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Abstract. In this work we provide an Aleksandrov-Bakelman-Pucci type estimate for a cer-
tain class of fully nonlinear elliptic integro-differential equations, the proof of which relies on
an appropriate generalization of the convex envelope to a nonlocal, fractional-order setting and
on the use of Riesz potentials to interpret second derivatives as fractional order operators. This
result applies to a family of equations involving some nondegenerate kernels and as a conse-
quence provides some new regularity results for previously untreated equations. Furthermore,
this result also gives a new comparison theorem for viscosity solutions of such equations which
only depends on the L∞ and Ln norms of the right hand side, in contrast to previous com-
parison results which utilize the continuity of the right hand side for their conclusions. These
results appear to be new even for the linear case of the relevant equations.

1. Introduction

We begin this work with a very basic question to motivate our results. Suppose that L is a

uniformly elliptic operator (L could be a second order or integro-differential operator) and that

uk are appropriate weak solutions (read viscosity solutions) of the equations{
L(uk, x) = fk(x) in B1

u = 0 on Rn \B1,

with the additional assumption that 0 ≤ fk ≤ 1. Then we pose the following question:

Question 1.1. Under what conditions will it be true that |{x : fk(x) > 0}| → 0 as k →∞ also

implies that ‖uk‖L∞ → 0?

(We will assume L is 1-homogeneous, and hence the constant 0 function is a supersolution, and

so always uk ≤ 0.)

In the case that L is a second order, uniformly elliptic operator,

L(u, x) = aij(x)uxixj (x),
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(for λId ≤ (aij) ≤ ΛId) the answer to the above question is indeed affirmative and is given by

the celebrated Aleksandrov-Bakelman-Pucci (ABP) estimate which states that

− inf
B1

{uk} ≤
C(n)

λ
‖fk‖Ln

(where the equation is set in B1 ⊂ Rn).

The current understanding of this question is dramatically different, and not many results

are known when L is a uniformly elliptic integro-differential operator, namely

L(u, x) =

∫
Rn

(u(x+ y)− u(x)−Du(x) · y1|y|≤1(y))K(x, y)dy, (1.1)

where λ ≤ K(x, y)|y|n+σ ≤ Λ ∀ x, y ∈ Rn.
In fact, using current results the only occasions in which something could be said about the

possibility of ‖uk‖L∞ → 0 would be when an explicit Green’s function for the operator L in B1

is known to exist. For many applications and also the possibility of treating nonlinear equations,

this is an unsatisfactory answer to Question 1.1.

In this work, we present a new Aleksandrov-Bakelman-Pucci (ABP for short) type esti-

mate for subsolutions and supersolutions of integro-differential equations for particular kernels

K(x, y). Namely, the kernels for which the result applies include (see Remark 1.5)

K(x, y) = (2− σ)
yTA(x)y

|y|n+σ+2 for σ ∈ (0, 2),

where A(x) satisfies a nondegenerate ellipticity condition

Tr(A(x)) ≥ λ ∀ x (1.2)

(and is only measurable in x). Since these kernels are symmetric in y, we may rewrite L(u, x)

as

L(u, x) = (2− σ)

∫
Rn
δu(x, y)

yTA(x)y

|y|n+σ+2 dy, σ ∈ (0, 2) (1.3)

where we use the notation for second differences as

δu(x, y) := u(x+ y) + u(x− y)− 2u(x).

We want to point out here the much richer structure inherent in elliptic integro-differential

equations regarding uniformly and non-uniformly elliptic operators. A distinction must be

made between the properties of the kernels which are used to construct operators such as (1.1)

and the properties of the operators, L, themselves. Indeed, it is very reasonable to consider L

to be uniformly elliptic even if the corresponding K are not pointwise comparable uniformly

to the standard kernel, |y|−n−σ (see [32] for recent regularity results in this direction). Such

distinctions are by no means well resolved in the current literature, and this should be considered

as evidence to the vast amount of work which is still to be done in this direction of integro-

differential equations.

Moreover, our result also covers fully nonlinear operators, such as

F (u, x) = sup
β

inf
α
{Lαβ(u, x)} (1.4)
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where each Lαβ is as in (1.3), with a fixed σ for all of the Lαβ. It gives new results for the

Dirichlet problem: {
F (u, x) = f(x) in D

u = g on Rn \D,
(1.5)

where F is given by (1.4), g is continuous, and D is an open, bounded domain.

The ABP estimate is not only linked to convergence questions as explained above, but it

also plays an important role in the regularity theory for solutions of equations related to (1.3)-

(1.5). In particular, Theorem 1.3, below, implies both new comparison and regularity results

for solutions of (1.5) and gives a new proof of the recent Hölder regularity results of [18, Section

12] for the operators which are in the class exemplified by (1.3). Furthermore, regularity for

equations with operators whose kernels obey the nondegenerate ellitpticity requirement in (1.2)

have not been previously attained, and so in Section 10 we briefly explain how to obtain Hölder

regularity results as a consequence of Theorem 1.3.

The paradigm of ellipticity taken in [18, Section 3] (and [21, Chapter 2 and 5] for second order

theory) is that F in (1.5) is considered elliptic if there are minimal and maximal operators, M−

and M+, such that

M−(u− v) ≤ F (u, x)− F (v, x) ≤M+(u− v).

In this work, we use a more restricted version of these minimal/maximal operators than those

in [18, Section 3], which is reflected in the list of kernels covered as (1.3) being much smaller

than, but not exactly contained within those considered in [18]. Our extremal operators are

defined as

M−(u, x) = inf
λ≤Tr(A) and A≤ΛId

{
(2− σ)

∫
Rn
δu(x, y)

yTAy

|y|n+σ+2dy

}
(1.6)

and

M+(u, x) = sup
λ≤Tr(A) and A≤ΛId

{
(2− σ)

∫
Rn
δu(x, y)

yTAy

|y|n+σ+2dy

}
. (1.7)

Supersolutions (respectively subsolutions) to (1.5) for these F in the ellipticity family are char-

acterized by the fact that they are automatically supersolutions of a minimal (respectively

maximal) equation. Accordingly, we assume throughout this note u to be a viscosity superso-

lution of a minimal equation with variable right hand side:{
M−(u, x) ≤ f(x) in B1

u ≥ 0 on Rn \B1,
(1.8)

and without loss of generality we assume that f ≥ 0 and that u ≤ 0 in B1.

Remark 1.2. It is very important to remark that although the restriction of A ≤ ΛId is necessary

for the definitions of M− and M+, the ABP-type result presented in Theorem 1.3 only depends

on the value of λ, and not that of Λ. This is to be expected for such a result, as seen Section 6

with the use of Lemma 5.8.

The main contribution of this work is to provide estimates on the infimum of u in terms of

measure theoretic quantities of f , in particular for (1.8) the L∞ and Ln norms of f . The main

result of this work is:
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Theorem 1.3. Assume that u ∈ L∞(Rn)
⋂
LSC(Rn) solves (1.8) in the viscosity sense, that

M− is given in (1.6), and that f ∈ C(B̄1). Then there exists a constant, C(n), such that

− inf
B1

{u} ≤ C(n)

λ
(‖f‖L∞(Ku))

(2−σ)/2(‖f‖Ln(Ku))
σ/2,

where Ku ⊂ B1 is the coincidence set between u and a special envelope of u, made precise in

Section 3, (3.4).

A few immediate remarks related to Theorem 1.3 are in order:

Remark 1.4. For the definitions and basic properties of viscosity solutions of (1.5) and (1.8),

the reader should consult the works: [3], [5], and [18, Sections 1-5]. We emphasize the sign

convention for subsolutions and supersolutions in this work corresponds to that of [18] and [21].

A more detailed history and presentation pertaining to viscosity solutions of first and second

order equations can be found [25].

Remark 1.5. We would like to at least make an attempt to give a concise explanation as to

the need for the peculiar restriction that M− is of the form (1.6) and hence why we can only

treat kernels as in (1.3). Roughly speaking, our approach starts with the function u, which

solves a σ-order equation with σ < 2, and takes its Riesz potential to invert the order by an

amount 2 − σ. Then to the potential, say P , of our original u, we can apply familiar second

order techniques. In particular, we use the formula for the determinant of D2P (x) for those x

with D2P (x) ≥ 0:(
det(D2P (x))

)1/n
=

1

n
inf{Tr(AD2P (x)) : A ≥ 0 and det(A) = 1}.

When this computation is translated back to the original u, the derivatives on P can actually be

transfered to derivatives on the kernel used to construct P , which results in a σ-order operator

containing the term

LA(u, x) = (2− σ)

∫
Rn
δu(x, y)

yTA(x)y

|y|n+σ+2 dy.

All of these steps are implemented carefully in Sections 3 - 5.

Remark 1.6. Due to the slight degeneracy allowed by Tr(A) ≥ λ in the kernels, yTAy |y|−n−σ−2,

comprising the definition of M−, Theorem 1.3 in fact leads to new regularity results. Specifically

for functions, say w, satisfying boundedness of the maximal/minimal operators:

M+(w, x) ≥ −C and M−(w, x) ≤ C,

Theorem 1.3 provides a key step for the regularity theory, and this will be discussed further in

Section 10.

The analysis of fractional order integro-differential equations has gained much attention lately

(see Section 2). It seems surprising, however, that despite so much interest, such estimates as

those in Theorem 1.3 have not been obtained thus far. At least one need for an ABP type

estimate for nonlocal equations was noted in [40, Remark 3.3] regarding the ability to prove

homogenization for stationary ergodic families of integro-differential equations via the methods

of [22]. This stochastic homogenization result will be presented in [41]. Other potential appli-

cations will be briefly discussed in Section 11. In [18, Section 8] an ABP type result was proved,
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but it involves the maximum of f over a finite collection of cubes, representing a Riemann Sum

approximation to the usual ABP of second order theory. The result in [18, Section 8] was

sufficient for the purposes of regularity theory (for very general kernels), nevertheless it has not

been sufficient to answer Question 1.1, which is needed for the stochastic homogenization.

To prove Theorem 1.3 we introduce new machinery, specifically a nonlocal and fractional

order replacement for the convex envelope and the Monge-Ampère operator of a Riesz potential

of u, which can be expressed as a nonlinear integro-differential operator in u itself. This auxiliary

operator makes up for current lack of a definitive analogue of the Monge-Ampère operator

(which has both a divergence and a non-divergence structure), which has been and continues to

be a significant obstacle to understanding the more geometric aspects of the regularity theory

for nonlinear integro-differential equations.

We conclude this introduction with a brief outline of the sections of the paper. The two

new tools mentioned in the previous paragraph, a replacement for the convex envelope and the

auxiliary Monge Ampère operator, are explained in Sections 3 and 5 respectively. This new

σ-order envelope solves a σ-order equation, just as in the second order setting, [21, Chapter

3], with the convex envelope and a second order equation. However, in order to gain access

to familiar geometric arguments involving the usual convex envelope, we must push the order

of the envelope and its equation up to 2. This is done by taking the Riesz potential of the

envelope, and its properties are presented in Section 4. In Section 5 we develop the Monge-

Ampère operator of the potential as a σ-order operator acting on the envelope. In Section 6

we provide the final details of Theorem 1.3. In Sections 7, 8, 9, and 10 we present discussions

involving respectively: the auxiliary operator of Monge-Ampère type, limits of these results as

σ → 2, other useful theorems related to Theorem 1.3 including comparison, and a proof of the

Lε estimates of elliptic regularity theory which nearly identically follows the classical one of [21,

Lemmas 4.5 and 4.6], from which the Harnack inequality follows easily.

2. Background and Main Ideas

2.1. Historical Background. Analysis of integro-differential equations is by no means a new

field. It is intimately linked, via their infinitesimal generators, with modeling involving Lévy

or Lévy-Ito processes– which are much richer and more general than diffusion processes giving

rise to second order non-divergence equations. A key feature intrinsic in modeling with Lévy-

Ito processes and integro-differential equations is that they allow for long range interactions

of various forms, and that the underlying stochastic processes can have jumps– in contrast

to diffusion processes, which are continuous. There are many recent applications of these

processes and their generators, and we list only a characteristic few: for particle systems and

their hydrodynamic limit [27], for financial modeling [23] and [24], for optimal control (also

related to financial modeling) [39], [45], and [44], for image processing [29].

There has been recently a growing interest in the analysis of integro-differential equations.

The renewed interest seems not only due to the importance in modeling (Lévy processes have

been around for a very long time) but to advances in both the probabilistic and partial differen-

tial equation analysis for treatment of equations related to (1.5) and (1.8). Here we list only a

few references for recent advances, and suggest the interested reader to consult those references

contained within, as a complete list would be impossible. On the analysis/PDE side, integro-

differential equations were brought to the viscosity solutions framework in [44], [45], and later
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in [2], and the comparison theory for these equations was recently improved and re-presented in

[5], with the Dirichlet problem being considered in [3]. Hölder regularity issues were considered

in [42] for “non-divergence” form equations (cf. [42, Section 3.6] for a discussion of “divergence”

versus “non-divergence” in this context), and a series of works making a uniform theory for both

Hölder and higher regularity of more general versions of (1.5) was done in [16], [17], and [18].

