that in Σ1/ε, ψε − ψ∞ is a bounded solution of

Tr(A(y)D2u(y)) +B(y) · ∇u(y) = 0 in Σ1/ε.

Thus by the maximim principle, max
Σ1/ε(ψ

ε−ψ∞), occurs on the boundary of Σ1/ε. Since

ψ1/ε − ψ∞ = 0 on Σ0 and
∣∣ψ1/ε − ψ∞

∣∣ ≤ C on Σ1/ε, we conclude that

εC(φε − 1/ε) and − εC(φε − 1/ε)

are respectively sub and super solutions of the equation and boundary data, where φε is
defined in (4.2). Hence

εC(φε − 1/ε) ≤ ψε − ψ∞ ≤ −εC(φε − 1/ε) in Σ1/ε.

Since |φε − 1/ε| ≤ C in Σ1 (again, due to the arguments in the proof of Proposition 4.1),
we conclude that

sup
y∈Σ1

∣∣ψ1/ε − ψ∞
∣∣→ 0 as ε→ 0.

�

4.2. Uniform bound for ‖uε‖L∞. We will use, in a crucial way, the Cγ and C1,γ estimates
for uε, and various other related functions (see Corollary 4.6 and Proposition 4.2 and A.2).
For these to be useful, we first need to know that uε are uniformly bounded. It is interesting
that it seems in most– if not all– of the existing literature, this bound comes from basic
observations using directly the structure of the equation being homogenized. For (1.1),
however, this is not the case, and such an estimate will not be true without the centering
condition on B, Assumption 2.4. Thus, the estimate we need for the Neumann problem
in fact utilizes the homogenization of (1.1) with regular Dirichlet data.

Lemma 4.5. There exists a universal C > 0 such that ‖uε‖L∞(Σ1) ≤ C‖g‖L∞(Σ0), where
uε is the unique solution of (1.1).

Proof. This statement is immediate from Proposition 4.2. If we define ηε as

ηε(y) :=
1

ε
uε(εy),

then we see that ηε satisfies (4.3). Indeed,

|∂nηε(y)| = |∂nuε(εy)| = |g(y)| ≤ ‖g‖L∞(Σ0) for y ∈ Σ0,

and

|ηε(y)| = |uε(y)| = 0 for y ∈ Σ1/ε.

Also, the rescaling of uε in this way transforms the equation in (1.1) in Σ1 into (4.3) in
Σ1/ε. Hence Proposition 4.2 implies that

‖uε‖L∞(Σ1) ≤ ε‖ηε‖L∞(Σ1/ε) ≤ C‖g‖L∞(Σ0).

�

By Proposition A.2, we have the following corollary.
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Corollary 4.6. uε satisfies the following estimates

[uε]Cγ(Σ1) ≤ C‖g‖L∞(Σ0)

and

[uε]C1,γ(Σ1) ≤
C

εγ
(1 + [g]Cγ(Σ0)).

5. Structural Features of I1/ε

In this section, we collect several features of the operator, I1/ε (defined above, in (3.2),
(3.3)), which will be used to prove the existence and uniqueness of the limiting constant,
ḡ, in Section 6. The most important result for this section is the following

Lemma 5.1. There exists a function f ε ∈ C(Σ0)∩L∞(Σ0) such that for all ϕ ∈ C1,γ(Σ0)
and constants, c,

I1/ε(φ+ c, y) = I1/ε(φ, y)− cf ε(y).

Furthermore, f ε ≥ 0, and for 0 < c1 < c2 (the universal constants from Proposition 4.1)

εc1 ≤ f ε(y) ≤ εc2.

Remark 5.2. This is the counterpart to [20, Lemma 3.6]. The difference is that there the
operator in the bulk, F , and subsequently I1/ε were invariant by addition of hyperplanes. In
that case, this lemma is trivial, as the equation is invariant by the addition of hyperplanes
to solutions. Here hyperplanes are not solutions, nor can they serve as sub/super solution
barriers, and so we appeal to the barrier provided by Proposition 4.1.

Proof of Lemma 5.1. Let us call V ε
φ the solution of (3.2) with boundary data, φ, and Ṽ ε

φ

the solution of (3.2) with data φ + c. If φε is as in Proposition 4.1, then since (3.2) is
linear, we see that

Φ̃ = Φ + εcφε.

Hence,

I1/ε(φ+ c, y) = ∂nΦ̃(y) = ∂nΦ(y) + εc∂nφ
ε.

The lemma follows immediately from Proposition 4.1 with the choice

f ε = −ε∂nφε. (5.1)

�

Lemma 5.3 (Rescaling). For all v ∈ C1,γ(Σ0),

I1(εv(
·
ε

), x) = I1/ε(v,
x

ε
)

Proof. We let U ε
v solve (3.1) with data εv(·/ε), let V ε

v solve (3.2) with data v, and define

Ũ ε(y) = εV ε
v (
x

ε
).

Hence

∇Ũ ε(x) = ∇V ε
v (
x

ε
), and D2Ũ ε(x) =

1

ε
D2V ε

v (
x

ε
),
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and thus Ũ ε solves (3.1), with data εv(·/ε). By the uniqueness of solutions to (3.1), we
conclude

Ũ ε = U ε
v ,

and hence

I1(εv(
·
ε

), x) = ∂nU
ε
v (x) = ∂nŨ

ε(x) = ∂nV
ε
v (
x

ε
) = I1/ε(v, x).

�

The following auxiliary functions will be useful for localizing points of maxima and
minima. Let

φ1(x) :=
|x|2

1 + |x|2
, for x ∈ Σ0

and for R > 0 we will consider the functions

φR(x) := φ(x/R). (5.2)

As we shall see below, the Dirichlet to Neumann maps for the standard extremal op-
erators M± will be of use. The extremal operators are not essential for this paper, as
we don’t solve a nonlinear equation. However, we choose to use them here for possible
application in the future. They are defined as follows, given φ : Σ0 → R, define,

M r,±(φ, y) := ∂nU
r,±
φ , (5.3)

where U r,±
φ = U r,± : Σr → R are the unique viscosity solutions of

M+(D2U r,+) + C |∇U r,+| = 0 in Σr,

U r,+ = 0 on Σr,

U r,+ = φ on Σ0,

(5.4)

and 
M−(D2U r,−)− C |∇U r,−| = 0 in Σr,

U r,− = 0 on Σr,

U r,− = φ on Σ0.

(5.5)

The operators M± are the standard Pucci extremal operators of the second order fully
nonlinear theory [7, Chapter 2], and they correspond to the linear ellipticity assumption
that λId ≤ A(x) ≤ ΛId. We mention that by, e.g. [28], if φ ∈ C1,γ(Σ0), then U r,± ∈
C1,γ(Σr). Hence the definition (5.3) holds classically in the pointwise sense.

Proposition 5.4 (Bump function). Assume that r ≥ 1 and R0 > 0 are both fixed. Then

lim
R→∞

sup
x∈B′R0

|M r,±(φR, x)| = 0

(we recall that B′R0
⊂ Σ0).

