
Solutions to Homework 8.

(1) Let A be a ring, I ⊆ A an ideal, and M an A-module with InM = (0) for some
n ∈ N. Show that M is I-adically complete.

Proof. Let n ∈ N with InM = (0) and Γ = {i ∈ N | i ≥ n}. By (7.85)

lim←−
N
M/IrM = lim←−

Γ

M/IrM ≡M.

(2) Let A be a Noetherian ring, I, J ⊆ A ideals of A.
(a) If J ⊆ I and if A is I-adically complete, then A is J-adically complete.
(b) If A is complete in the I-adic and the J-adic topology, then A is complete

in the I + J-adic topology.

Proof. (a) Let J = (a1, . . . , as) and J = (a1, . . . , as, b1, . . . , bt). Since A is I-adically
complete, by (9.25):

A ∼= A[[x1, . . . , xs, y1, . . . , yt]]/(x1 − a1, . . . , xs − as, y1 − b1, . . . , yt − bt) = T.

Since
A ⊆ A[[x1, . . . , xs]]/(x1 − a1, . . . , xs − as) ⊆ T ∼= A,

A is also I-adically complete.
(b) Let I = (a1, . . . , as) and J = (b1, . . . , bt). Since A is I-adically complete

A ∼= A[[x1, . . . , xs]]/(x1 − a1, . . . , xs − as) = B.

Then B is complete with respect to the JB-adic topology and

B ∼= B[[y1, . . . , yt]]/(y1 − b1, . . . , yt − bt)
= A[[x1, . . . , xs, y1, . . . , yt]]/(x1 − a1, . . . , xs − as, y1 − b1, . . . , yt − at)
∼= A.

A is complete with respect to the I + J-adic topology.

(3) Let k be a field of characteristic 6= 2 and let

f =
∞∑
i=0

aix
i ∈ k[[x]]

be a power series with a0 6= 0 and a0 = b20 for some b0 ∈ k. Use Hensel’s Lemma to
show that there is a power series

g =
∞∑
i=0

bix
i ∈ k[[x]]

with f = g2. Note that 1 + x is not a square in k[x](x), thus the ring k[x](x) does
not satisfy Hensel’s Lemma!
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Proof. The power series ring A = k[[x]] is a complete local Noetherian ring with
maximal ideal m = (x) and residue class field k. By (9.31) Hensel’s Lemma holds
over A. Consider the monic polynomial in y: F (y) = y2 − f ∈ k[[x]][y] = A[y].
Modulo m we obtain F̄ (y) = y2 − a0 = (y − b0)(y + b0) ∈ k[y]. Since chark 6= 2,
the monic polynomials y − b0 and y + b0 are relatively prime in k[y]. By Hensel’s
Lemma there are power series g1, g2 ∈ A = k[[x]] so that F (y) = (y − g1)(y − g2).
Thus y2 − f = y2 − (g1 + g2)y + g1g2 and g1 = −g2. This shows that f = g2

1 in
k[[x]].

(4) Let k be a field of characteristic 6= 2, and let f = x2(1 +x)− y2 ∈ k[x, y]. Show
that f is irreducible in k[x, y], while f is a product of two irreducible power series
(non units) in k[[x, y]]. This implies that the ring A = k[x, y](x,y)/(f) is a domain
while its completion Â = k[[x, y]]/(f) is not a domain.

Proof. Apply Eisenstein to see that f = −y2 + (x+ 1)x2 is irreducible in k[x][y] =
k[x, y]. By Problem 3 there is a power series h ∈ k[[x]] so that x + 1 = h2. Thus
over k[[x]]: f = x2h2 − y2 = (xh− y)(xh+ y), and k[[x, y]]/(f) is not a domain.

(5) Prove Chevalley’s Theorem: Let (A,m) be a local Noetherian ring, which is
m-adically complete. Let I1 ⊃ I2 ⊃ . . . ⊃ In ⊃ . . . be a decreasing chain of ideals
in A for which

⋂
n∈N In = (0). Show that for all n ∈ N there is an integer ν(n) ∈ N

so that Iv(n) ⊆ mn.