Also by PDE methods, parabolic regularity was obtained for divergence form equations in [15].

Regularity for equations related to (1.5) was investigated by different, but still PDE, methods

in [4]. Probabilistic analysis was used to investigate many integro-differential equations in both

“divergence” and “non-divergence” forms to obtain various important results including Hölder

regularity, Harnack inequalities, and other finer properties in [1], [6], [7], [8], [9], and [10].

2.2. Another Simple Motivation For (1.8) and Theorem 1.3. Let us now setup another

very simple question related to that posed in the Introduction. It arises in the study of obstacle

problems, and was utilized in [22] for homogenization (see [41] for the same use in a nonlocal

setting). Consider the solution of an elliptic equation,{
F (v, x) = 0 in B1

v = 0 on Rn \B1
(2.1)

and the solution to the corresponding obstacle problem with the same operator, u, solving

u = sup{φ : F (φ, x) ≥ 0 in B1 and φ ≤ 0 in all of Rn}. (2.2)

A reasonable question is: what is the difference between u and v? Naturally, since u is a

subsolution of the equation for v and they share the same data in Rn \B1, then at least we can

conclude v ≥ u. But what about the reverse inequality? Ellipticity (see [18, Definition 3.1] and

[21, Chapters 2 and 5]) tells us that

M−(u− v, x) ≤ F (u, x)− F (v, x).

Two of the key properties of the solutions to obstacle problems is that u is actually a solution

to F (u, x) = 0 whenever u(x) 6= 0, and that u inherits the equation from 0 when it does happen

that u(x) = 0, which is F (u, x) ≤ F (0, x) (here we mean the operator applied to the constant,

0, function). Therefore, the relevant inequalities are

M−(u− v, x) ≤ F (u, x)− F (v, x) ≤ 1{u=0}(x)F (0, x),

which by the boundedness of F (0, x) ≤ C becomes{
M−(u− v, x) ≤ C1{u=0}(x) in B1

u− v = 0 on Rn \B1.
(2.3)

After considering an f which is a continuous approximation from above of 1{u=0}(x), one can

clearly see the question at hand and the motivation for this work: How can (2.3), and hence

also (1.8), be treated in a way which only depends upon measure theoretic properties of f and

not continuity properties of f?

This leads us directly back to Question 1.1. The natural setting for the homogenization

problem will involve a sequence of uk and v as above with the additional information that
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|{uk = 0}| → 0 as k → ∞ (see [41, Section 3, specifically Lemma 3.5]). The goal in such a

situation is to be able to conclude that

‖uk − v‖L∞ → 0 as k →∞.

Before this work was completed, there seemed to be very little results, in fact the authors found

none, which could handle a situation in which the right hand side of (1.8) would converge in

any sense other than in L∞ (the relevant results in both [3] and [18] strongly require f to

be continuous and converge to 0 in L∞ to conclude similar statements). At least within the

restricted class of operators presented here, Theorem 1.3 answers this question, which was not

possible with previous known results.

2.3. Theorem 1.3 As a Proof of Concept For Broader Results. As hinted in the in-

troduction, the full class of nonlinear nonlocal elliptic operators is much richer than simply

those given in our definition of M−. In [18], there is a version of M− which covers many more

operators than the one appearing in (1.6); it is given as

M−CS(v, x) =

∫
Rn

(2− σ)

(
λ

(δv(x, y))+

|y|n+σ − Λ
(δv(x, y))−

|y|n+σ

)
dy (2.4)

= inf
λ≤a(x,y)≤Λ

{
(2− σ)

∫
Rn
δv(x, y)

a(x, y)

|y|n+σ+2dy

}
. (2.5)

Hence the results of [18] correspond to a much larger family of equations than the one here. To

go even further, as done in the linear case considered in [8], one could use this same definition

with measures, n(x, dy), “comparable” in a less restrictive sense to |y|−n−σ dy as opposed to

only those measures with a density as above, n(x, dy) = a(x, y) |y|−n−σ dy, for a uniformly

bounded from below and above.

A reasonable guess for an ABP type theorem applying to (1.8) in these classes above would

be

− inf
B1

(u) ≤ C

λ
‖f‖Lp , (2.6)

for some p > n, depending on σ. At the time [18] and [40] were completed, it was not known

whether or not such a result should be true for the general nonlocal ellipticity class or even a

restricted class such as the one considered here. Now Theorem 1.3 indicates that at least some

form of ABP type result holds for a restricted class of operators. This gives hope that ABP

type estimates, such as those in Theorem 1.3, for the general class of nonlocal elliptic equations

may still be true. Furthermore, it opens the door to answering the question of whether or not

(2.6) is appropriate to expect for (1.8). The moral of the story is Theorem 1.3 indicates it is

not that ABP type results are incompatible with the intrinsic properties of (1.8), but more

importantly that the existing machinery is incompatible with (1.8). This illuminates one of the

main difficulties in analysis of nonlocal equations: there is no known general framework to take

the place of the very important Monge-Ampère operator and the gradient mapping of convex

functions in the second order theory.

2.4. Failure of The Convex Envelope. For the convex envelope, say Γ, the information

in the proof of the original second order ABP estimate is naturally encoded in the set {x :

det(D2Γ(x)) > 0}. This matches very well with second order equations because det(D2Γ) = 0

whenever Γ and u do not coincide, and on the set where they do coincide, Γ inherits the
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supersolution property of u simply by comparison. In the nonlocal setting, the function w =

|x|α − 1 will solve (1.8) for α > σ with a right hand side, f , which will still be bounded and

continuous. However for σ < α < 1, the convex envelope of w only coincides with w at one

point, x = 0. Hence there would be a contradiction with the usual ABP estimate which would

read:

− inf
B1

{w} ≤ C‖f‖Ln({w=Γ}) = 0.

The problem here is exactly that such fractional order equations allow for much more drastic

bending of supersolutions than is possible in a second order setting. Therefore, the convex

envelope is not well suited for a measure theoretic estimate, such as Theorem 1.3. For purposes

of studying the regularity of (1.5) with even more general operators than the F appearing in

(1.4), the convex envelope was sufficient and strongly used in [18, Section 8]. In contrast to

[18], in this work we must construct a different envelope which will be better suited to handle

such a function as w, above. This will be the content of Section 3

2.5. Main Ideas and Sketch of The Proof. Here we give a brief sketch of how Theorem

1.3 is proved. The main ideas are the same as in the second order theory (cf. [21, Chapter 3]

or [28, Chapter 9]), but the machinery and implementation are a bit more involved.

Everything starts with an appropriate envelope of u from below, which we will denote as Γ.

It must be such that

inf{u} = inf{Γ}. (2.7)

The first key feature is the existence of an operator, which we denote as Dσ, such that

(− inf Γ)p ≤ C
∫
B3

(Dσ(Γ, x))p dx (2.8)

for some p possibly depending on n and σ. At this point for the second order theory, we

would have Γ as the convex envelope of u and Dσ would be det(D2Γ)1/n, in which case the

previous inequality is a consequence of the geometry of convex functions (what is known as

“Aleksandrov’s estimate”). The second key feature is that the operator Dσ must satisfy for a

special class of Γ,

Dσ(Γ, x) ≤ CM−(Γ, x). (2.9)

Finally, the third key feature is that

Dσ(Γ, x) ≤ 0 whenever Γ(x) 6= u(x). (2.10)

This is essential so that all the contribution of Dσ(Γ) can be ignored except for the contact set

between u and Γ. This way, information about M−(u, x) ≤ f(x) in the viscosity sense can be

carried over to Γ via comparison, and the other values of Dσ(Γ) will not pollute the integral

in the estimate (2.8). Essentially Γ acts as a test function on u, and the defining feature of

viscosity solutions is that at those points where Γ touches u from below,

M−(Γ, x) ≤ f(x). (2.11)

If all of (2.7), (2.8), (2.9), (2.10), and (2.11) can be satisfied (which is very nontrivial), then

Theorem 1.3 can be proved.

It turns out to be quite difficult to simultaneously achieve all three of the key features, (2.8),

(2.9), and (2.10). This delicate balance is what leads to Theorem 1.3 only being proved for a

restricted class of operators, instead of the much more general class of [18].
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2.6. Notation. We list here some notation which will be used throughout this work.

(1) The second difference operator: δv(x, y) := v(x+ y) + v(x− y)− 2v(x)

(2) The n− 1 dimensional sphere Sn−1 = ∂B1 ⊂ Rn and its surface area ωn
(3) The complement of a set, Ac = Rn \A
(4) The following universal constant will appear often (when n ≥ 2),

A(n, α) = πα−
n
2

Γ(n−α2 )

Γ(α2 )

It can be showed that A(n, α) ∼ α as α→ 0+ (see [34, Chapter I, page 44]).

(5) The Riesz Potential of order α, Kα(y) := A(n, α) |y|−n+α

(6) The Fractional Laplacian (when n ≥ 2)

−(−∆)σ/2v(x) = σ(n+σ−2)
2 A(n, 2− σ)

∫
Rn
δv(x, y) |y|−n−σ dy.

(7) The one dimensional Fractional Laplacian in the direction τ ∈ Sn−1, (for some universal

constant (A(1, 2− σ) which we will not need to specify here),

−(−∆)σ/2τ v(x) := σ(1+σ−2)
2 A(1, 2− σ)

∫
R

(δv(x, sτ)) |s|−1−σ ds

(8) The inf-convolution of a function v, vε(x) := infy{u(y) + (2ε)−1 |x− y|2} (See [30,

Equations (14), (15)], [35], [25, Appendix])

(9) v is C1,1 from above at x (respectively from below) [18, Definition 2.1] if there exists a

radius r, a vector p, and a constant M such that for all |y| ≤ r

v(x+ y)− v(x)− p · x ≤M |y|2

(respectively v(x+ y)− v(x)− p · x ≥M |y|2)

(10) Contact Set between u and its envelope, Γ (defined in Definition 3.6),

Ku := {x : u(x) = Γ(x)}

(11) The convex envelope in BR, vCE , for a function v ≥ 0 in Rn \BR is

vCE(x) = sup{l(x) : l affine and l ≤ v in BR}

(12) The extremal operators and ellipticity constants for the family governed by L of (1.3)

are M− and M+ defined in (1.6) and (1.7).

3. The Fractional Envelope

This section is dedicated to constructing a new envelope (as a replacement for the convex

envelope) for the supersolution, u, of (1.8) which will be essential to proving Theorem 1.3. The

main idea is to imitate the most important features of the convex envelope as they pertain to

the second order theory, cf. [21, Chapter 3] and [13, Proposition 2.12 and Appendix A] for the

fully nonlinear version and [28, Chapter 9, Section 1] for the linear version. The goal is for the

new fractional order envelope to be in a class of functions for which M− is comparable to a

nonlocal version of the Monge-Ampère operator, and also to cause this nonlocal Monge-Ampère

operator to vanish whenever u and its envelope do not touch. For the sake of explanation, let

Γ be the convex envelope of u andM− to be the second order minimal Pucci operator (see [21,
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Chapter 2, Section 2]). For Γ, the two requirements just mentioned above correspond to the

two facts implied by convexity and the envelope property:

n∏
k=1

ek ≤

(
1

n

n∑
k=1

ek

)n
≤
(

1

λ
M−(Γ)

)n
for the eigenvalues, ek, of D2Γ

and

det(D2Γ(x)) = 0 if u(x) 6= Γ(x).

The appropriate analogs to our new envelope appear subsequently as Lemmas 5.8 and 5.10.

In order to define the new envelope, we introduce a matrix-valued integro-differential opera-

tor, which will play the (auxiliary) role of an “integro-differential Hessian”.

Definition 3.1. Let n ≥ 2, σ ∈ (0, 2), and let v be a bounded function such that∫
Rn

|δv(x, y)|
|y|n+σ <∞,

then we define

hσ(v, x) := (n+σ−2)(n+σ)
2 A(n, 2− σ)

∫
Rn

y ⊗ y
|y|n+σ+2

δv(x, y)dy (3.1)

The use of this matrix is dictated by our approach based on Riesz potentials in Section 4, and

it will become more clear in Section 5. By this we mean the following, if v is smooth enough

and K2−σ is the Riesz Potential (see section 2.6) then a consequence of Lemma 5.1 is

D2(v ∗K2−σ) = hσ(v, x) + (−∆)σ/2v(x)
n+σ Id

Remark 3.2. It is immediate that if u touches v from above at x and they are both smooth

enough then we have the matrix inequality hσ(u, x) ≥ hσ(v, x).

Remark 3.3. As σ → 2− (and thus α→ 0), the above identity gives us

hσ(v, x)→ D2v(x) + ∆v(x)
n+2 Id

.

Remark 3.4. The fully nonlinear integro-differential operators that our methods handle are

exactly those that can be written in the form

I(u, x) = inf
a

sup
b
{Tr(Aab(x)hσ(u, x) : Tr(Aab(x)) ≥ λ and Aab(x) ≤ ΛId},

where a and b can be taken over arbitrary index sets.