Proof of Proposition 5.4. We just focus on the case of M r,+φ. The proof of this proposition
is a result of the stability of viscosity solutions of (5.4) with respect to local uniform limits
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of the Dirichlet data, combined with the C1,γ boundary regularity in [28]. To this end, we
let UφR denote the solution of (5.4) with data φR. We note that for each t, fixed,

lim
R→∞
‖φR‖L∞(Bt) = 0,

and since Û(x) = 0 is the unique solution to (5.4) with Û |Σ0 = 0, the stability of (5.4)
implies that UφR → 0 locally uniformly in Σr. Furthermore, since φR ∈ C1,γ(Σ0), [28]
shows that UφR ∈ C1,γ(Σr). Thus, [28, Theorem 1.1] implies

‖∂nUφR‖L∞(BR0
) ≤ C(‖UφR‖L∞(B+

2R0
) + ‖φR‖L∞(B2R0

) + ‖∇φR‖Cγ(B2R0
)). (5.6)

We note here that B′R0
⊂ Σ0 and B+

R0
⊂ Σr are a ball and a half ball in respectively the

boundary and the closure of Σr. The first term on the right of (5.6) converges to 0 by the
stability of (5.4). The second and third terms converge to 0 by the rescaling that defines
φR. Thus we conclude

lim
R→∞

sup
x∈BR0

|M r,+(φR, x)| = 0.

�

Lemma 5.5 (Comparison principle for smooth functions). Let u, v : Σ0 → R be bounded
functions such that I1/ε(u, ·) and I1/ε(v, ·) are classically defined and

I1/ε(u, y) ≥ I1/ε(v, y) ∀ y ∈ Σ0.

Then,
u(y) ≤ v(y) ∀ y ∈ Σ0.

Proof of Lemma 5.5. Using Proposition 5.4, the proof of Lemma 5.5 now follows identically
to the one in [20, Lemma 3.9].

�

Lemma 5.6. If w ∈ C1,γ(Σ0) solves

I1/ε(w, y) = g(y) in Σ0,

then

− 1

c1ε
‖g‖L∞ ≤ w ≤ 1

c1ε
‖g‖L∞ ,

where c1 is the constant from Lemma 5.1.

Proof of Lemma 5.6. We note that since I1/ε(0, ·) = 0, it follows by Lemma 5.1 that for
any constant, c,

I1/ε(c, y) = −cf ε(y).

Using c1 from Lemma 5.1, we have that

I1/ε(w, y) = g(y) ≤ ‖g‖L∞ =
εc1‖g‖
εc1

≤ f ε(y)
‖g‖
c1ε

= I1/ε

(
−1

c1ε
‖g‖L∞ , y

)
.

Thus by the comparison for I1/ε (Lemma 5.5), we conclude that

−‖g‖
c1ε

≤ w.

The reverse inequality follows analogously. �
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The following monotonicity property with respect to the domain, Σ1/ε, will be useful in
Section 6.

Lemma 5.7. Suppose that (1/ε2) ≥ (1/ε1) and that u ≥ 0, then

I1/ε2(u, y) ≥ I1/ε1(u, y) ∀ y ∈ Σ0.

Proof. Let V ε1
u and V ε2

u solve (3.2) in respectively Σ1/ε1 and Σ1/ε2 . Note that Σ1/ε1 ⊂ Σ1/ε2 ,
so V ε2

u is defined in Σ1/ε1 . Since V ε2
u = u ≥ 0 on Σ0, the comparison principle implies that

V ε2
u ≥ 0 in Σ1/ε2 , and in particular V

1/ε2
u ≥ 0 on Σ1/ε1 . Moreover, V ε1

u and V ε2
u agree on Σ0

and solve the same equation in Σ1/ε1 . Thus V ε2
u is a supersolution for the equation solved

by V ε1
u , so that V ε1

u ≤ V ε2
u everywhere in Σ1/ε1 .

Since the two functions agree on Σ0, their normal derivatives must be ordered, namely

∂nV
ε2
u (y) ≥ ∂nV

ε1
u (y) ∀ y ∈ Σ0,

and the lemma follows.
�

Lemma 5.8. Let (1/ε) ≥ 1 be fixed and assume f ε is as in Lemma 5.1. Suppose that
there exist bounded w1, w2 ∈ C1,γ(Σ0), respectively sub and super solutions w1 and w2 to

I1/ε(w1, y) ≥ −b1 +
a1f

ε(y)

ε
+ g(y) and I1/ε(w2, y) ≤ a2f

ε(y)

ε
+ g(y) in Σ0,

where b1 ≥ 0. Then a1 − a2 − (1/c1)b1 ≤ ε sup
Σ0

|w1 − w2|, where c1 is the constant from

Lemma 5.1.

Proof. Without loss of generality, assume that a1 ≥ a2, else there is nothing to prove (since
b1 ≥ 0). Let w̃2 := w2 − (1/ε)(a1 − a2) + (1/c1ε)b1, then by Lemma 5.1 we have

I1/ε(w̃2, y) = I1/ε(w2, y) +
(a1 − a2)

ε
f ε(y)− b1f

ε(y)

c1ε
,

≤ g(y) +
a2f

ε(y)

ε
+

(a1 − a2)f ε

ε
− b1

≤ g(y) +
a1f

ε(y)

ε
− b1,

≤ I1/ε(w1, y).

Then Lemma 5.5 yields that w1 ≤ w̃2, i.e. w1 ≤ w̃2 = w2 − (1/ε)(a1 − a2) + (1/c1ε)b1.
Rearranging,

(1/ε)(a1 − a2)− (1/c1ε)b1 ≤ w2 − w1 ≤ sup
Σ0

|w1 − w2|,

and the lemma follows by multiplying by ε. �

6. The Proofs of Proposition 3.1 and Theorem 1.1

We are now in a position to prove Proposition 3.1 as well as show how it implies Theorem
1.1. To this end, we define the new function

vε = uε|Σ0 ,
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where uε is the solution to (1.1). We know by Corollary 4.6 that uε ∈ C1,γ(Σ1), and so

∂nu
ε(x) = g(

x

ε
) classically on Σ0.

Furthermore, the uniqueness of solutions to (3.2) shows that when V ε
vε solves (3.2) with

data vε, then in fact

V ε
vε ≡ uε.

Thus, as pointed out in Section 3, the original homogenization problem is equivalent to

I1(vε, x) = g(
x

ε
) in Σ0.

It is useful to unscale this equation; thanks to Lemma 5.3 the function

wε(y) = (1/ε)vε(εy), (6.1)

solves

I1/ε(wε, y) = g(y) in Σ0. (6.2)

Since Σ0 is irrational, g|Σ0 will not be periodic, but it will be almost periodic (Definition
2.5). Furthermore, I1/ε is effectively an “almost periodic operator” on Σ0, which is not
precisely defined, but it manifests itself in the almost periodicity of wε, presented below
as Lemma 6.1.

6.1. Almost periodicity of wε. Here we use almost periodicity properties of Σ0 with
respect to Zd+1 to establish almost periodicity properties of wε. We remind the reader
that the relevant definitions appear in Section 2.2.