Proof. For all k ∈ N the ring A/mk is Artinian. In particular, for any fixed k ∈ N
the decreasing sequence of ideals (In + mk)n∈N is stationary. Thus for all k ∈ N
there is an integer µ(k) ∈ N so that

In + mk = Iµ(k) + mk

for all n ≥ µ(k). Choose the integers µ(k) so that µ(k+1) ≥ µ(k) ≥ k for all k ∈ N.
Suppose that the statement of Chevalley’s Theorem is false. Then there is an

N ∈ N so that In 6⊆ mN for all n ∈ N. In order to obtain a contradiction we want to
construct an nonzero element a ∈ ∩n∈NIn. Since Iµ(N) 6⊆ mN let a1 ∈ Iµ(N) −mN .
Since

Iµ(N) + mN = Iµ(N+1) + mN ,

let a2 ∈ Iµ(N+1) so that a1 ≡ a2 mod mN . Suppose that we have constructed
a1, . . . , at so that ai ∈ Iµ(N+i−1) for all 1 ≤ i ≤ t and ai ≡ ai+1 mod mN+i for all
1 ≤ i ≤ t− 1. Since

Iµ(N+t−1) + mN+t−1 = Iµ(N+t) + mN+t−1,

there is an at+1 ∈ Iµ(N+t) with at ≡ at+1 mod mN+t−1. This yields a sequence

a = (at + mN+t−1) ∈ lim←−
t≥N

A/mt

with a 6= 0. Since ai ∈ Iµ(N+t) for all i ≥ t+ 1 we have that a ∈ Iµ(k) for all k ∈ N
and thus a ∈ ∩n∈NIn, a contradiction.

(6) Let A be a PID with field of quotients K. Prove that 0 −→ K −→ K/A −→ 0 is
an injective resolution of A.
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Proof. K and K/A are divisible A-modules. Since A is a PID, by (6.80) K and
K/A are injective A-modules.

(7) Let A be a local Noetherian ring. Show that if there is a nonzero finitely
generated injective A-module then A is Artinian.

Proof. Let M be a finitely generated injective A-module. By (7.63) M is a direct
sum of copies of EA(A/P ) for some P ∈ Spec(A). We may assume that M =
EA(A/P ) is a finitely generated A-module for some P ∈ Spec(A). By (7.60) k(P ) =
(A/P )P ⊆ EA(A/P ) and k(P ) is a finitely generated A/P -module. Thus P = m,
the maximal ideal of A and M = E = EA(k), where k is the residue field of
A. By (7.57) every element of E is annihilated by some power of m. Since E is
finitely generated, there is an n ∈ N with mnE = 0. By (10.22) the A-linear map
θ : A −→ HomA(HomA(A,E), E) is injective. This implies that A is annihilated
by mn.

(8) Let A be a local Gorenstein ring and M a finitely generated A-module. Show
that

projdimA(M) <∞ ⇔ injdimA(M) <∞.

Proof. Let dimA = d.
⇒: Let projdim(M) = n < ∞. The proof is by induction on n. If n = 0 then

M ∼= Ar and injdimAM < ∞ since A is Gorenstein. If projdimAM = n let F• be
a minimal free resolution of M . From the long exact sequence

0 −→ Fn −→ Fn−1 −→ . . . −→ F1 −→ F0 −→M −→ 0

we obtain exact sequences:

(1) 0 −→ Fn −→ . . . −→ F1 −→ K −→ 0

and
(2) 0 −→ K −→ F0 −→M −→ 0.

From the first sequence we get that projdimAK = n − 1 and thus, by induction
hypothesis, injdimAK = m < ∞. From the second exact sequence we obtain for
every ideal I ⊆ A a long exact sequence:

. . . −→ ExtiA(A/I, F0) −→ ExtiA(A/I,M) −→ Exti+1
A (A/I,K) −→ . . .

For all i > max(d,m−1) we have that ExtiA(A/I, F0) = 0 and Exti+1
A (A/I,K) = 0.

Thus ExtiA(A/I.M) = 0 for all i > max(d,m− 1) and injdimAM <∞ by (7.42).
⇐: Let K be the dth syzygy module of M. A similar argument as in ”⇒ ” shows

that injdimAK < ∞ if injdimAM < ∞. By (8.22) K is a MCM A-module. Let
x = x1, . . . , xd be an A-regular sequence. Set Ā = A/(x) and K̄ = K/(x)K. By
(10.15) injdimĀK̄ < ∞. Since A is Gorenstein, so is Ā and Ā = EĀ(k). Since
every exact sequence 0 −→ L −→ Ār −→ Ās −→ 0 splits, K̄ is an injective Ā-module.
Thus there is an isomorphism ϕ̄ : Ār −→ K̄. By (10.32) the surjective A-linear map
ϕ : Ar −→ K with ϕ̄ = ϕ⊗A Ā is an isomorphism and K is free.