Moving forward, the “σ-order envelope” of u is defined as the solution of an obstacle problem

which is a generalization of the obstacle problem satisfied by the convex envelope. First we

define an operator which will be a fractional order replacement of the first eigenvalue of the

Hessian operator used in the construction of the convex envelope for second order equations.
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Definition 3.5. Let λ1(B) = min{e : e is an eigenvalue of B} be the first eigenvalue operator

of a matrix. Eσ is defined as

Eσ(v, x) := λ1{hσ(v, x)} = inf
τ∈Sn−1

{(hσ(v, x) τ) · τ}. (3.2)

Now, using Eσ, we can define our “σ-order envelope”.

Definition 3.6.

Γσu(x) = sup {v(x) : Eσ(v) ≥ 0 in B3, and v ≤ u1B1 in Rn} , (3.3)

and the contact set between Γσu and u will be denoted as

Ku := {x : Γσu(x) = u(x)}. (3.4)

Remark 3.7. The usual convex envelope used in the second order theory has an analogous

structure as the solution to an obstacle problem. The interested reader should consult [38] for

an exposition.

By remark 3.3, this new operator, Eσ, does not recover the smallest eigenvalue of the Hessian

of u in the limit σ → 2, instead (see Proposition 8.1)

lim
σ→2

Eσ(u, x) = λ1(D2u(x)) + 1
n+2∆u(x).

In particular, as σ → 2− the envelope Γσu converges to the solution of the upper obstacle problem

for the operator above with u as the upper obstacle. The solution to this problem lies above

the convex envelope of u but it does not agree with it.

Remark 3.8. All of the results of this section hold (with small modifications) if instead we use

E∗σ(u, x) := inf
τ∈Sn−1

{−(−∆)στu(x)}

Here (−∆)στu is the one dimensional fractional Laplacian of u defined in Section 2.6. This is a

much more drastic notion of envelope (such an envelope would be below the one defined using

Eσ, and touch u on a much smaller domain, which can be problematic). In principle, it is

perfectly tailored to handle much more general kernels:

K(y) =
a(y)

|y|n+σ
where a(ry) = a(y) ∀ r ∈ R.

However, it is not yet clear how one can go about proving L∞ bounds for this envelope in terms

of a “convenient” integral quantity (i.e. one that can be controlled by and integral of M−(Γ)).

In contrast, the envelope we use admits integral bounds granted by its compatibility with the

Riesz potential. Whether this argument work for the more “drastic” envelope is not clear and

perhaps an entirely different approach is need, this question will be addressed in future work.

Remark 3.9. Some nonlinear one directional operators related to this alternative operator E∗σ
have also been considered in [11]. In particular, the one dimensional Fractional Laplacian in

the direction of ∇u gives rise to a natural integro-differential analogue of the Infinity Laplacian.

For the remainder of this section, some properties of Γσu will be collected for later use. Also,

we will dispense with the notation Γσu and instead simply use Γ except in special cases which

will be appropriately noted.
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Lemma 3.10 (Compact Support of Γ). Γ = 0 in Rn \B3.

Proof of Lemma 3.10. This lemma is an immediate consequence of the equation satisfied by Γ,

which is treated as (12.4) in the Appendix.

�

As a solution to an obstacle problem, Γ attains regularity from two sources. A one sided

regularity of u from above is transferred to Γ via the obstacle, and further regularity of Γ from

below is attained via the structure of the operator, Eσ. We record the result as it pertains to

Γ in Proposition 3.11, but the result holds in more generality and is of independent interest–

we have chosen to present these related results in the Appendix, Section 12.

Proposition 3.11 (Γ Regularizes From Below). Let Ω ⊂⊂ B3. If u satisfies respectively

(i) −(−∆)σ/2u ≤ C classically in B1,

(ii) u is C1,1 from above with a bound, C

then there exists a C1 depending on Ω, σ, n, λ, Λ ‖u‖L∞ and C such that for a.e. x ∈ Ω,

respectively

(i)

0 ≤ hσ(Γ, x) ≤ C1Id and ‖Γ‖Hσ(Ω) ≤ C1,

(ii) ∫
Rn

|δΓ(x, y)|
|y|n+σ dy ≤ C1.

Remark 3.12. In particular, Proposition 3.11 ensures that for almost every x, the σ order

operators can be evaluated classically on Γ.

Remark 3.13. Proposition 3.11 would in fact be easier and stronger if the obstacle problem for

Γ were posed in all of Rn instead of B3. In that case, Γ would be C1,1 from above whenever

u was C1,1 form above at well, and would follow from a straightforward adaptation of [43,

Proposition 3.10] to the case of a concave nonlinear operator.

Proof of Proposition 3.11. The proof is an almost immediate consequence of Proposition 12.1.

We simply note that the fact that Eσ(Γ, x) ≥ 0 in B3 implies that hσ(Γ, x) ≥ 0 in B3. Hence

hσ(Γ) has all non-negative eigenvalues and so Tr(hσ(Γ)) bounds all of them individually. Hence

because

Tr(hσ(Γ)) = −(−∆)σ/2Γ,

the result (i) follows immediately from Proposition 12.1. Result (ii) follows immediately from

Corollary 12.3. �

The following fact is a straightforward consequence of the definitions of M− and Eσ, we state

it as a lemma without proof.

Lemma 3.14 (Ordering of Eσ and M−). For any v which satisfies

∫
Rn

|δv(x, y)|
|y|n+σ <∞,

Eσ(v, x) ≥ 0 ⇒ Eσ(v, x) ≤ C(n)

λ
M−(v, x). (3.5)
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Exactly as with Lemma 3.14, the following is a straightforward consequence of the definitions,

and so we again omit the proof.

Lemma 3.15. If u satisfies classically −(−∆)σ/2u ≤ C in B1, then for almost every x ∈ B3,

the operators on Γ are classically defined and satisfy for all A ≥ 0:∫
Rn
δΓ(x, y)

yTAy

|y|n+σ+2dy ≥ 0.

To wrap up this section, we prove one last property of the envelope, Γ. This is the stability

of the contact sets with respect to an increasing family of obstacle functions, uε.

Lemma 3.16. If uε ↗ u as ε↘ 0, then lim supKε ⊂ K, where Kε = {x : uε(x) = Γε(x)} and

K = {x : u(x) = Γ(x)} and Γε, Γ are as in Definition 3.6.

Proof of Lemma 3.16. The increasing property of uε implies for ε2 < ε1 that Γε1 is an admissible

subsolution below uε2 , and hence because Γε2 is the largest such subsolution, Γε2 ≥ Γε1 . Thus

Γε is also increasing, Γε ↗ Γ. Now suppose x is a point in the set lim supε→0Kε. We can

extract a subsequence indexed by εk such that uεk(x) = Γεk(x).

It must be shown that Γ(x) = u(x). We already know that Γ(x) ≤ u(x) by definition of Γ,

so therefore we will show Γ(x)− u(x) ≥ 0:

0 ≥ Γ(x)− u(x)

≥ Γ(x)− Γεk(x) + Γεk(x)− uεk(x) + uεk(x)− u(x)

≥ 0 + 0 + uεk(x)− u(x).

Letting k →∞ (εk → 0) yields the result. �

4. The Fractional-Order Potential

In the previous section we defined and presented some properties of an important envelope

which will be used in the proof of Theorem 1.3. However, there are still many difficulties to be

overcome in proving an ABP type estimate for (1.8), specifically one must relate the infimum

of Γ to an integral of a quantity which is comparable to M−(Γ). In the second order setting

(using a convex Γ), this is resolved by the very special geometry of the convex envelope which

gives

− inf{Γ} ≤ C(n)

∫
B3

det(D2Γ(x))dx.

A key feature in the proof is that we can transfer this argument to the Riesz potential of Γ,

which will solve a second order equation. Moreover, the usual argument will result in looking at

the gradient measure, |∇P (B3)|, which is a nonlocal quantity of Γ. Inspiration for this choice

came from the use of the Riesz potential in the setting of a nonlocal Porous Medium Equation

treated in [19]. This method is also reminiscent of the regularity theory for the obstacle problem

for the fractional Laplacian [43], which starts with the observation that the fractional Laplacian

of the solution (of order σ) solved an equation of order 2− σ.

As mentioned, we take our fractional-order potential to be the Riesz potential of the envelope

(cf. [46, Chapter 5, Section 1] or [34, Ch. 1, Section 1] ), which formally says

P = (−∆)−(2−σ)/2Γ.
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Precisely we mean for this to be the convolution with the Riesz kernel, Kα := A(n, α) |·|−n+α,

P = Γ ∗Kα, (4.1)

for α = (2− σ), and the constant A(n, α) which is listed explicitly in section 2.6. Hence

(−∆)P = (−∆)σ/2Γ and (−∆)(2−σ)/2P = Γ.

The whole motivation of using the potential, P , of order (2− σ)/2 is to make sure that the

usual 2nd order Monge-Ampère operator, det(D2P ), becomes a σ-order operator when viewed

as an operation on Γ. This way, there is hope that det(D2P ) will be comparable to M−Γ,

and familiar techniques from the proof of the second order ABP estimate can be used (see [21,

Lemma 3.4] and/or [28, Lemma 9.2]). Indeed, the form of det(D2P ) is investigated in Section 5

and will be shown to be a σ-order operator comparable to M−Γ (this new operator will not be

an elliptic σ-order operator in general, but we will be working with a convenient special case).

However, some additional difficulties are introduced by using P instead of Γ itself. It will be

necessary to compare the infimum of P to the infimum of Γ in a uniform fashion which does not

depend on the continuity of Γ or u. This is not to be expected simply from the Riesz potential

itself, but must be deduced from the equation satisfied by Γ. The relationship between P and

Γ is the main result of this section, which is presented in Proposition 4.7.

To begin the results of this section, it will be helpful to remark upon the regularity of P

pertaining to that of Γ. These results are presented in [43], and so we do not provide a proof.

They all follow from either of the two equations involving P :

(−∆)(2−σ)/2P = Γ

or

(−∆)P = (−∆)σ/2Γ.

Lemma 4.1 (Proposition 2.9 of [43]). The regularity on P inherited from Γ is

i) whenever (2− σ) ≤ 1, P ∈ C0,α for any α < (2− σ) and

‖P‖C0,α ≤ C(‖P‖∞ + ‖Γ‖∞),

ii) whenever (2− σ) > 1, P ∈ C1,α for any α < (2− σ)− 1 and

‖P‖C1,α ≤ C(‖P‖∞ + ‖Γ‖∞),

and

iii) P ∈ C2,γ whenever Γ ∈ C1,1(Rn) (only for σ < 2).

There are two more very useful consequences which follow simply from the equation satisfied

by P . They will play a significant role later in both Proposition 4.7 and the proof of Theorem

1.3.

Lemma 4.2. If x0 ∈ Bc
3 and l is a linear function, then P − l cannot attain a local minimum

at x0.

Proof of Lemma 4.2. As noted above, P globally solves the equation

∆P = −(−∆)σ/2Γ.
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Furthermore, due to the fact that Γ satisfies the Dirichlet problem, (12.4), we know Γ(x0) = 0

and without loss of generality Γ < 0 in B3, we also have that

∆P (x) = −(−∆)σ/2Γ(x) < 0.

Thus, by comparison for ∆P and ∆l, it is impossible for P − l to have a local minimum at

x0. �

Corollary 4.3. If x0 satisfies P (x0) = inf
Rn
{P}, the x0 ∈ B3.

Corollary 4.4. If A ⊂ Rn is the set where P has a second order Taylor Expansion, then

{x ∈ A : D2P (x) ≥ 0} ⊂ B3(0).

Now we proceed with the very interesting relationship between inf{P} and inf{Γ} which is

imposed by the equation governing Γ and will be developed as Lemma 4.5 and Proposition

and 4.7. Lemma 4.5 is an example of the type of information that is available when analyzing

nonlocal equations which is not available in the local setting. Basically this next lemma says

that the nonlocal equation prevents, in a uniform fashion, Γ (and also u) from growing away

from its minimum faster that |y|σ in a large set.

Lemma 4.5. Let 0 < σ < 2 and x0 be such that Γ(x0) = infRn{Γ}. Define the set

Ax0 := {y : Γ(x0 + y)− Γ(x0) ≤ f(x0) |y|σ} (4.2)

and rings with radius rk = ρ02−k, Rk = Brk(x0) \ Brk+1
(where ρ0 will be chosen later for the

proof of Proposition 4.7). If the indices, k∗, indicate bad rings for which

∣∣∣Acx0⋂Rk∗
∣∣∣ ≥ 1

2
|Rk∗ | , (4.3)

then the number of such indices satisfies

(#k∗) ≤ 2

(2− σ)λ
Cn

Proof of Lemma 4.5. Because x0 is a location of a global minimum of Γ which is also a contact

point with u, we know that M−(Γ, x0) ≤ f(x0) by comparison with u. Furthermore, there are

two things which result from δΓ(x0, y) ≥ 0: one, all of the operators appearing in the definition

of M− (equation (1.6)) are bounded below by the one corresponding to a matrix (λ/n)e⊗e (for

some unit vector e), and two, we can neglect as much of the set of integration as we like in the

evaluation of M−(Γ, x0). Without loss of generality, we may assume e points in the positive

direction of the x1-axis.