Lemma 6.1. There exists a universal C > 0 such that for all δ > 0, there exists Rδ > 0,

such that if Eδ and Fδ are respectively the δ- almost periods of g and C

(
δ +

δ

ε

)
- periods

of wε, then

B′Rδ(z) ∩ (Eδ ∩ Fδ) 6= ∅ for all z ∈ Σ0.

We emphasize that Rδ depends only on the irrationality of n, and in particular is indepen-
dent of ε. Note that in this context, BRδ ⊂ Σ0.

Proof. Let z ∈ Σ0 be fixed and ρ > 0 be arbitrary. We will eventually choose ρ to
depend on δ to make the calculation easier. First, we note that by the irrationality of
n, there exists an Rρ such that given any z ∈ Σ0, there is τ(z) ∈ Σ0 ∩ BRρ(z) such that

dist(τ(z),Zd+1) ≤ ρ (see, e.g. [8, Lem. 2.7]). We take τ̂ ∈ Σ1/ε ∩ Zd+1 to be any element
that is within dist(τ(z),Zd+1) to Σ0. We also note that by possibly re-adjusting the choice
of τ(z), we can assume that τ(z) ⊥ (τ̂ − τ(z)). Both τ(z) and τ̂(z) depend on z, but we
suppress this dependence for the rest of the proof.

We begin by unscaling the original equation, (1.1). To that end, define

V ε(y) =
1

ε
uε(εy).
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Thus, V ε solves the equation in the microscopic variables, i.e.
Tr(A(y)D2V ε) +B(y)∇V ε = 0 in Σ1/ε

V ε = 0 on Σ1/ε

∂nV
ε = g(y) on Σ0.

This means that in fact, V ε|Σ0 = wε, where wε is defined in (6.1) and solves (6.2). We will
now shift V ε by τ̂ , defining

V̂ ε(y) = V ε(y + τ̂).

We define

ẑ = τ̂ − τ, note, by definition |ẑ| ≤ ρ,

and because of the orthogonality of τ ⊥ (τ̂ − τ), we see that V̂ ε solves in the shifted
domain, (Σ1/ε − ẑ),

Tr(A(y + τ̂)D2V̂ ε) +B(y + τ̂)∇V̂ ε = 0 in (Σ1/ε − ẑ)

V̂ ε = 0 on (Σ1/ε − ẑ)

∂nV̂
ε = g(y + τ̂) on (Σ0 − ẑ).

Since by choice, τ̂ ∈ Zd+1, and by the periodicity of A and g we conclude
Tr(A(y)D2V̂ ε) +B(y)∇V̂ ε = 0 in (Σ1/ε − ẑ)

V̂ ε = 0 on (Σ1/ε − ẑ)

∂nV̂
ε = g(y) on (Σ0 − ẑ).

Now we can compare V ε to V̂ ε. Let us define

Ŵ ε = V ε − V̂ ε in Σ1/ε ∩ (Σ1/ε − ẑ) = Σ1/ε−|ẑ|.

We will need to observe that the oscillation of V ε and V̂ ε in the sets that are a distance
less than one to Σ1/ε are bounded independently of ε. This is true because we can use
the barriers involving φε from Proposition 4.1 plus the observation that φε stays a uniform
distance from the fixed hyperplane, 1/ε − yd+1. Thus, from the Cγ estimates for the

Dirichlet problem (near Σ1/ε) we know that V ε and V̂ ε are Cγ in a neighborhood of Σ1/ε,
uniformly in ε. First, we check the boundary data on the 1/ε− |ẑ| boundary:

‖V ε − V̂ ε‖L∞(Σ1/ε−|ẑ|) = ‖V ε − 0‖L∞(Σ1/ε−|ẑ|) ≤ C |ẑ|γ .

Next we check the normal derivative on the Σ0 hyperplane:

‖∂nV ε − ∂nV̂ ε‖L∞(Σ0) = ‖g − ∂nV̂ ε‖L∞(Σ0)

since V ε = g on Σ0. We would like to transfer this inequality to an evaluation on Σ0 − ẑ
to utilize the boundary values of ∂nV̂

ε. By Corollary 4.6, we have

[∂nV̂
ε]Cγ = [∂nu

ε(ε·)]Cγ ≤
C

εγ
εγ = C,
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and so for y ∈ Σ0, y − ẑ ∈ Σ0 − ẑ∣∣∣∂nV̂ ε(y)− g(y)
∣∣∣ ≤ ∣∣∣∂nV̂ ε(y)− ∂nV̂ ε(y − ẑ)

∣∣∣+
∣∣∣∂nV̂ ε(y − ẑ)− g(y)

∣∣∣
=
∣∣∣∂nV̂ ε(y)− ∂nV̂ ε(y − ẑ)

∣∣∣+ |g(y − ẑ)− g(y)|

≤ C |ẑ|γ .

We used the fact that ∂nV̂
ε = g on Σ0 − ẑ, and so by the the Hölder regularity of g

and ∂nV̂
ε, the difference on Σ0 is of order |ẑ|γ. (Note, ∂nV̂

ε = g on Σ−|ẑ|, not on Σ0.)
Importantly, this constant, C, in the two estimates above, is independent of ε.

Therefore, Ŵ ε solves
Tr(A(y)D2Ŵ ε) +B(y) · ∇Ŵ ε = 0 in Σ1/ε−|ẑ|∣∣∣Ŵ ε

∣∣∣ ≤ C |ẑ|γ on Σ1/ε−|ẑ|∣∣∣∂nŴ ε
∣∣∣ ≤ C |ẑ|γ on Σ0.

Thus, by Proposition 4.2, we conclude, in particular, that

‖Ŵ ε‖L∞(Σ0) ≤ C
|ẑ|γ

ε
.

Finally, we check,

‖wε(·+ τ)− wε‖L∞(Σ0) = ‖V ε(·+ τ)− V ε‖L∞(Σ0)

≤ ‖V ε(·+ τ̂)− V ε(·+ τ)‖L∞(Σ0) + ‖V ε(·+ τ̂)− V ε‖L∞(Σ0)

≤ C |τ − τ̂ |γ + ‖Ŵ ε‖L∞(Σ0)

≤ C |ẑ|γ + C
|ẑ|γ

ε
.

We also confirm

‖g(·+ τ)− g‖L∞(Σ0) = ‖g(·+ τ̂)− g(· − τ)‖L∞(Σ0) + ‖g(·+ τ̂)− g‖L∞(Σ0)

≤ C |τ̂ − τ |γ + 0

= C |ẑ|γ ,

since by choice, τ̂ ∈ Zd+1, and the periodicity of g. Now, to conclude the proposition, we
choose ρ = δ1/γ, and since |ẑ| ≤ ρ, we have shown that indeed τ ∈ B′(Rδ)(z) is an almost
period for wε and g. �

Remark 6.2. We note that the proof of Proposition 4.1 utilized a similar technique to that
in [9, Section 3], where there it was also very important to translate the whole equation by
τ̂ and appeal to the periodicity to keep the coefficients unchanged.