Therefore, evaluating (1.8) at x0 and estimating as suggested above, we have
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f(x0) ≥M−(Γ, x0)

≥ λ
∫
Rn

(2− σ)δΓ(x0, y)y2
1 |y|

−n−σ+2 dy

= λ

∫
Rn

(2− σ)(Γ(x0 + y)− Γ(x0))y2
1 |y|

−n−σ−2 dy + λ

∫
Rn

(2− σ)(Γ(x0 − y)− Γ(x0))y2
1 |y|

−n−σ−2 dy

≥ λ
∫
Acx0

(2− σ)(Γ(x0 + y)− Γ(x0))y2
1 |y|

−n−σ−2 dy

≥ λ
∑
k∗

∫
Acx0

⋂
Rk∗

(2− σ)(Γ(x0 + y)− Γ(x0))y2
1 |y|

−n−σ−2 dy

≥ λ
∑
k∗

∫
Acx0

⋂
Rk∗

(2− σ)f(x0) |y|σ y2
1 |y|

−n−σ−2 dy.

Since
∣∣Acx0 ⋂Rk∗∣∣ ≥ |Rk|/2, it can be checked easily that∫

Acx0
⋂
Rk∗

y2
1|y|−n−2dy ≥ cn ∀k∗

which together with the previous inequality means that

f(x0) ≥ λf(x0)
∑
k∗

(2− σ)cn

∣∣∣Acx0⋂Rk∗
∣∣∣ r−n+σ−σ
k∗+1

≥ λf(x0)
∑
k∗+1

(2− σ)cnω(n)(1− 2−n)

≥ λf(x0)(2− σ)
1

2
λcnωn(#k∗)

Therefore, we conclude

(#k∗) ≤ 2

(2− σ)λ
Cn

�

Remark 4.6. It is worth comparing Lemma 4.5 to [18, Lemma 8.1], where a decay rate of Γ

away from its supporting hyperplane of r2 was used instead of the rσ used here. Using rσ seems

to give more precise information for which rings the decay estimate can fail.

Proposition 4.7. Let x0 be such that Γ(x0) = infRn{Γ} and σ ∈ (0, 2). Then

− inf
Rn
{P} = − inf

B3

{P} ≥ C(n, λ)(−Γ(x0))2/σ

(
1

2f(x0)

)(2−σ)/σ

.

Proof of Proposition 4.7. First we note the equality between the infimum of P in all of Rn and

in B3 comes from Corollary 4.3. Once we choose an appropriate ρ0 from Lemma 4.5, this

proposition will follow directly from the definition of P . We would like to restrict the beginning

radius, ρ0, so that whenever y ∈ Ax0
⋂
Rρ0 , y also satisfies (recall Γ is always negative)

Γ(x0 + y) ≤ 1

2
Γ(x0).
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This is guaranteed if we let

ρ0 =

(
−Γ(x0)

2f(x0)

)1/σ

,

which gives for |y| ≤ ρ0 and y ∈ Ax0

Γ(x0 + y)− Γ(x0) ≤ f(x0) |y|σ ≤ −1

2
Γ(x0).

Also in the estimates to follow, it will be very useful to observe that if {kg} are the collection

of indices resulting in good rings satisfying∣∣∣Ax0⋂Rk

∣∣∣ ≥ 1

2
|Rk| ,

and N(x0) is the upper bound on the bad indices, (#k∗), where the collection {k∗} are the ones

satisfying (4.3), then ∑
kg

r2−σ
kg
≥

∑
k≥N(x0)

r2−σ
k .

Recall also that

N(x0) =
2

(2− σ)λωn
.

Now we have

−P (x0) = A(n, 2− σ)

∫
Rn
−Γ(x0 + y) |y|−n+2−σ dy

≥ A(n, 2− σ)
∑
kg

∫
Ax0

⋂
Rkg

−1

2
Γ(x0) |y|−n+2−σ dy

≥ A(n, 2− σ)(−1

2
Γ(x0))

∑
kg

∣∣∣A⋂Rkg

∣∣∣ r−n+2−σ
kg+1

≥ A(n, 2− σ)(−Γ(x0))C(n)
∑
kg

r2−σ
kg

≥ A(n, 2− σ)(−Γ(x0))C(n)
∑

k≥N(x0)

r2−σ
k

= A(n, 2− σ)(−Γ(x0))C(n)ρ2−σ
0

∑
k≥N(x0)

2−k(2−σ)

= A(n, 2− σ)(−Γ(x0))C(n)ρ2−σ
0 (2−(2−σ))N(x0)

∑
k≥0

(2−(2−σ))k

≥ A(n, 2− σ)(−Γ(x0))C(n)ρ2−σ
0 (2−2/(λωn))(1− 2−(2−σ))−1.

In the calculations above, the “constant”, C(n), was used multiple times as different numbers

to absorb any extra constants which only depended on the dimension.

At this point we can collect the various information about ρ0, N(x0). Observe that

lim
σ→2

A(n, 2− σ)(1− 2(2−σ))−1 = C(n),

which follows from the fact that A(n, 2− σ) ∼ 2− σ and 22−σ ∼ 1 as σ → 2. We conclude

−P (x0) ≥ C(n)2−2/(λωn)(−Γ(x0))ρ
(2−σ)
0 .
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Recall that ρ0 =
(
−Γ(x0)
2f(x0)

)1/σ
and that trivially −P (x0) ≤ − inf P so that

− inf P ≥ C(n)2−2/(λωn)(−Γ(x0))

(
−Γ(x0)

2f(x0)

)(2−σ)/σ

,

which proves the proposition. �

Remark 4.8. There is a strange but straightforward phenomenon for Γ resulting from the non-

local nature of M−. As above, suppose that Γ(x0) = inf{Γ}; note x0 ∈ B1 by the assumptions

on u. By the regularity of Γ, we can evaluate M−(Γ, x0) (and also recall Γ = 0 outside of B3),

and we see that for an appropriate A with Tr(A) ≥ λ

f(x0) ≥M−(Γ.x0) ≥ (2− σ)

∫
Rn
δΓ(x0, y)yTAy |y|−n−σ−2 dy

> (2− σ)

∫
|y|>4

δΓ(x0, y)yTAy |y|−n−σ−2 dy ≥ −Γ(x0)C(n, λ, σ).

This gives the very strange conclusion that

f(x0) > −C(n, λ, σ)Γ(x0),

so long as σ < 2, which is purely an artifact of the nonlocal nature of the operators (this

information is not preserved as σ → 2). Furthermore, this gives good confirmation that the

choice of ρ0 in Proposition 4.7 will never be too large.

There is another way of stating Proposition 4.7 which allows for a more intuitive interpreta-

tion as an interpolation result.

Corollary 4.9. There exists C(n, λ) > 0 such that if σ,Γ and P are all as above, then:

‖Γ‖∞ ≤ C(n)‖P‖σ/2∞ ‖f‖(2−σ)/2
∞

Written in this form, the nature of Proposition 4.7 as an interpolation estimate becomes clear.

To see why such an estimate is to be expected, we prove a closely related result.

Proposition 4.10 (Interpolation; also as Lemma 4.1 of [43]). Suppose σ,Γ and P are as before,

then if P is C1,1(Rn) we have

‖Γ‖∞ ≤ C(n, λ)‖P‖σ/2∞ [P ]
(2−σ)/2
C1,1

Proof of Proposition 4.10. The proof is tailored after interpolation estimates for Hölder norms

(for similar, but not identical statements, the interested reader should see [28, Chapter 6,

Appendix]).

Since Γ = (−∆)(2−σ)/2P we always have (with A = |A(n,−(2− σ))| )

|Γ(x)| = A

∣∣∣∣∫
Rn

δP (x, y)

|y|n+2−σ dy

∣∣∣∣
≤ A

∣∣∣∣∣
∫
Bρ

δP (x, y)

|y|n+2−σ dy

∣∣∣∣∣+A

∣∣∣∣∣
∫
Bcρ

δP (x, y)

|y|n+2−σ dy

∣∣∣∣∣ ∀ρ > 0. (4.4)

The second integral can be controlled as follows∣∣∣∣∣
∫
Bcρ

δP (x, y)

|y|n+2−σ dy

∣∣∣∣∣ ≤ 2‖P‖L∞(Rn)

∫
Bcρ

1

|y|n+2−σ dy = 2ωn‖P‖L∞(Rn)

∫ +∞

ρ
r−3+σdr



ABP Estimates For Integro-Differential Equations 19

= ‖P‖L∞(Rn)
2ωn

2− σ
ρ−(2−σ). (4.5)

For the first integral we have∣∣∣∣∣
∫
Bρ

δP (x, y)

|y|n+2−σ dy

∣∣∣∣∣ ≤
(

sup
|y|≤ρ

|δP (x, y)|
|y|2

)∫
Bρ

1

|y|n−σ
dy

=

(
sup
|y|≤ρ

|δP (x, y)|
|y|2

)
ωn
σ
ρσ ≤ [P ]C1,1(Rn)

ωn
σ
ρσ. (4.6)

We may now plug inequalities (4.5) and (4.6) in (4.4) to obtain:

|Γ(x)| ≤ Aωn
(

2

2− σ
‖P‖L∞(Rn)ρ

−(2−σ) +
Cn[P ]C1,1(Rn)

σ
ρσ
)

∀ρ > 0. (4.7)

Then we may pick the ρ > 0 that minimizes the right hand side of (4.7). Since we have a convex

function of the parameter ρ we only need to get its critical point:

d

dρ

(
a

2− σ
ρ−(2−σ) +

b

σ
ρσ
)

= 0⇒ aρ−(3−σ) = bρσ−1 ⇒ ρ =
√
a/b.

Finally, putting ρ =
√
a/b gives us the minimum value (basically we used Young’s inequality)

a

2− σ
a−(2−σ)/2b(2−σ)/2 +

b

σ
aσ/2b−σ/2 =

2

(2− σ)σ
aσ/2b(2−σ)/2.

Where a = 2‖P‖L∞(Rn) and b = Cn[P ]C1,1(Rn), going back to (4.7) we obtain

|Γ(x)| ≤ 21+σ/2ωnC
(2−σ)/2
n A(n,−(2− σ))

(2− σ)σ
‖P‖σ/2L∞(Rn)[P ]

(2−σ)/2
C1,1(Rn)

.

The proof is now done, as the term on the right hand side stays uniformly bounded for

σ ∈ (0, 2), which is thanks to the behavior of A(n,−(2− σ)) as σ → 2. �

Before we conclude this section, we must prove one last straightforward feature of the poten-

tial, P . We must be able to compare the values of P on the boundary of some ball, BR, and

make sure that the difference between the values on the boundary and the infimum of P are

still comparable to the infimum itself.

Lemma 4.11 (Decay of The Potential). There exists a radius, Rσ, depending on σ and n such

that

− inf
BRσ
{P}+ inf

∂BRσ
{P} ≥ 1

2

(
− inf
BRσ
{P}

)
.

Proof of Lemma 4.11. Let x ∈ ∂BR and x0 be such that −P (x0) = − inf(P ). We will first

make a computation with a generic R and then choose the value for Rσ at the end. Lemma
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3.10 tells us that Γ = 0 in Rn \B3. Therefore we can estimate the integral

−P (x) = A(n, 2− σ)

∫
Rn
−Γ(x+ y) |y|−n+2−σ dy

= A(n, 2− σ)

∫
x+y∈B3

−Γ(x+ y) |y|−n+2−σ dy

= A(n, 2− σ)

∫
x0+w∈B3

−Γ(x0 + w) |x0 − x+ w|−n+2−σ dw

= A(n, 2− σ)

∫
x0+w∈B3

−Γ(x0 + w) |w|−n+2−σ
(
|x0 − x+ w|

|w|

)−n+2−σ
dw

≤ A(n, 2− σ)

∫
x0+w∈B3

−Γ(x0 + w) |w|−n+2−σ
(
R− 3

6

)−n+2−σ
dw

= P (x0)

(
R− 3

6

)−n+2−σ
.

Now, choosing Rσ so that (
Rσ − 3

6

)−n+2−σ
≤ 1

2

gives the result. �

5. det(D2P ) as an Integro-Differential Operator on Γ

The point of using the potential, P , is that we can convert our fractional order equation into

a 2nd order equation and appeal to known results. In this way we would like also to recognize

the operation det(D2P ) as a σ-order operator on Γ, which one can hope will be comparable to

M− by below (proved in Lemma 5.8). This comparison would then allow us to bring together

the geometric result involving inf(P ) and the envelope property that M−(Γ) ≤ Cf on the set

Ku. Fundamental to this pursuit is the formula for the determinant:

(det(B))1/n =
1

n
inf{Tr(AB) : A ≥ 0 and det(A) = 1} whenever B ≥ 0.

The interested reader should consult [14] and [26] for further discussion. The integro-differential

nature of det(D2P ) acting on Γ is developed by making rigorous the formal computation of

convolving Γ with the derivatives of the Riesz Kernel.