6.2. Limits for εwε−εwε(0). The key lemma that establishes Proposition 3.1, in combina-
tion with the almost periodicity of Lemma 6.1, is a nonlocal version of the almost periodic
arguments which appeared for Hamilton-Jacobi equations in Ishii’s work, [21]. There are
however, many differences between the Hamilton-Jacobi setting and our nonlocal setting
here, and we give a slightly different argument.
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Lemma 6.3 (Nonlocal Elliptic Version of Ishii [21]). wε defined in (6.1), (6.2) satisfies
the decay

‖εwε − εwε(0)‖L∞(Σ0) → 0 as ε→ 0. (6.3)

Proof of Lemma 6.3. Let {εk}k be a sequence such that εk → 0+, and let {yk}k be a
sequence in Σ0 such that for each k,

|εkwεk(yk)− εkwεk(0)| ≥ 1
2
‖εkwεk − εkwεk(0)‖L∞(Σ0).

Let δ > 0 be given. Let Fδ be the set of C(δ+ δ/ε)- periods of wε. Thanks to Lemma 6.1,
there is some Rδ > 0 such that

(z +BRδ) ∩ (Fδ) 6= ∅ ∀ z ∈ Σ0.

We note that it is essential that Rδ be strictly sublinear in ε for later purposes. In this
case, Rδ is in fact independent of ε, which is even better.

Taking ε = εk, z = yk above, it follows that for each k there is some τk which is a
C(εkδ + δ)-almost period for εkw

εk and such that

yk − τk ∈ BRδ . (6.4)

In particular,

|εkwεk(yk)− εkwεk(0)| ≤ |εkwε(yk)− εkwεk(yk − τk)|+ |εkwεk(yk − τk)− εkwεk(0)|.

Since τk is a C(εkδ + δ)-almost period for εkw
εk the first quantity on the right is at most

C(εkδ + δ), and also from (6.4),

|εkwεk(yk)− εkwεk(0)| ≤ C(εkδ + δ) + osc
BRδ

{εkwεk}, ∀ k > 0.

Next, we note that

osc
BRδ

{εkwεk} = osc
BεkRδ

{vεk}.

Corollary 4.6 guarantees that the functions vε are C γ̄-continuous in B1, uniformly in ε.
Therefore (for each fixed δ > 0),

lim
ε→0+

osc
BεRδ

{vε} = 0.

(Here, it would be enough that lim εRδ = 0 if it happened that Rδ depended on ε.) Given
that εk → 0, for every large enough k (this possibly depending on δ) we have

1
2
‖εkwεk − εkwεk(0)‖L∞(Σ0) ≤ |εkwεk(yk)− εkwεk(0)| ≤ 2Cδ.

That is (as the sequence εk → 0+ was arbitrary)

lim sup
ε→0+

‖εwε − εwε(0)‖L∞(Σ0) ≤ 4Cδ,

letting δ → 0+, the lemma follows. �

Lemma 6.4. Given any εj → 0, there exists a subsequence, ε′j such that vε
′
j → c uniformly

on Σ0, for some constant c.
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Proof of Lemma 6.4. By Proposition Corollary 4.6 we know that vε ∈ Cγ(Σ0) for some
0 < γ < 1. Thus since vε are uniformly bounded, we can take some subsequence such that
vεj(0)→ c. Furthermore, Lemma 6.3 shows that

‖vε′j − vε′j(0)‖L∞(Σ0) → 0 as ε→ 0.

Hence vε
′
j → c uniformly on Σ0. �

6.3. Uniqueness of the limiting constant.

Lemma 6.5. The constant, c, of Lemma 6.4 is independent of the sequence, εj, and hence
unique.

Proof of Lemma 6.5. We note that this is basically a consequence of the fact that (6.2) is a
uniformly elliptic integro-differential equation. However, the proof is not as straightforward
as in the existing literature for either second order or nonlocal elliptic equations due to
the influence of the Dirichlet condition uε = 0 on Σ1. The necessary modifications are not
serious road blocks, but we do include them for completeness.

Let a1 and a2 be constants such that there are sequences vεj → a1 and vεk → a2

uniformly on Σ0. We will establish that

a2 ≤ a1,

and since the sequences were arbitrary, this proves the lemma. If we rewrite vεj and vεk

in the microscale variables, this says that (recall wε from (6.1), (6.2))

εjw
εj → a1 and εkw

εk → a2 uniformly on Σ0.

We will also define the functions

ŵεj = wεj − 1

εj
a1 and ŵεk = wεk − 1

εk
a2.

In anticipation of applying Lemma 5.7, we need to make sure that ŵεj and ŵεk are non-
negative. We do so by shifting them up by respectively δj, δk where

δj = ‖ŵεj‖ and δk = ‖ŵεk‖,

which gives

ŵεj + δj ≥ 0 and ŵεk + δk ≥ 0.

We will assume without loss of generality that j and k are such that εj < εk, which
suffices because j and k can otherwise be chosen independently of one another. Using the
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equations for wεj and wεk , we see that from Lemmas 5.1 and 5.7

(−εkδk + a2)f εj(y)

εj
+ g(y) =

= (−εkδk + a2)

(
f εj(y)

εj
− f εk(y)

εk

)
+

(−εkδk + a2)f εk(y)

εk
+ g(y)

= I1/εk(wεk − a2

εk
+ δk, y) + (−εkδk + a2)

(
f εj(y)

εj
− f εk(y)

εk

)
= I1/εk(ŵεk + δk, y) + (−εkδk + a2)

(
f εj(y)

εj
− f εk(y)

εk

)
≤ I1/εj(ŵεk + δk, y) + (−εkδk + a2)

(
f εj(y)

εj
− f εk(y)

εk

)
≤ I1/εj(ŵεk + δk, y) + ρk,j,

where

ρj,k = max

{
0, sup

y
(−εkδk + a2)

(
f εj(y)

εj
− f εk(y)

εk

)}
.

But on the other hand,

(−εjδj + a1)f εj(y)

εj
+ g(y) = I1/εj(ŵεj + δj, y). (6.5)

Thus

I1/εj(ŵεj + δj, y) ≤ (−εjδj + a1)f εj(y)

εj
+ g(y)

and

I1/εj(ŵεk + δk, y) ≥ (−εkδk + a2)f εj(y)

εj
+ g(y)− ρj,k,

where ρj,k ≥ 0 is defined above.
Thus Lemma 5.8 tells us that

(−εkδk + a2)− (−εjδj + a1)− (1/c1)ρj,k ≤ εj sup
Σ0

((ŵεk + δk)− (ŵεj + δj)).

Hence

a2 − a1 ≤ εj sup
Σ0

ŵεk − εj inf
Σ0

ŵεj + εjδk − εjδj + εkδk − εjδj + (1/c1)ρj,k

≤ εj‖ŵεk‖L∞(Σ0) + εj‖ŵεj‖L∞(Σ0) + εjδk + εkδk + (1/c1)ρj,k

≤ 3εk‖ŵεk‖L∞(Σ0) + εj‖ŵεj‖L∞(Σ0) + (1/c1)ρj,k, (6.6)

where we have used both εjδj ≥ 0 and εj < εk.
Now, we recall the definition of f ε, from the proof of Lemma 5.1, in (5.1) as

f ε = −ε∂nφε.
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Thanks to Lemma 4.4, we know that φε−1/ε→ ψ∞ uniformly on Σ1, and since φ1/ε−1/ε

also has uniform C2,γ(Σ1) estimates, it holds that

f ε

ε
→ ∂nψ

∞ uniformly on Σ0.

Hence

ρj,k → 0 as j →∞ and k →∞.

Now, we preserve εj < εk and first take j →∞ followed by k →∞. By construction of
ŵεj and ŵεk , we have

εk‖ŵεk‖L∞(Σ0) → 0 and εj‖ŵεj‖L∞(Σ0) → 0.

Hence a2 ≤ a1, and this finishes the lemma. �

6.4. The Proofs of Proposition 3.1 and Theorem 1.1. Proposition 3.1 follows im-
mediately from Lemmas 6.4 and 6.5. We again mention that by Corollary 4.6, ‖uε‖Cγ ≤ C
independently of ε. Thus, we can extract locally uniformly convergent subsequences of
uε in Σ1. Let ū be any possible subsequential limit of uε. The perturbed test function
method, as in Proposition A.8, shows that ū is a solution of

Tr(ĀD2ū) = 0 in Σ1,

(see Section A.3). Proposition 3.1 gives a unique constant, c̄ such that ū|Σ0 = c̄. The
uniform Hölder continuity of uε gives ū|Σ1 = 0. Thus by the uniqueness of solutions to
(1.2) we see that there is exactly one choice for ū. Hence Theorem 1.1 is established with
ḡ = −c̄.

7. Modifications to Obtain The Cell Problem of Choi-Kim [9]

The work of Choi and Kim [9] proves the homogenization of fully nonlinear equations
with oscillatory Neumann data in some more general domains. They studied (1.1) with a
nonlinear operator in the interior, as

F (x
ε
, D2uε) = 0 inΩ

uε = 0 on K

∂nu
ε(x) = g(x

ε
) on ∂Ω.

(7.1)

There are basically two main results that they establish. The first is to obtain for each
possible normal, n, the constant, ḡ(n), from Theorem 1.1 in, Σ1(n), where now it is written
explicitly that ḡ(n) depends on the normal direction. This is basically a cell problem for
the general domain. The second is to study the continuity properties of ḡ(n) with respect
to n.

With minor adaptations of our proofs above, we can also obtain this first result about
the cell problem in [9]. That is, we also have the following theorem (cf. [9, Theorem 3.1])

Theorem 7.1. Assume that F is Zd+1 periodic in x, uniformly elliptic, satisfies basic
assumptions for existence / uniqueness of uε, and F (x, 0) ≡ 0. Assume that instead of
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(1.1), uε now solves 
F (x

ε
, D2uε) = 0 in Σ1

uε = 0 on Σ1

∂nu
ε(x) = g(x

ε
) on Σ0.

(7.2)

Then the outcome Theorem 1.1 still holds true, where instead ū solves F̄ (D2ū) = 0 in Σ1,
and F̄ is the same effective equation from the standard periodic homogenization theory (see
[13]).

There are only two statements / techniques in our proof of Theorem 1.1 that need to
be slightly modified to obtain Theorem 7.1: the statement of Lemma 5.1 and the proof
of Lemma 6.1. Due to the fact that F (x, 0) ≡ 0, any affine function is a solution of
F (y,D2u) = 0. Thus, Proposition 4.1 is in fact trivial in this case. The function φε, from
Proposition 4.1, is simply

φε(y) = 1/ε− yd+1.

Thus, for this case, Lemma 5.1 is true with (see (5.1))

f ε(y) = ε.

Finally, in the proof of Lemma 6.1, we see that the function, Ŵ ε, solves in the viscosity
sense: 

M−(D2Ŵ ε) ≤ 0 in Σ1/ε−|ẑ|

M+(D2Ŵ ε) ≥ 0 in Σ1/ε−|ẑ|∣∣∣Ŵ ε
∣∣∣ ≤ C |ẑ|γ on Σ1/ε−|ẑ|∣∣∣∂nŴ ε
∣∣∣ ≤ C |ẑ|γ on Σ0.

Here M± are the Pucci extremal operators of fully nonlinear elliptic equations, see [7,
Chp. 2]. We recall also that ẑ was chosen so that |ẑ|γ ≤ δ. Thus the functions

ηεsuper(y) = Cδ(1/ε− yd+1) + Cδ

and

ηεsub(y) = −Cδ(1/ε− yd+1)− Cδ

are respectively upper and lower barriers for Ŵ ε. Thus it follows that∣∣∣Ŵ ε
∣∣∣ ≤ C

δ

ε
.

The rest of the proofs now follow in the same fashion as for the linear case proved in
Section 6. We note that nowhere else in Sections 5 and 6 was linearity used. In fact, the
rest of the details are very similar to those in [20].
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8. Two Natural Questions

In the proof of Lemma 6.1, it was very convenient that A and B were periodic so that
the translation by τ̂ kept the equations for V ε and V̂ ε the same. However, it seems that
this should only be a convenience, and that in fact one could establish Lemma 6.1 when
A, B, and g are only almost periodic functions. Is this true?

When the non-divergence equation in (1.1) is replaced by the operator, div(A(x/ε)∇uε) =
0, the equation still has a comparison principle, even with bounded, measurable A (see
[19, Chp. 8] or [25]). Thus the idea of using the D-to-N mapping is still plausible, but
the main drawback could be the C1,γ regularity (i.e. Proposition A.2 and Corollary 4.6).
Assume that A is only Cγ; can the integro-differential method be utilized to cover the case
of the oscillatory oblique Neumann condition?

Appendix A. Various Useful Facts and Extra Details of Auxiliary Results

Here we collect some useful facts, expand upon the invariant measure, m, show a result
about rates, and give the details of the perturbed test function method as it pertains to
the interior homogenization of (1.1).

A.1. Useful Facts. The following can be adapted from [11], combined with some details
in [20, Appendix A]

Proposition A.1 (Comparison for the Neumann problem). Assume u (“subsolution”) and
v (“supersolution”) solve the following:

M+(D2u) + C |∇u| ≥ F (D2u,∇u, x) ≥ 0 in Σ1, ∂nu = f on Σ0, and u = u0 on Σ1

M−(D2v)− C |∇v| ≤ F (D2v,∇v, x) ≤ 0 in Σ1, ∂nv = g on Σ0, and v = v0 on Σ1.

If f − g ≥ 0 on Σ0 and u0 ≤ v0 on Σ1, then u ≤ v in Σ1.

The next result is simply a paraphrasing of those that appear in [26, Sec. 2,3,4], and
standard modifications of the arguments in [26] yield the result as stated here. We note
that for our purposes, there is no harm in using a Hölder exponent for g that is lower
than the one obtained in the Krylov-Safonov theorem. Thus, in the result below, we may
assume it is the same γ appearing for the Hölder norms for g, v, ∇v.

Proposition A.2 (Lieberman-Trudinger [26]). Assume that λId ≤ A ≤ ΛId, A, B, and
g are all bounded and Cγ continuous, and that v solves{

Tr(A(y)D2v) +B(y) · ∇v = 0 in Σ1

∂nv = g on Σ0.