Lemma 5.1 (Derivatives of The Potential). Assume that for a.e. x ∈ Ω ⊂⊂ B3,

0 ≤ hσ(Γ, x) ≤ C1 and ‖Γ‖Hσ(Ω) ≤ C1,

where C1 is allowed to depend on Ω. Then P ∈ C1,1(Ω) and the second derivative of P at a.e.

x ∈ Ω in terms of Γ is

D2P (x) =

(n+ σ − 2)(n+ σ)

2

∫
Rn
A(n, 2− σ)δΓ(x, y)

[
y ⊗ y
|y|n+σ+2 −

Id

(n+ σ) |y|n+σ

]
dy. (5.1)

Remark 5.2. It is worth pointing out explicitly that Lemma 5.1 gives enough regularity for our

purposes later to work with P directly in any estimates involving D2P .
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Remark 5.3. In particular, our definition of hσ(v, x) gives

D2(v ∗K2−σ) = hσ(v, x) + (−∆)σ/2v(x)
n+σ Id.

Proof of Lemma 5.1. We consider as a regularization of P , the convolution of Γ with a modified

Riesz Kernel Kα
2−σ, where for α > 0 we define

Kα
2−σ(y) :=

{
K2−σ(y) if |y| ≥ α
Qα(y) if |y| ≤ α

Here Qα(y) is the only quadratic polynomial that makes Kα
2−σ as defined above a C1,1(Rn)

function across ∂Bα,

Qα(y) =
A(n, 2− σ)

2αn+σ

(
−(n+ σ − 2)|y|2 + (n+ σ)α2

)
.

It will be handy to have the formula for the second derivatives of Kα
2−σ away from ∂Bα

D2Kα
2−σ(y) =


A(n, 2− σ)|y|−n−σ(n+ σ − 2)

(
(n+ σ)y ⊗ y|y|2 − Id

)
if |y| > α

−A(n,2−σ)(n+σ−2)
αn+σ

Id if |y| < α

(5.2)

We also use the elementary identities (which follow by reflection and rotation symmetry):∫
∂Br

yiyjdS(y) = 0 for i 6= j,

∫
∂Br

y2
i dS(y) =

r2

n

∫
∂Br

dS(y) ∀r > 0 (5.3)

We denote the regularization of P as Pα := Γ∗Kα
2−σ, note that Pα ∈ C1,1(Rn) for each α > 0.

To obtain (5.1), we will compute the derivatives using (5.2) inside of the convolution. Then,

imitating a classical analytic continuation argument [34, p.45-47] we will pass the formula for

D2Pα to the limit α→ 0+. First, by the reflection symmetry of Kα
2−σ about 0 we may write

D2Pα(x) =
1

2

∫
Rn

(Γ(x+ y) + Γ(x− y))D2Kα
2−σ(y)dy (5.4)

The classical argument relies on computing the average D2Kα
2−σ in and out of Bα, we begin

by noting that according to (5.2)∫
Bα

D2Kα
2−σ(y)dy = −A(n, 2− σ)(n+ σ − 2)

|B1|
ασ

Id.

Next, using integration in spherical coordinates together with (5.3) it is easy to check that∫
Bcα

D2Kα
2−σ(y)dy = A(n, 2− σ)(n+ σ − 2)

∫
Bcα

|y|−n−σ
(

(n+ σ)
y ⊗ y
|y|2

− Id

)
dy

= A(n, 2− σ)(n+ σ − 2)

∫
Bcα

|y|−n−σ
(

(n+ σ)

n
Id− Id

)
dy

= A(n, 2− σ)(n+ σ − 2)
|B1|
ασ

Id.

Thus the integral of D2Kα
2−σ in and out of Bα is the same except for a sign, in other words∫

Rn
D2Kα

2−σ(y)dy = 0 ∀α > 0.
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This means that the identity (5.4) still holds if we add zero to the right hand side as follows

D2Pα(x) =
1

2

∫
Rn

(Γ(x+ y) + Γ(x− y))D2Kα
2−σ(y)dy − Γ(x)

∫
Rn
D2Kα

2−σ(y)dy,

in other words,

D2Pα(x) =
1

2

∫
Rn
δΓ(x, y)D2Kα

2−σ(y)dy, ∀ α > 0.

This, together with the pointwise bound

|D2Kα
2−σ(y)| ≤ A(n, 2− σ)C(n)|y|−n−σ, ∀y ∈ Rn, α > 0,

implies for all x ∈ B3 that

|D2Pα(x)| ≤ A(n, 2− σ)C(n)

∫
Rn

|δΓ(x, y)|
|y|n+σ

dy. (5.5)

We now make a few remarks to conclude the lemma. First, by construction of Kα
2−σ, it

follows that Pα → P uniformly. Second, (5.5) combined with the assumption that Γ ∈ Hσ
loc

imply that all of the hessians, D2Pα, are uniformly bounded in L2(BR) for any BR ⊂⊂ B3;

furthermore by dominated convergence, D2Pα(x)→ D2P (x) pointwise for all x such that∫
Rn

|δΓ(x, y)|
|y|n+σ

dy <∞,

which is a.e. x in B3. Third, after extracting a H2
loc weakly convergent subsequence from Pα

and using uniqueness of limits, we can conclude that P indeed is H2
loc(B3) and (5.1) for D2P

indeed holds.

Finally, we note that once D2P can be computed a.e. x by (5.1), the bound on hσ(Γ, x)

immediately translates to a C1,1(Ω) bound for D2P .

�

Now that we have a formula for D2P ,we can compute the rest of the operators needed for

det(D2P ).

Lemma 5.4 (Integro-Differential Form of Tr(AD2P )). For any positive matrix A and σ ∈ (0, 2)

we define

Aσ := A+
Tr(A)

σ
I. (5.6)

Then Tr(AσD
2P ) defines an elliptic integro-differential operator acting on Γ. Moreover, it is

given by the formula

Tr(AσD
2P )(x) =

(n+ σ − 2)(n+ σ)

2
A(n, 2− σ)

∫
Rn
δΓ(x, y)

yTAy

|y|n+σ+2dy. (5.7)

Proof of Lemma 5.4. This is a direct consequence of Lemma 5.1 which says

Tr(AσD
2P )(x) =

(n+ σ − 2)(n+ σ)

2
A(n, 2− σ)

∫
Rn
δΓ(x, y)

[
yTAσy

|y|n+σ+2 −
Tr(Aσ)

(n+ σ) |y|n+σ

]
dy.
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Since yTAσy = yTAy + Tr(A)
σ |y|

2 and 1
n+σTr(Aσ) = Tr(A)

σ this integral equals (5.7).

�

Remark 5.5. Observe that the matrix Aσ becomes strictly elliptic, that is, Aσ ≥ λId as soon

as Tr(A) ≥ σλ. It is thanks to this fact that our estimates apply to equations with kernels

that are not strictly positive. The authors would like to acknowledge the anonymous referee

for this important observation as well as their suggestion of introducing the change of variables

A→ Aσ which significantly helps with the presentation.

Definition 5.6 (Integro-Differential Form of det(D2P )). The operator Γ → det(D2P )(x),

defines a nonlinear integro-differential operator acting on Γ. At the points, x, where∫
Rn

|δΓ(x, y)|
|y|n+σ dy <∞ and D2P (x) ≥ 0,

this definition agrees with

Dσ(Γ, x) =

(
1

n
inf {TA(Γ, x) : A ≥ 0 and det(A) = 1}

)n
= det(D2P ),

where we use the notation TA(Γ, x) := Tr(AD2P (x)).

Remark 5.7. It is worthwhile to remark on the peculiar form of formulas (5.1) and (5.7). Note

that the kernel
yTBy

|y|n+σ+2 −
Tr(B)

(n+ σ) |y|n+σ

might take negative values in some directions even for matrices such that B ≥ 0, so the kernels

appearing in the formulas are not necessarily positive. The kernels will be positive for matrices

of the form Aσ := A + Tr(A)
σ I, A ≥ 0 which is why they were introduced in Lemma 5.4.

However, matrices which are not of this form appear in the formula for the operator Dσ, which

means that Dσ(Γ, x) = det(D2P (x)) is not an elliptic operator for a general Γ (not even if

Eσ(Γ) ≥ 0). Despite these issues, Dσ serves a crucial purpose in the proof of Theorem 1.3 as

suggested by the the next two Lemmas.

Lemma 5.8 (Nonlocal Determinant - Minimal Operator Ordering). If

∫
Rn

|δΓ(x, y)|
|y|n+σ dy < ∞

and Eσ(Γ, x) ≥ 0, then whenever D2P (x) ≥ 0, it also holds that

Dσ(Γ, x) ≤ C(n)

λn
(M−(Γ, x))n.

Proof of Lemma 5.8. Thanks to the assumption of D2P (x) ≥ 0, we have

(Dσ(Γ, x))1/n ≤ inf
det(A)=1

{
1

n
TA(Γ, x)

}
≤ inf

det(Aσ)=1,A≥0

{
1

n
TAσ(Γ, x)

}
= inf

λId≤Aσ ,A≥0

{
1

n det(Aσ)1/n
TAσ(Γ, x)

}
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Now, by definition (see (5.6)) of Aσ in we have the set inclusion (see also Remark 5.5)

{Aσ : A ≥ 0, Aσ ≥ λId, A} ⊃ {Aσ : A ≥ 0, Tr(A) ≥ σλ}

Which together with the previous inequalities shows that

(Dσ(Γ, x))1/n ≤ inf
A≥0, Tr(A)≥σλ

{
C(n)

λ
A(n, 2− σ)

∫
Rn
δΓ(x, y)

yTAy

|y|n+σ+2dy

}
and the Lemma is proved. �

Remark 5.9. It is worth remarking that Lemma 5.8 is one of the three key reasons for a good

definition of the envelope, Γ. In fact, this ordering between Dσ and M− is not to be expected for

a general function, v, which does not necessarily satisfy Eσ(v) ≥ 0– just as in the second order

setting between the Monge-Ampère and Minimal Pucci operators within the class of convex

functions.

The restriction to points x where D2P (x) ≥ 0 is not too severe, as later on we will reduce to

those x for which P coincides with its convex envelope, and there we shall always have D2P ≥ 0.

Very much related to this fact is the following crucial Lemma which will also guarantee that

we will only need to test the equation at points where u = Γ.

Lemma 5.10 ({det(D2P ) > 0} is contained in the contact set). If for a.e. x,∫
Rn

|δΓ(x, y)|
|y|n+σ dy <∞

and Γ 6= 0, then for a.e. x0 such that Γ(x0) 6= u(x0), we can find some direction τ such that

Pττ (x0) ≤ 0. In particular,(
{det(D2P ) > 0}

⋂
{D2P ≥ 0}

)
⊂ {u = Γ}.

Proof of Lemma 5.10. Lemma 3.11 plus standard techniques in viscosity solutions tell us that

at almost every such x0, Eσ(Γ, x0) = 0. Hence for each of these x0 there exists a direction, τ ,

such that

(hσ)ij(Γ, x0)τiτj = 0

Hence we can plug τ into the formula (5.1) for Pττ and get (recall τiτi = |τ |2 = 1)

Pττ = (hσ(Γ, x0))ijτiτj − Cn,σ
∫
Rn

δΓ(x0, y)

|y|n+σ dy = −Cn,σ
∫
Rn

δΓ(x0, y)

|y|n+σ dy ≤ 0.

In this last inequality we have used the fact that Γ solves Eσ(Γ) ≥ 0 everywhere, and so because

−(−∆)σ/2Γ = Tr(hσ(Γ)), we have the correct sign for the leftover term. This concludes the

first assertion of the lemma.

To finish with the set inclusion, we note from the Corollary 4.4, that {D2P ≥ 0} ⊂ B3, and

the fact that in B3
⋂
{u 6= Γ}, Γ solves Eσ(Γ, x) = 0 (see (12.4)). The set inclusion then follows

by the first assertion of the lemma. �
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6. Proof of The Main Theorem

We are now in a position to prove the main theorem, Theorem 1.3. The main step left to

prove is an estimate on inf(P ) which involves a measure theoretic norm of f . This will come

from the geometric set-up of the second order ABP estimate for P , thanks to the various results

of section 5.

Proof of Theorem 1.3. The theorem will first be proved under the assumption that u is C1,1

from above, and then we will remove this restriction at the end of the proof using the standard

method of inf-convolution of u. Therefore, assume u is C1,1 from above.

As mentioned in the lead-up to this proof, we will be applying the Aleksandrov Estimate

for convex functions to the convex envelope of P , but a crucial factor to be determined is the

domain in which the argument will be applied. We must work with an appropriately large

radius according to Lemma 4.11 in order to make sure that the difference of the values of P

on ∂BRσ and inf(P ) are still comparable to infRn(P ). Therefore we are working in BRσ from

Lemma 4.11.

Let PCE be the convex envelope of P in BRσ . It is essential to note a very important

consequence of Lemma 4.2 is that the contact set, {x : P (x) = PCE(x)}, is contained within

B3. Furthermore, since P ∈ C1,1
loc (B3), we know that PCE ∈ C1,1

loc (BRσ) (see [21, Chapter 3]).