There exists a universal constant, C1(λ,Λ, d) such that

[v]
Cγ(Σ1/2)

≤ C1

(
osc
Σ1

(v) + ‖g‖L∞(Σ0)

)
and

[v]
C1,γ(Σ1/2)

≤ C1

(
osc
Σ1

(v) + ‖g‖Cγ(Σ0)

)
.
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The next theorem is essential for our method. It is not clear that it is essential for
the homogenization to occur, but we use it in a critical way (but maybe there is another
approach without it). As it appears in [6], A and B should both be C1,γ, however, this is
not necessary, and we give some details below.

Proposition A.3 ([6, Chp. 3, Sec. 5, Thm 5.1]). There exists a universal constant, C,
such that if f ∈ C4,γ(Σ0), Ā is the unique homogenized coefficients of (A.7) and Proposition
A.8, wε and w̄ are the unique solutions of respectively

Tr(A(x
ε
)D2wε) + 1

ε
B(x

ε
) · ∇wε = 0 in Σ1

wε = 0 on Σ1

wε = f on Σ0

and 
Tr(ĀD2w̄) = 0 in Σ1

w̄ = 0 on Σ1

w̄ = f on Σ0,

then

‖wε − w̄‖L∞(Σ1) ≤ Cε.

Remark A.4. This theorem also holds for the case of divergence equations, due to [2].

A.2. The invariant measure. A crucial tool for homogenization is the existence of an
invariant measure for L, which is mentioned in Remark 2.3. The existence and uniqueness
follows almost identically to that of [6, Chp. 3, Thm. 3.4], and we include here the
main ideas required to modify their proof to suit our assumptions that A and B are Cγ.
The difference between the two arguments is minor; in [6], they converted the equation
to a divergence form operator, whereas here we simply use the relevant estimates for the
non-divergence setting.

We first note that a reworking of the results 9.11-9.14 in [19] show that in the setting of
periodic functions, when f is periodic and u is a periodic strong solution of

Lu = f in Rd+1,

then

‖u‖W 2,2([0,1]d+1) ≤ C(‖u‖L2([0,1]d+1) + ‖f‖L2([0,1]d+1))

and also for σ > 0 large enough,

‖u‖W 2,2([0,1]d+1) ≤ ‖Lu− σu‖L2([0,1]d+1).

Thus, in particular, any periodic W 2,2([0, 1]d+1) solution of

−σu+ Lu = f

is unique. For existence, we can take any periodic and Hölder continuous approximation
of f , say f δ, such that f δ → f in L2([0, 1]d+1). Thus, there exists a unique, bounded,
continuous, and periodic solution uδ to

−σuδ + Luδ = f δ,
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and moreover, uδ ∈ C2,γ, so the equation holds classically. Thus, the above W 2,2 estimates
are applicable, and they show that {uδ} is Cauchy in W 2,2([0, 1]d+1). Hence the limit of
uδ gives existence for the equation.

Up to this point, we have basically outlined the details that show the operator,

Lσu = −σu+ Lu,

has the property that L−1
σ is well defined,

L−1
σ : L2([0, 1]d+1)→ L2([0, 1]d+1),

with the estimate

‖L−1
σ f‖W 2,2([0,1]d+1) ≤ C‖f‖L2([0,1]d+1),

and hence is compact. The final remaining step in the Fredholm Alternative to obtain
the existence of the invariant measure, m, is to determine the dimension of the space of
solutions to

(I + σ(L−1
σ ))z = 0, for z ∈ L2([0, 1]d+1).

As noted in [6, Chp. 3, Thm. 3.4], this is equivalent to determining the set of solutions to

Lz = 0 with z ∈ W 2,2
per([0, 1]d+1).

Just as in [6, Chp. 3, Thm. 3.4], one can use a boot strapping argument to raise the

exponent in the Lp estimate for z to show that in fact, any such z is in W
2,(d+1)
per ([0, 1]d+1).

At this point, we see that z extends to a global, periodic, bounded, and W
2,(d+1)
loc solution

of Lz = 0. Applying the Krylov-Safonov Theorem in, e.g. B1, i.e.

[zR]Cγ(B1) ≤ C‖zR‖L∞(B2),

to zR(x) = z(Rx), we conclude that z must be a constant. Thus, there is a one parameter
family of solutions to the adjoint equation that differ by a multiplicative constant, and m
is selected as the unique one that is positive and has

∫
[0,1]d+1 m = 1. We note that the

positivity of m follows as in [6, Chp. 3, Thm. 3.4].

A.3. The perturbed test function method for the interior homogenization of
(1.1). Just for clarity, we include the main arguments of the perturbed test function
method for uε. What follows is a summary of the methods of [6, Chp. 3, sec 4.2, 5.1],
combined with the perturbed test function method in [13].

We begin with the formal ansatz that assumes

uε(x) = ū(x,
x

ε
) + εv(x,

x

ε
) + ε2w(x,

x

ε
) + o(ε2).

Plugging this into (1.1), we see that
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Tr(A(
x

ε
)D2uε) +

1

ε
B(

x

ε
) · ∇uε

= Aij(
x

ε
)ūxixj(x,

x

ε
) +

1

ε
Aij(

x

ε
)
(
ūxiyj(x,

x

ε
) + ūyixj(x,

x

ε
)
)

+
1

ε2
Aij(

x

ε
)ūyiyj(x,

x

ε
)

+ εAij(
x

ε
)vxixj(x,

x

ε
) + Aij(

x

ε
)
(
vxiyj(x,

x

ε
) + vyixj(x,

x

ε
)
)

+
1

ε
Aij(

x

ε
)vyiyj(x,

x

ε
)

+ ε2Aij(
x

ε
)wxixj(x,

x

ε
) + εAij(

x

ε
)
(
wxiyjw(x,

x

ε
) + wyixj(x,

x

ε
)
)

+ Aij(
x

ε
)wyiyj(x,

x

ε
)

+
1

ε
B(

x

ε
) · ∇xū(x,

x

ε
) +

1

ε2
B(

x

ε
) · ∇yū(x,

x

ε
)

+B(
x

ε
) · ∇xv(x,

x

ε
) +

1

ε
B(

x

ε
) · ∇yv(x,

x

ε
)

+ εB(
x

ε
) · ∇xw(x,

x

ε
) +B(

x

ε
) · ∇yw(x,

x

ε
) (A.1)

In order for their to be any hope of extracting a limit from this equation, we try to
collect the negative powers of ε and set them to zero. First, we have

1

ε2
Aij(

x

ε
)ūyiyj(x,

x

ε
) +

1

ε2
B(

x

ε
) · ∇yū(x,

x

ε
) = 0

This implies that we can choose, with an abuse of notation,

ū(x,
x

ε
) = ū(x).