The Aleksandrov Estimate for convex functions (see [21, Chapter 3]) then implies

− inf
BRσ
{P} ≤

(
− inf
∂BRσ

{P}
)

+ C(n)

(∫
{P=PCE}

det(D2PCE(x))dx

)1/n

≤
(
− inf
∂BRσ

{P}
)

+ C(n)

(∫
{P=PCE}

det(D2P (x))dx

)1/n

=

(
− inf
∂BRσ

{P}
)

+ C(n)

(∫
{P=PCE}

Dσ(Γ, x)dx

)1/n

.

We note that the constant C(n) in fact depends upon Rσ, but it is uniformly bounded from

below and above for our Rσ, and so we simply denote it as a dimensional constant.

Thanks to the comparison between Dσ and M−, Lemmas 5.8 and 5.10, and the comparison

principle between Γ and u for M− on Ku all combine to give

− inf
BRσ
{P} ≤

(
− inf
∂BRσ

{P}
)

+ C(n)

(∫
Ku

Dσ(Γ, x)dx

)1/n

≤
(
− inf
∂BRσ

{P}
)

+
C(n)

λ

(∫
Ku

(
M−(Γ, x)

)n
dx

)1/n

≤
(
− inf
∂BRσ

{P}
)

+
C(n)

λ

(∫
Ku

(
M−(u, x)

)n
dx

)1/n

≤
(
− inf
∂BRσ

{P}
)

+
C(n)

λ

(∫
Ku

(f(x))ndx

)1/n

. (6.1)

We note that we have also used the C1,1 from above nature of u to evaluate (1.8) classically.
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In order to conclude the theorem in the case that u is C1,1 from above we must now recall

how inf(P ) relates to inf(Γ). We can now combine the results of Proposition 4.7 and Lemma

4.11 with (6.1) to obtain (with obvious abuse of the dimensional constant, C(n)):

C(n, λ)(−Γ(x0))2/σ

(
1

2f(x0)

)(2−σ)/σ

≤ C(n)

λ

(∫
Ku

fndx

)1/n

,

which after rearranging gives

− inf{Γ} ≤ C(n)

λ
(‖f‖L∞(Ku))

(2−σ)/2(‖f‖Ln(Ku))
σ/2.

Now to finish the theorem for a generic u, we work with the inf-convolution of u,

uε(x) = inf
|x−y|≤

√
ε‖u‖∞

{u(y) +
1

ε
|x− y|2}

(see [13, Appendix A], [25, Appendix], [30, Equations (14), (15)], or [35] for definitions and

[13, Appendix A] for the analogous argument regarding the ABP in the second order setting)

The main properties we will use are that uε is C1,1 from above in B3, that uε is increasing to

u, and that uε solves the equation (1.8) with f replaced by f ε (see [13, Lemma A.3] and [18,

Proposition 5.5]) given as

f ε(x) = sup
|x−y|≤

√
ε‖u‖∞

{f(y)}.

For Γε, Pε, and Kuε denoting all the corresponding operations using uε in place of u, (6.1)

becomes

− inf
Rn
{Pε} ≤

C(n)

λ

(∫
Kuε

(f ε)ndx

)1/n

.

So long as lim supε f
ε(x) ≤ f(x), which is given by continuity of f in this case, we can conclude

the estimate by letting ε→ 0 and using Lemma 3.16. �

Remark 6.1. For future reference, we would like to collect a very important fact which is a

cornerstone of the proof of Theorem 1.3. It is the relationship between inf(Γ) and the integral

of Dσ(Γ),

− inf
Rn

(Γ) ≤ C(n)

λ

(∫
Ku

Dσ(Γ, x)dx

)1/n

, (6.2)

which holds whenever ∫
Rn

|δΓ(x, y)|
|y|n+σ dy <∞

for a.e. x.

7. Fractional Monge-Ampère Type Operators

The Monge-Ampère type operator Dσ(Γ, x) is crucial to our proof of Theorem 1.3, as it

allows us to borrow the divergence structure of the standard Monge-Ampère which is essential

for the classical ABP Theorem. One may take the point of view that Tu(x) = ∇Pu is a nonlocal

gradient map given by u, and that Dσ is just the Jacobian of the map Tu. Then, part of the

effort in our proof (Section 4) has been relating the infimum of Γ to the size of the image of the

map TΓ(x).
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We insist in referring to Dσ as a “Monge-Ampère type operator” and not just the “Monge-

Ampère operator”, as it is not clear that Dσ would be a definite, canonical analogue of this

operator for integro-differential equations. Note also that as Pu is not necessarily convex the

map ∇Pu might not be monotone, and in fact the operator Dσ(u) might fail to be elliptic even

on the class of functions satisfying Eσ ≥ 0 (for the potential P might not be convex). Another,

perhaps more natural candidate for an “integro-differential Monge-Ampère” is given by the

operator

D∗σ(u, x) :=

(
inf

A≥0,detA=1

∫
Rn

C(n)(2− σ)

|A−1y|n+σ
δu(x, y)dy

)nσ
(7.1)

Where nσ may be chosen to be nσ ≡ n or at least such that nσ → n as σ → 2. Unlike

Dσ, this second operator is affine invariant and it can be checked easily that it is well defined

and (degenerate) elliptic in the class of functions which are subsolutions of Eσ = 0. The main

disadvantage of D∗σ with respect to Dσ is that it is hard to relate directly the size D∗σΓ to the

infimum of Γ. This relationship could be quantified if D∗σ had a connection to some sort of

gradient map, which is (informally speaking) how the divergence structure of Monge-Ampère

contributes to the classical ABP (recall Dσ = det(DTu)).

The operator D∗σ as defined in (7.1) would be a natural operator to consider in the class of

equations given by

LA(u, x) =

∫
Rn

C(n)(2− σ)

det(A)|A−1y|n+σ
δu(x, y)dy where At = A, λI ≤ A2 ≤ ΛI (7.2)

A posteriori, one can see the reasons for the proof of Theorem 1.3 being restricted to a much

smaller class of equations than those appearing in [18]. There must be a balance to ensure

each one of Lemmas 5.8, 5.10, and (6.2) hold. In principle, one could create a new notion of

determinant altogether, such that those three meta-lemmas would still be valid for much richer

families of kernels. The difficulty comes from the fact that considering a larger family of kernels

makes the operator M− more extremal, and thus the question of finding a “geometric” operator

that is comparable M− becomes much harder to tackle. In conclusion, all these issues underline

the lack of geometric equations for integro-differential operators.

8. Important Limits As σ → 2

In the series of works, [16], [17], and [18], all of the results were obtained in a fashion in

which they are preserved as σ → 2 and recover the corresponding results already proved for

second order equations. This has led to a unified picture of the second order and the fractional

order (i.e. nonlocal) theories. We adopt this view in the current work, and take this section to

discuss explicitly how our result relates to the relevant second order theory.

8.1. Recovery of A Second Order Envelope as σ → 2. One may expect that as σ → 2 the

envelopes Γσ should behave more and more like the convex envelope of u. This is almost the

case at least whenever u is C1,1 from above, the discrepancy arises only because of the behavior

of Eσ as σ → 2 (see Section 3).

Proposition 8.1. Assume u is C1,1 from above, then as σ → 2 the envelopes Γσ converge

uniformly to a function Γ2 which solves the obstacle problem

min {u(x)− Γ2(x), L(Γ2, x)} = 0 ∀ x ∈ B3, Γ2(x) = 0 ∀ x ∈ ∂B3.
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where L(v, x) is the second order fully non-linear elliptic operator defined by

L(v, x) := λ1(D2v(x)) + 1
2∆v(x).

In particular, Γ0 lies in between u and the convex envelope of u in B3.

Proof of Proposition 8.1. Here we will use the operator, E∗σ, which was introduced in Remark

3.8. Let Γσ and Γ∗σ be respectively the envelopes of u made using Definition 3.6 with respectively

the operators Eσ and E∗σ. We note here that because E∗σΓ∗σ ≥ 0 in B3, then it also holds that

EσΓ∗σ ≥ 0 in B3 as well. Moreover, Γ∗σ satisfies Γ∗σ ≤ u by construction. Hence because Γσ is

the supremum of such functions, we see that

Γ∗σ ≤ Γσ.

Due to the C1,1 assumption on u we can use Lemma 3.11 to conclude that both families,

{Γσ}σ and {Γ∗σ}σ are uniformly C1,1 from above. In particular there exists a constant C > 0

independent of σ such that

−(−∆)σ/2Γσ ≤ C and − (−∆)σ/2Γ∗σ ≤ C

Since we also have by construction both

−(−∆)σ/2Γσ ≥ 0 and − (−∆)σ/2Γ∗σ ≥ 0,

we conclude that both ‖(−∆)σ/2Γσ‖L∞(B3) ≤ C and ‖(−∆)σ/2Γ∗σ‖L∞(B3) ≤ C. Since each Γσ
and Γ∗σ are identically zero outside B3 we may use (for instance) the Poisson kernel for (−∆)σ

in [34] to conclude both Γσ and Γ∗σ are Hölder continuous in Rn and uniformly in σ.

Therefore, from each sequence σk → 2 we may select a subsequence that converges uniformly

in Rn to some functions Γ2 and Γ∗2.

We note, for any smooth v with enough decay at infinity, the convergence of Eσ(v, x) as

σ → 2 to λ1(D2v(x)) + 1
2∆v(x) (see Remark 5.3 and Proposition 8.2) and the convergence

of E∗σ(v, x) to λ1(D2v(x)). Thus, by the stability of viscosity solutions under uniform limits,

we conclude Γ2 and Γ∗2 are the unique viscosity solutions to their respective limiting obstacle

problems, and hence all subsequential limits converge to the same function. But in the limit

Γ∗2 is the convex envelope of u, which concludes the proposition. �

We proved the proposition assuming u is C1,1 from above for the sake of simplicity, but as it

is reasonable to expect the envelopes Γs to be somewhat regular regardless of u, it is likely this

convergence holds under much more general circumstances.

8.2. Derivatives of P Converge To Derivatives of v. We now revisit the peculiar form

of (5.1) and (5.7) mentioned in Remark 5.7. We give further justification of formula (5.1) by

checking with a direct computation that when P := (−∆)−(2−σ)/2v then as σ → 2− it gives

back the Hessian of v, assuming v is smooth enough. This is not surprising since P , being

defined as (−∆)−(2−σ)/2v converges to v uniformly as σ → 2−, so if v is smooth enough we can

already conclude D2P → D2v, in this regard the proposition below is only complementary.

Proposition 8.2. If v is a fixed function which is C1,1 from above in B3 and P is its Riesz

potential (4.1), then

lim
σ→2−

D2P (x) = D2v(x), ∀ x ∈ B3.
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Proof of Proposition 8.2. The proof has two broad steps.

Step 1) We shall compute a formula for lim
σ→2−

Pxixj . To do this, we estimate the integral on

the right hand side of (5.1) by breaking it in two parts. Fix ε > 0, observe that∣∣∣∣∣(2− σ)

∫
BCε

δv(x, y)

[
yiyj

|y|n+σ+2 −
δij

(n+ σ) |y|n+σ

]
dy

∣∣∣∣∣
≤ ‖v‖∞(2− σ)Cn

∫
BCε

1

|y|n+σ
dy = ‖v‖∞(2− σ)Cn

∫ +∞

ε

ωn
t1+σ

dt

The right hand side vanishes as σ → 2 (for ε > 0 fixed), thus

lim
σ→2−

Pxixj =
n(n+ 2)

2
lim
σ→2−

∫
Bε(0)

A(n, 2− σ)
δv(x, y)

|y|n+σ

[
yiyj

|y|2
− δij

(n+ σ)

]
dy (8.1)

This holds for all ε > 0 (which makes clear we are getting a local operator). To estimate the

integral inside Bε recall that v is C1,1(x), which means that ∇v(x) and D2v(x) exist in the

sense that as |y| → 0

v(x+ y) = v(x) +∇v(x) · y +
1

2
yT (D2v(x))y + o(|y|2)

In particular, setting ŷ = y/ |y|
δv(x, y)

|y|2
= ŷT (D2v(x))ŷ + o(1) , |y| → 0

Using this expansion in (8.1) we get further1

lim
σ→2−

Pxixj =
n(n+ 2)

2ωn
lim
σ→2−

{
(2− σ)

∫
Bε

ŷT (D2v(x))ŷ

|y|n−2+σ

[
ŷiŷj −

δij
n+ σ

]
dy

}
We may also use polar coordinates to see that∫

Bε

ŷT (D2v(x))ŷ

|y|n−2+σ

[
ŷiŷj −

δij
n+ σ

]
dy =

∫ ε

0

∫
Sn−1

eT (D2v(x))e

[
eiej −

δij
n+ σ

]
tn−1

tn−2+σ
dS(e)dt

=
1

2− σ
ε2−σ

∫
Sn−1

eT (D2v(x))e

[
eiej −

δij
n+ σ

]
dS(e)

This gives us the formula

lim
σ→2−

Pxixj =
n(n+ 2)

2ωn

∫
Sn−1

(
eiej −

1

n+ 2
δij

)
eT (D2v(x))e dS(e) (8.2)

Step 2) All there is left to show is that the expression on the right in (8.2) always gives back

the ij entry of D2v(x). By rotation invariance we may assume without loss of generality that

D2v(x) is diagonal, in which case we have eT (D2v(x))e =
n∑
l=1

vll(x)e2
l for all e, in other words:

lim
σ→2−

Pxixj =
n(n+ 2)

2ωn
intSn−1

(
eiej −

δij
n+ 2

)
e2
l dS(e)vxlxl(x)

1also recall that A(n, 2− σ)/(2− σ)→ ω−1
n as σ → 2−
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Note that by reflection symmetry the integral of eieje
2
l must be zero for all l when i 6= j, given

that D2v(x) is diagonal this means lim
σ→2−

Pxixj = 0 = vxixj (x) for i 6= j. We are left to consider

the case i = j, to fix ideas we do it for i = 1. Then

lim
σ→2−

Px1x1 =
n(n+ 2)

2ωn

n∑
l=1

∫
Sn−1

(
e2

1 −
1

n+ 2

)
e2
l dS(e)vxlxl(x)

Due to rotation invariance this can be rewritten as

n(n+ 2)

2ωn

[∫
Sn−1

(
e4

1 −
e2

1

n+ 2

)
dS(e)vx1x1(x) +

(∫
Sn−1

(
e2

1e
2
2 −

e2
2

n+ 2

)
dS(e)

) n∑
l=2

vxlxl(x)

]
One may compute explicitly the integrals above and get∫

Sn−1

e2
i dS(y) =

ωn
n
,

∫
Sn−1

e2
i e

2
jdS(y) =


ωn

n(n+2) i 6= j

3ωn
n(n+2) i = j

Therefore ∫
Sn−1

(
e4

1 −
e2

1

n+ 2

)
dS(e) =

2ωn
n(n+ 2)

,

∫
Sn−1

(
e2

1e
2
2 −

e2
2

n+ 2

)
dS(e) = 0

Plugging this in the last expression for lim
σ→2−

Px1x1(x) we obtain

lim
σ→2−

Px1x1(x) =
n(n+ 2)

2ωn

(
2ωn

n(n+ 2)
vx1x1 + 0

)
= vx1x1

This proves the proposition. �

Remark 8.3. The spherical integrals above are not hard to compute, they follow from counting

the different terms appearing in the trivial identities:∫
Sn−1

e2
1 + ...+ e2

n dS(e) =

∫
Sn−1

(
e2

1 + ...+ e2
n

)2
dS(e) =

∫
Sn−1

dS(e) = ωn

and from the relation
∫
Sn−1 e

2
1e

2
2dS(e) = 1

3

∫
Sn−1 e

4
1dS(e) which is a standard computation for

n = 2 and can be pushed for all n via induction (integrating along slices of the sphere and

rescaling the lower dimensional formula in the inductive step).

8.3. Operators covered in the limit σ → 2−. We now characterize the second order opera-

tors that can be obtained as a limit of fractional order operators of the form (1.3). It is rather

surprising that many elliptic linear operators of second order cannot be obtained as limits of

operators of the form (1.3), as opposed to what was expected (see discussion in [18, Section 3]).

Proposition 8.4. Given a symmetric n× n matrix M and v ∈ C2
loc(Rn) ∩ L∞(Rn) we define

LM,σ(v, x) = Tr(M · hσ(v, x)) =
(n+ σ − 2)(n+ σ)

2
A(n, 2− σ)

∫
Rn
δv(x, y)

yTMy

|y|n+σ+2
dy.

Then, for any x ∈ Rn we have

lim
σ→2−

LM,σ(v, x) = Tr
(

(M − Tr(M)
n+2 Id) ·D2v(x)

)
.
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Moreover, an operator of the form L(v, x) = Tr(A · D2v(x)) can be obtained as a limit of the

operators LM,σ for some M ≥ 0 if and only if,

A− Tr(A)
n+2 Id ≥ 0. (8.3)

Proof. This proposition is merely and application of Lemma 5.1, which in our case says that,

if we consider the function P σv = (−∆)−(
2−σ

2 )v then

∆P (x) = (n+σ−2)(n+σ)
2 A(n, 2− σ)

∫
Rn

δΓ(x, y)

|y|n+σ

(
1− n

n+σ

)
dy

= (n+σ−2)σ
2 A(n, 2− σ)

∫
Rn

δΓ(x, y)

|y|n+σ
dy.

In particular, we get

−Id (n+σ−2)
2 A(n, 2− σ)

∫
Rn

δΓ(x, y)

|y|n+σ
dy = − 1

σ∆P (x).

Then, again by Lemma 5.1 and the definition of hσ(v, x), we have

hσ(v, x) = D2P (x) + ∆P (x)
σ Id.

Thus,

LM,σ(v, x) = Tr
(
M · (D2P σv (x) + Tr(D2Pσv (x))

σ Id)
)

= Tr(M ·D2P σv (x)) + 1
σTr(M)Tr(D2P σv (x))

= Tr
(

(M + Tr(M)
σ Id) ·D2P σv (x)

)
.

Since v ∈ C2
loc(Rn) we have D2P σv → D2v(x) for every x as σ → 2−, and

lim
σ→2−

LM,σ(v, x) = Tr(A ·D2v(x)), A := M + Tr(M)
2 Id.

Now, we invert the relation defining A in terms of M , it is worth noticing that this relation is

nothing else but A = Mσ when σ = 2, as defined previously in (5.6). Taking the trace on both

sides gives us Tr(A) = (1 + n
2 )Tr(M), so that M = A − Tr(M)

2 Id = A − Tr(A)
n+2 Id, from where it

follows that M ≥ 0 if and only if A− Tr(A)
n+2 Id ≥ 0, and the proposition is proved. �

Remark 8.5. Note that for A = λId (λ > 0) we have A− Tr(A)
n+2 Id = λ 2

n+2 Id ≥ 0. In particular,

in the space of matrices there is a tubular neighborhood of this ray on which (8.3) holds.

Remark 8.6. As it was natural to expect, the operator L(v, x) appearing in Proposition 8.2

(once linearized about some v) satisfies (8.3).

9. Comparison Theorems Related to Theorem 1.3

In this section we collect various results that are either direct applications of Theorem 1.3

or straightforward modifications of its proof. Each of the results here are stated without proof,

and we simply mention some of the modifications. First we mention in Theorem 9.1 the analog

of Theorem 1.3 to more general domains than just B1, and in Theorem 9.2 the applications to

the comparison principle for (1.5).
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Theorem 9.1. Let equation (1.8) be set in a general bounded, connected, domain, D instead

of in B1. Then

− inf
D
{u} ≤ C(n)

λ
diam(D)(‖f‖L∞(Ku))

(2−σ)/2(‖f‖Ln(Ku))
σ/2.

We note that to modify the proof of Theorem 1.3 to incorporateD, one simply needs to modify

the domain of truncation in the definition of Γσu, Definition 3.6, and also the selection of the

radius, Rσ, from Lemma 4.11. In particular, if we define the set D3 := {x : distance(x,D) ≤
3}, then we are concerned with the obstacle problem in D3, using u1D in Definition 3.6.

Furthermore, the ball B3 is no longer used in the proof of Lemma 4.11, but instead Rσ is

chosen large enough to compensate for the size of D3 instead of the size of B3.

An immediate consequence of the fact that the difference between a subsolution and a su-

persolution with solve the minimal equation for M− is that we get a comparison theorem for

subsolutions and supersolutions of equations with the same operator, F , but different right

hand sides.

Theorem 9.2. Suppose that F is in the elliptic family for M− and M+. Let u and v be bounded

and respectively usc subsolution and lsc supersolution of{
F (u, x) ≥ f(x) in D

u = u0 on Rn \D

and {
F (v, x) ≤ g(x) in D

v = v0 on Rn \D.
then

sup
D
{u− v}

≤ sup
Rn\D

{u0 − v0}+
C(n)

λ
diam(D)(‖(f − g)−‖L∞(Ku−v))

(2−σ)/2(‖(f − g)−‖Ln(Ku−v))
σ/2.

10. Special Cases of the Regularity Theory of Caffarelli and Silvestre

In this section we show how Theorem 1.3 can be used to prove the standard Lε estimates for

viscosity solutions of (1.8) (at least for a special family of operators). None of these results are

new, as such estimates have already been proved in [18, Section 10] for very general nonlinear

integro-differential equations. The Lε estimate constitutes the backbone of the regularity theory

for fully nonlinear elliptic equations; it is the key fact behind the Harnack inequality of Krylov-

Safonov, the Evans-Krylov theorem and the respective Caffarelli-Silvestre theorems for nonlocal

equations (again, see [21] and [18]). Our purpose in revisiting this part of the theory in our

case is basically illustrating the uses of Theorem 1.3, in particular Theorem 1.3 allows us to

do essentially the same proof of the Lε bound for second order equations used in [21, Lemma

4.6] (compare to the different method needed in [18, Section 10]). Furthermore, the estimates

obtained are uniform in the order of the equation, recovering the second order theory as σ → 2,

which was already done in [18]

We state without proof the following proposition regarding the construction of a special

barrier function. It follows by an argument similar to that used in Lemma 9.1 of [18].
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Proposition 10.1. Given 0 < λ ≤ Λ and σ0 ∈ (0, 2) there exist constants C0,M > 0 and a

C1,1 function η(x) : Rn → R such that

(1) supp η ⊂ B2
√
n(0)

(2) η ≤ −2 in Q3 and ‖η‖∞ ≤M
(3) For every σ > σ0 we have M+(η, x) ≤ C0ξ everywhere where ξ is a continuous function

with support inside B1/4(0) and such that 0 ≤ ξ ≤ 1.

With this special function in hand, Theorem 1.3 allows (just as in the second order theory)

to control the average size of a supersolution in terms of its value at a point. This point to

average estimate implies a weak Lε estimate for supersolutions which is the key step in the

proof of the Krylov-Safonov and Caffarelli-Silvestre regularity theorems.

Lemma 10.2. Given n, λ,Λ and σ0 such that 0 < λ ≤ Λ and σ0 ∈ (0, 2), one can find positive

constants M > 1, µ < 1 and δ0 such that if u satisfies:

(1) u ≥ 0 in Rn
(2) inf

Q3

u ≤ 1

(3) M−(u, x) ≤ f in Q4
√
n (for some σ > σ0), and ‖f‖Ln(Q4

√
n) ≤ δ0, ‖f‖L∞(Q4

√
n) ≤ 1.

Then we have the bound

|{x ∈ Q1 : u(x) ≤M}| ≥ µ|Q1|. (10.1)

Proof of Lemma 10.2. Consider the function w = u + η (η as in Proposition 10.1), then w

satisfies (in the viscosity sense){
M−(w, x) ≤ f(x) + C0ξ in B4

√
n

w ≥ 0 on Rn \B4
√
n.

(10.2)

Moreover − inf
Q3

{w} ≥ 1 since u ≤ 1 somewhere in Q3 and η ≤ −2 everywhere in Q3. In this

situation, Theorem 1.3 (rescaled to the ball B4
√
n) tell us that

1 ≤ Cλ−n (1 + C0)(2−σ)/2 (‖f + C0ξ‖Ln(Kw))
σ/2,

where we recall Kω = {x ∈ B4
√
n : w(x) = Γw(x)}, then

C−2/σλ2n/σ(1 + C0)−(2−σ)/σ ≤ ‖f + C0ξ‖Ln(Kw).

Hence

C−2/σλ2n/σ(1 + C0)−(2−σ)/σ ≤ δ0 + C0|Kw ∩B1/4|1/n. (10.3)

One then sees that picking δ0 universally small one gets for a universal µ ∈ (0, 1) the lower

bound

µ|Q1| ≤ |Kw ∩B1/4| ≤ |Kw ∩Q1|. (10.4)

Now x ∈ Kw implies in particular that w ≤ 0 therefore u ≤ −η ≤M , where M = sup |η|. Since

Kw ∩Q1 ⊂ {x ∈ Q1 : u ≤M} this last inequality proves the lemma. �

As done in [21, Chapter 4, Section 4.2] one can use the Calderón-Zygmund decomposition

and 10.2 to prove the weak Lε estimates we previously mentioned.
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Theorem 10.3 (weak Lε estimate). Let u ≥ 0 in Rn be a supersolution of M−(u, x) ≤ f in

B1 (for σ > σ0) and such that u(0) ≤ 1. Suppose that

‖f‖∞ ≤ 1, ‖f‖Ln(B2) ≤ δ0, σ ∈ (σ0, 2).

Then there are universal constants C, δ0 and ε (i.e. determined by n, σ0, λ and Λ) such that for

all t > 0 we have ∣∣{u > t} ∩B1/2

∣∣ ≤ Ct−ε. (10.5)

With this lemma in hand, that viscosity solutions to (1.8) are Hölder continuous or that they

satisfy a Harnack inequality follows by standard arguments that can be found in [21, Theorem

4.3 and Proposition 4.10] for second order equations and in [18, Theorem 12.1 and Theorem

11.1] for integro-differential equations.

11. Applications and Open Problems

Here we would like to make a few remarks about further research directions and open ques-

tions where we anticipate Theorem 1.3 could be useful, some of which are in obvious analogy

to the second order theory. Accordingly, the discussion below is only suggestive but we include

it with the hope of stimulating further work.