Hence both ūxiyj = 0 and ūyixj = 0.
The 1/ε terms now become

1

ε
Aij(

x

ε
)vyiyj(x,

x

ε
) +

1

ε
B(

x

ε
) · ∇xū(x,

x

ε
) +

1

ε
B(

x

ε
) · ∇yv(x,

x

ε
) = 0 (A.2)

We let p(x) = ∇xū(x). We need to find a v so that

Aij(y)vyiyj(x, y) +B(y) · ∇yv(x, y) = −B(y) · p(x). (A.3)

Let χ(y) = (χ1(y), . . . , χd+1(y))T solve

Aij(y)χlyjyj +B(y)∇yχ
l(y) = −Bl(y), (A.4)

which is possible because of Assumption 2.4,∫
[0,1]d+1

Bl(y)m(y)dy = 0.

We note that χl are independent of ū! Suppose that

v(x, y) =
∑
l

ūxl(x)χl(y) + ṽ(x). (A.5)

We note that in the previous and upcoming equation, x, is just a parameter which can be
considered fixed, hence the notation p = ∇ū(x). However, the x dependence is relevant
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when searching for the function, w(x, y). Then we have

Aij(y)vyiyj(y) +
∑
i

Bi(y)vyi(y)

=
∑
l

pl(x)Aij(y)χlyiyj(y) +
∑
l,i

pl(x)Bi(y)χlyi(y)

=
∑
l

pl(x)

(
Aij(y)χlyiyj(y) +

∑
i

Bi(y)χlyi(y)

)
=
∑
l

pl(x)
(
Aij(y)χlyiyj(y) +B(y) · ∇yχ

l(y)
)

=
∑
l

pl(x)
(
−Bl(y)

)
= −B(y) · p(x)

Thus far we have now identified the function v, depending on ū. In what follows, we need
to show that there is a particular choice of effective coefficients, āij which will yield the
existence of w. It is this compatibility condition for w, which involves the first corrector,
v, that gives the effective equation for ū. After ignoring all terms with ε or ε2 (which will
be transparent from the perturbed test function proof below), what is left of

Tr(A(
x

ε
)D2uε) +

1

ε
B(

x

ε
) · ∇uε = 0,

now reads as

Aij(
x

ε
)ūxixj(x) + Aij(

x

ε
)
(
vxiyj(x,

x

ε
) + vyixj(x,

x

ε
)
)

+ Aij(
x

ε
)wyiyj(x,

x

ε
)

+B(
x

ε
) · ∇xv(x,

x

ε
) +B(

x

ε
) · ∇yw(x,

x

ε
) = 0.

Considering x fixed, setting Q = D2ū(x), and inserting v, we seek a w that satisfies

Aij(y)wyiyj(x, y) +B(y) · ∇yw(x, y)

= −Aij(y)Qij − Aij(
x

ε
)
(
vxiyj(x,

x

ε
) + vyixj(x,

x

ε
)
)
−B(y) · ∇xv(x, y),

or in terms of χ,

Aij(y)wyiyj(x, y) +B(y) · ∇yw(x, y)

= −Aij(y)Qij − Aij
(
ūxlxi(x)χlyj(y) + ūxlxj(x)χlyi(y)

)
−Bk(y)(ūxlχ

l(y) + ṽ(x))xk .

This further simplifies as

Aij(y)wyiyj(x, y) +B(y) · ∇yw(x, y)

= −Aij(y)Qij − Aij(y)ūxlxi(x)χlyj(y)− Aij(y)ūxlxj(x)χlyi(y)

−Bk(y)ūxlxk(x)χl(y)−Bk(y)ṽxk(x).
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Since we only have an equation in the y variable for w, in the best case scenario, we would
seek a periodic w, solving

Aij(y)wyiyj(x, y) +B(y) · ∇yw(x, y)

= −Aij(y)Qij − AijQliχ
l
yj

(y)− Aij(y)Qljχ
l
yi

(y)

−Bk(y)Qlkχ
l(y)−Bk(y)ṽxk(x).

This is, of course, too strict. Thus, to relax the problem, we seek a unique choice of λ(Q)
to balance the right hand side. That is, we seek a unique choice of λ(Q) such that there
exists a w solving

Aij(y)wyiyj(x, y) +B(y) · ∇yw(x, y)

= −Aij(y)Qij − AijQliχ
l
yj

(y)− Aij(y)Qljχ
l
yi

(y)

−Bk(y)Qlkχ
l(y)−Bk(y)ṽxk(x) + λ(Q). (A.6)

Since we already know that ∫
[0,1]d+1

Bk(y)m(y)dy = 0,

such a w can exist only if∫
[0,1]d+1

λ(Q)dy

−
∫

[0,1]d+1

(
Aij(y)Qij + Aij(y)Qljχ

l
yj

(y) + Aij(y)Qliχ
l
yi

(y) +Bk(y)Qlkχ
l(y)
)
dy = 0

We note that this can be re-written in new index variables as∫
[0,1]d+1

λ(Q)m(y)dy

−
∫

[0,1]d+1

Amn(y)Qmn + Apm(y)Qmnχ
n
yp(y) + Apn(y)Qmnχ

m
yp(y)

+
1

2
(Bm(y)Qmnχ

n(y) +Bn(y)Qmnχ
m(y))m(y)dy = 0

We know that λ(Q) will be linear in Q, so we will use the form

λ(Q) = āmnQmn,

and hence we need

Qmn

∫
[0,1]d+1

āmnm(y)dy

−Qmn

∫
[0,1]d+1

Amn(y) + Apm(y)χnyp(y) + Apn(y)χmyp(y)

+
1

2
(Bm(y)χn(y) +Bn(y)χm(y))m(y)dy = 0.
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We see that āmn must be uniquely chosen as

āmn =

∫
[0,1]d+1

Amn(y) + Apm(y)χnyp(y) + Apn(y)χmyp(y)

+
1

2
(Bm(y)χn(y) +Bn(y)χm(y))m(y)dy. (A.7)

All of this work can be summarized in the following proposition.

Proposition A.5. Assume that φ ∈ C2, p(x) = ∇φ(x), and that Q ∈ S(d + 1) is fixed.
Define χl and v respectively by using φxl in (A.4) and (A.5). There exists a unique choice
of λ(Q) ∈ R such that (A.6) admits a (classical) periodic solution, w, as a function of y.
In this instance, λ(Q) is computed explicitly in terms of χ via (A.7), with

λ(Q) = āmnQmn.

Remark A.6. The previous statement is just a summary of the steps that culminate on
[6, p. 416].

Remark A.7. We note that (A.6) indicates that ṽ can be any reasonable function of x,
and w can still be determined. Thus we are free to set, a posteriori, ṽ(x) ≡ 0, hence
making w a function of only y.

Now we move onto implementing the perturbed test function method for this equation.
It is just a rewriting of the details in [13] in our context. We claim that

Proposition A.8. Assume that ū is any local uniform limit of uε in Σ1. Then ū must be
a solution of

āijūxixj = 0 in Σ1, (A.8)

with āij defined in (A.7).

Proof. We will prove that ū is a (viscosity) subsolution of (A.8). Similarly one establishes
that ū is a (viscosity) supersolution. We will proceed by contradiction and assume that ū
is not a viscosity subsolution. That is, we assume that φ is smooth and bounded and that
ū− φ attains a strict local max in Br(x0) at x0, but for some δ > 0

āijφxixj(x0) ≤ −δ < 0.