Stochastic homogenization. As pointed out in the introduction, Theorem 1.3 will play an

important role in the homogenization of stationary ergodic families of equations within the

ellipticity class governed by M−, and this will be presented in [41].

“W σ,ε” and “W σ,p” estimates. These would be analogous to the W 2,ε estimates of Caffarelli

[21, Chapter 7] and Lin [37] and subsequently the W 2,p theory of Caffarelli [20]. Such estimates

would allow use of the regularity theory of [18, 17, 16] to obtain W σ,p regularity for viscosity

solutions of (1.5) in terms of the Lp norm of the right hand side f . It is important to remark

that such estimates are not yet available for any kind of fully nonlinear equation of fractional

order.

More general equations. Comparison and regularity theory for more general equations where

their ellipticity is considered on choices of LA (with varying scopes of generality) such as:

LA(v, x) = (2− σ)

∫
Rn
δu(x, y)a(x, y) |y|−n−σ dy (11.1)

where a(x, y) is homogeneous of degree 0 in y,

LA(v, x) = (2− σ)

∫
Rn
δu(x, y)(yTA(x)y)n(dy) (11.2)

where n(dy) is comparable to |y|−n−σ dy only in some subset of Rn (indicated to the authors

in [31]),

LA(v, x) = (2− σ)

∫
Rn
δu(x, y)

a(x, y)

|y|n+σ dy, λ ≤ a ≤ Λ (11.3)

which corresponds to the family in [18], and

LA(v, x) = (2− σ)

∫
Rn
δu(x, y)n(x, dy) (11.4)



ABP Estimates For Integro-Differential Equations 35

where n(x, dy) (for each x) is again a measure comparable to |y|−n−σ dy only in some subsets

of Rn (for example, along certain directions through the origin).

The “right” nonlocal Monge-Ampére equation. It is worthwhile to find out whether

another notion of nonlocal determinant can be found which is both extremal and carries a geo-

metric interpretation (or “divergence structure”) such that it achieves the key features listed

in Section 2.5–(2.8), (2.9), and (2.10)– for a more general family of equations, such as those

considered in [18].

12. Appendix– Concave Nonlocal Obstacle Problems

In this section, we develop some regularity results for solutions to obstacle problems with

concave nonlocal operators. We believe these results may be of independent interest and have

hence chosen to present them in a generic form, but the example we actually use in this work

is for the operator, Eσ. The results in this section are nonlocal analogs to the results of [12]

and [36]; the interested reader can also find them presented in the book [33, Chapter IV].

First we list some notation and assumptions for this section:

(1) ψ : B3 → R is the obstacle function with ψ ≤ 0 ∈ B3 and ψ ≥ 0 ∈ Rn \B3.

(2) F is a degenerate elliptic, translation invariant, nonlocal operator which is concave

with respect to v in the sense that there is a collection of linear σ-order operators, L,

and F can be represented as

F (v, x) = inf
L∈L
{L(v, x)}. (12.1)

(3) F satisfies a non-degeneracy type condition as

−(−∆)σ/2v(x) ≥ F (v, x). (12.2)

(4) βε(s) = β(
s

ε
) where β : R→ R is convex, non-negative, decreasing, β(0) ≥ supx∈B3

F (ψ, x),

and β(s) = 0 for s ≥ 1.

(5) Ω ⊂⊂ B3.

The main function of interest for this section is the solution to the obstacle problem, v,

solving

v = sup{w : F (w, x) ≥ 0 in B3 and w ≤ ψ1B3 in Rn}. (12.3)

It is standard that v is the unique viscosity solution of the equation{
min{F (v, x), u− v} = 0 in B3

v = 0 on Rn \B3.
(12.4)

One of the main tools for investigating (12.3) is the penalized equation, which also admits a

unique viscosity solution: {
F (vε, x) = βε(ψ − vε) in B3

vε = 0 on Rn \B3.
(12.5)
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Finally, in order to make some arguments easier by working with classical solutions, we will use

the regularized, penalized equation:{
F (vερ, x) + ρ∆vερ = βε(ψ − vερ) in B3

vερ = 0 on Rn \B3.
(12.6)

The main result of this section says that the solutions of these obstacle problems not only

inherit the regularity from above of the obstacle, but in fact they are even regularizing in the

sense that they obey interior regularity from below as well, which may in fact be more regular

than the obstacle, ψ.

Proposition 12.1. If ψ satisfies classically −(−∆)σ/2ψ(·) ≤ C and Ω ⊂⊂ B3 then there exists

a constant, C1, depending only on C, σ, n, dist(Ω, ∂B3), and ‖ψ‖L∞ such that for a.e. x ∈ Ω,

v satisfies ∫
Rn

|δΓ(x, y)|
|y|n+σ dy <∞

and

0 ≤ −(−∆)σ/2v(x) ≤ C1 and ‖Γ‖Hσ(Ω) ≤ C1.

Remark 12.2. It is worth pointing out that the same results of this section hold mutatis mu-

tandi if one replaces the operator −(−∆)σ/2 by any other linear, translation invariant, σ-order

operator (and its corresponding kernel, K) which has similar regularizing properties to those

of −(−∆)σ/2 used in the proof of Lemma 12.5.

In fact, if ψ has enough regularity such that for all of the translation invariant L in the ellipticity

class of [18, Section 3] (the operators governed by the extremal operator of (2.4)) it holds that

L(ψ, x) ≤ C, then a much stronger result holds. The proof is a simple calculation, and is found

in [16, Section 7], but we include it here for completeness.

Corollary 12.3. Let L be the collection of linear operators, L, of the form

L(w, x) =

∫
Rn
δw(x, y)K(y)dy where K is measurable and

λ

|y|n+σ ≤ K(y) ≤ Λ

|y|n+σ .

If ψ satisfies L(ψ, x) ≤ C for all L ∈ L, then there exists a constant, C1, which depends only

on C, σ, n, λ, Λ, dist(Ω, ∂B3), and ‖ψ‖L∞ such that for a.e. x ∈ Ω ⊂⊂ B3,∫
Rn

|δΓ(x, y)|
|y|n+σ dy ≤ C1.

Proof of Corollary 12.3. Proposition 12.1 (modified for L), says that for all L ∈ L,

0 ≤ L(v, x) ≤ C1,

which in particular implies (see [18, Section 3])∫
Rn

Λ (δv(x, y))+ − λ (δv(x, y))−

|y|n+σ dy ≤ C1.

On the other hand by (12.2) and (12.3), we have that

0 ≤ −(−∆)σ/2v(x) =

∫
Rn

δv(x, y)

|y|n+σ dy,
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and hence multiplying through by −λ∫
Rn

−λ (δv(x, y))+ + λ (δv(x, y))−

|y|n+σ dy ≤ 0.

Appropriately adding together these estimates gives and estimate on (δv(x, y))+ |y|−n−σ, which

can be plugged back into the estimate 0 ≤ −(−∆)σ/2v(x) to conclude the Corollary. �

The proof of Proposition 12.1 is broken up into multiple pieces which are worth recording in

their own right as Lemmas 12.4 and 12.5. Once these results are proved, Proposition follows

immediately.

Lemma 12.4. Let s > 0 be fixed with s < dist(Ω, B3), and let the truncated kernel and operator

be defined as

K̃(y) := |y|−n−σ 1|y|≤s and L̃(u, x) :=

∫
Rn
δu(x, y)K̃(y)dy. (12.7)

Let vερ be the unique smooth solution to the regularized and penalized Dirichlet problem (12.6)

and vε the unique solution of (12.5). Then vερ → vε as ρ → 0 locally uniformly, vερ satisfies

the estimate

max
x∈B3

{L̃(vερ, x)} ≤ max
x∈B3

{L̃(ψ, x)}, (12.8)

and vε satisfies in the viscosity sense

L̃(vε, x) ≤ max
x∈B3

{L̃(ψ, x)}. (12.9)

Proof of Lemma 12.4. The whole point of working with vερ is simply to have a classical solution

to manipulate more easily. By the concavity of F , as (12.1), and the linearity of L̃, the functions

w := L̃(vερ) satisfy in Ω the equation

F (w, x) + ∆w(x) ≥ L̃(βε(ψ − vερ), x). (12.10)

The main point of choosing β to be convex is the fact that this implies

L̃(βε(ψ − vερ), x) ≥ −‖βε‖L∞L̃((ψ − vερ), x). (12.11)

To see this, we note that convexity gives

βε ((ψ − vερ)(x+ y)) + βε ((ψ − vερ)(x− y)) ≥ 2βε

(
1

2
(ψ − vερ)(x+ y) +

1

2
(ψ − vερ)(x− y)

)
,

which after subtracting 2(ψ − vερ)(x) and estimating with the Lipschitz norm of βε gives

δβε ◦ (ψ − vερ)(x, y) ≥ −‖β′ε‖∞ (δ(ψ − vερ)(x, y)) .

Thus (12.11) follows. Therefore, plugging back into (12.10) gives

F (w, x) + ∆w(x) ≥ −‖βε‖L∞L̃((ψ − vερ), x),

which can be evaluated at xmax such that w(xmax) = max{w} to give

0 ≥ F (w, xmax) + ∆w(xmax) ≥ −‖βε‖L∞L̃((ψ − vερ), xmax).

We note the use of the simple fact that at a maximum point, both F (w) and ∆w are nonpositive.

Therefore, multiplying through by −‖βε‖L∞ gives (12.8).

The fact that (12.5) admits a unique viscosity solution, combined with the stability of vis-

cosity solutions of (12.8) immediately gives via standard techniques that vερ → vε as ρ → 0
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locally uniformly (see any combination of [5], [18, Sections 4,5], [25]). Finally, the stability

of the inequality (12.8) with respect to local uniform limits immediately gives (12.9), and we

conclude the proof of the lemma. �

Lemma 12.5. Let v be the unique solution of (12.4). There is a subsequence, still denoted as

vε, such that vε → v locally uniformly in B3 as well as weakly in Hσ as ε→ 0 and

0 ≤ −(−∆)σ/2vε(x) ≤ C1,

in the viscosity sense and where C1 depends only on maxB3{−(−∆)σ/2ψ}, ‖ψ‖L∞, n, σ, Ω.

Proof of Lemma 12.5. We start with the observation that constants are subsolutions of F = 0,

and so v ≥ infB3{ψ}. Furthermore, by the definition of L̃ and (12.9), we have

−(−∆)σ/2vε =

∫
|y|≤s

δvε(x, y)K(y)dy +

∫
|y|>s

δvε(x, y)K(y)dy

≤ max
B3

{
L̃(ψ)

}
+ C̃(s, n, σ)‖ψ‖L∞

≤ max
B3

{
−(−∆)σ/2ψ

}
+ C(s, n, σ)‖ψ‖L∞ ,

where C(s, n, σ) is a constant depending only on s, n, σ.

This estimate combined with the assumptions (12.2) and βε ≥ 0 put into the equation (12.4)

gives that vε solves in the viscosity sense, and hence in view of the linearity also in the sense of

distributions:

0 ≤ −(−∆)σ/2vε(x) ≤ max
B3

{L(ψ, ·)}+ C(s, n, σ)‖ψ‖L∞ in Ω. (12.12)

Hence vε are uniformly bounded in Hσ. Furthermore, as in the proof of [43, Proposition 2.9]

(or alternatively using the Green’s Function of (−∆)σ/2 for B3, see [34]), the boundedness of

−(−∆)σ/2vε also gives a uniform Cα estimate for vε. Hence we can extract two subsequences

vε → w, both locally uniformly and in Hσ weakly for some w.

What remains to show is to confirm that w = v. We will show that w necessarily solves (12.4),

and hence be uniqueness, w = v. We first note that since βε ≥ 0, vε and hence by stability of

viscosity solutions, also w, is a subsolution of F (w, x) ≥ 0. Furthermore, β is chosen specifically

so that F (ψ, x) ≤ βε(0) and hence ψ is a supersolution of (12.5). Thus by comparison with vε,

vε ≤ ψ and hence w ≤ ψ as well. Therefore, w is a subsolution of (12.4). Now to justify the

supersolution property suppose that w−φ has a strict global max at x0 ∈ B3. Then there exist

xε ∈ B3 with xε → x0 and vε − φ has a local max at xε. If it happens that w(x0) = ψ(x0),

then (12.4) is satisfied, and so we assume that w(x0) < ψ(x0). In this case for ε small enough,

vε(xε) < ψ(xε), and hence for ε small enough, βε(ψ(xε)−vε(xε)) = 0. Thus F (φ, xε) ≤ 0 by the

supersolution property of vε. Passing to the limit using the continuity of F and the smoothness

of φ gives F (φ, x0) ≤ 0. Hence w solves (12.4). This concludes the proof of the lemma. �

To conclude this section, we give the brief proof of Proposition 12.1.

Proof of Proposition 12.1. The inequality (12.12) in the sense of viscosity solutions and in sense

of distributions is stable with regards to respectively local uniform limits and Hσ weak limits.
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Therefore by Lemma 12.5, v is in Hσ and hence for a.e.x,∫
Rn

|δΓ(x, y)|
|y|n+σ dy <∞,

and v satisfies the inequality almost everywhere, and this gives the proposition.

�
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