Let us take

p(x) = ∇φ(x) and Q = D2φ(x0),

and let χl, v, and w be as in Proposition A.5. We claim that

ψε(x) = φ(x) + εv(x,
x

ε
) + ε2wε(

x

ε
)

is in fact a viscosity supersolution of

Tr(A(
x

ε
)D2ψε) +

1

ε
B(

x

ε
) · ∇ψε = 0 in Bρ(x0),

for some ρ > 0 appropriately small, depending on ‖φ‖C2,γ(Br(x0)), ‖v‖C1,1 , and ‖w‖C1,1 (in
fact, ψε is a classical solution, but we only care about a class of solutions that satisfies a
comparison theorem). We note that the contradiction assumption for φ can be restated as

λ(D2φ(x0)) ≤ −δ.
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We also note by the boundedness of A, B, χl, and ∇χl, that for all x ∈ Bρ(x0), we can
effectively localize the equation at x0 because

|Aij(
x

ε
)φxixj(x) + Aij(

x

ε
)φxlxi(x)χlyj(

x

ε
) + Aij(

x

ε
)φxlxj(x)χlyi(

x

ε
) +Bk(

x

ε
)φxlxk(x)χl(

x

ε
)

−
(
Aij(

x

ε
)φxixj(x0) + Aij(

x

ε
)φxlxi(x0)χlyj(

x

ε
) + Aij(

x

ε
)φxlxj(x0)χlyi(

x

ε
) +Bk(

x

ε
)φxlxk(x0)χl(

x

ε
)
)
|

≤ δ

4
.

Furthermore, we can possibly restrict ρ to be smaller, depending upon the C1,1 norms of
v and w so that

|εAij(
x

ε
)vxixj(

x

ε
) + ε2Aij(

x

ε
)wxixj(

x

ε
) + εAij(

x

ε
)
(
wxiyjw(

x

ε
) + wyixj(

x

ε
)
)

+ εB(
x

ε
) · ∇xw(

x

ε
)| ≤ δ

4

Hence, plugging ψε into (A.1), using the particular choices of v and w, and inspecting, we
see that in Bρ(x0)

Tr(A(
x

ε
)D2ψε) +

1

ε
B(

x

ε
) · ∇ψε

≤ Aij(y)wyiyj(x, y) +B(y) · ∇yw(x, y) + Aij(y)Qij + AijQliχ
l
yj

(y) + Aij(y)Qljχ
l
yi

(y)

+Bk(y)Qlkχ
l(y) +Bk(y)ṽxk(x) +

δ

4
+
δ

4

≤ λ(Q) +
δ

2
< 0.

We importantly note that by the construction of v, we had exact equality in the equation
(A.3), thus canceling these 1/ε terms above, which are the same as in (A.2). Thus we
conclude by the comparison of sub and super solutions that

uε(x0)− φε(x0) ≤ max
Bρ(x0)

uε − ψε ≤ max
∂Bρ(x0)

uε − ψε.

Now we note that uε → ū and ψε → φ uniformly in Bρ(x0). Thus

ū(x0)− φ(x0) ≤ max
∂Bρ(x0)

ū− φ,

which is a contradiction to the strict max at x0. Thus, we see that in fact ū is a subsolution
of (A.8). This concludes the proof of proposition A.8. �

A.4. The rate of convergence for the regular homogenization. Here we mention
how some minor modifications to the arguments in [6, Chp. 3, Sec 5] yield the rate of
convergence under our assumptions on A and B.

First, we note that in the proof of Proposition A.8, the expansion

ψε(x) = φ(x) + εv(x,
x

ε
) + ε2wε(

x

ε
)

is only used locally, and we did not utilize x dependence for w or the values of ū (but ū
implicitly plays a role through the φ). However, as pointed out on [6, p.418-419], you can
get much more information out of this expansion by using a better choice for w.



Neumann Homogenization via Integro-Differential Operators, Part 2 33

In all that follows, [6, p.418-419] have more coefficients in L (they call their operator A)
than we do. In the context of their notation, we have for A and B given in this work, and
a, b, c, a0 in [6],

aij(y) = Aij(y), bi(y) = Bi(y), ci(y) = a0 ≡ 0.

Assume that wε and w̄ are as in the statement of Proposition A.3; here wε and w̄ play
the role of respectively uε and u in [6, p.418-419]. We note that Ā is a constant coefficient
and uniformly elliptic matrix, and thus w̄ is locally smooth and globally as smooth as is f
(the Dirichlet data), in particular ‖w̄‖C4,γ(Σ1) ≤ C‖f‖C4,γ(Σ0). The good expansion is

w̃ε(x) = w̄(x) + εv(x,
x

ε
) + ε2w2(x,

x

ε
),

where v is defined in (A.3) using p(x) = ∇w̄(x), and w2 is defined as

w2(x, y) = w̄xixj(x)χij(y),

and χij (note these are different than χi with one upper index) are chosen to solve

Tr(A(y)D2χij(y)) +B(y) · ∇χij(y) =

āij − {Aij(y) + Akj(y)χiyk(y) + Aki(y)χjyk(y) +
1

2
(Bi(y)χj(y) +Bj(y)χi(y))}.

Now, we note that A and B periodic and in Cγ implies that χl, and as a result also χij,
are all periodic and C2,γ(Σ1).

The final step is to compute the equation for

zε = wε − w̃ε,

which can be followed directly in [6, p. 418, eq. (5.23)], for

L(wε − w̃ε) = εgε.

We use the same definition of gε as in [6, p.418] (note here it is significantly simpler due
to the absence of ci and a0). The important thing to observe about gε is that it involves:
the coefficients, A and B; the function χl; the function and up to one derivative of χij;
third and fourth derivatives of w̄. Thus by the regularity that is noted above, ‖gε‖L∞ ≤ C,
independently of ε. Furthermore, (wε− w̃ε)|Σ0∪Σ1 ≤ Cε (which can be checked by a simple
calculation). Thus we conclude

‖zε‖L∞(Σ1) ≤ εC,

and this implies

‖wε − w̄‖L∞(Σ1) ≤ εC.
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principe du maximum. Séminaire Brelot-Choquet-Deny. Théorie du Potentiel, 10(1):1–38, 1965.

[11] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions of second
order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67, 1992.

[12] B. Engquist and P. E. Souganidis. Asymptotic and numerical homogenization. Acta Numer., 17:147–
190, 2008.

[13] Lawrence C. Evans. Periodic homogenisation of certain fully nonlinear partial differential equations.
Proc. Roy. Soc. Edinburgh Sect. A, 120(3-4):245–265, 1992.

[14] William M. Feldman. Homogenization of the oscillating Dirichlet boundary condition in general do-
mains. J. Math. Pures Appl. (9), 101(5):599–622, 2014.

[15] William M Feldman and Inwon C Kim. Continuity and discontinuity of the boundary layer tail. arXiv
preprint arXiv:1502.00966, 2015.

[16] William M. Feldman, Inwon C. Kim, and Panagiotis E. Souganidis. Quantitative homogenization of
elliptic partial differential equations with random oscillatory boundary data. J. Math. Pures Appl.
(9), 103(4):958–1002, 2015.
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