Solutions to Homework 7.

(1) Let A be a local Noetherian ring, $I \subseteq A$ an ideal, and M a finitely generated A/I-module. Show:

$$\operatorname{projdim}_{(A/I)}(M) + \operatorname{projdim}_{A}(A/I) = \operatorname{projdim}_{A}(M)$$

provided that each of them is finite.

Proof. By the Auslander-Buchsbaum Theorem:

$$\operatorname{projdim}_{A}(M) + \operatorname{depth}(M) = \operatorname{depth}(A)$$

 $\operatorname{projdim}_{A}(A/I) + \operatorname{depth}(A/I) = \operatorname{depth}(A)$
 $\operatorname{projdim}_{(A/I)}(M) + \operatorname{depth}(M) = \operatorname{depth}(A/I)$

Thus

$$\operatorname{projdim}_{A}(M) + \operatorname{depth}(M) = \operatorname{projdim}_{A}(A/I) + \operatorname{depth}(A/I)$$

$$\Rightarrow \operatorname{projdim}_{A}(M) + \operatorname{depth}(M) = \operatorname{projdim}_{A}(A/I) + \operatorname{projdim}_{(A/I)}(M) + \operatorname{depth}(M)$$

$$\Rightarrow \operatorname{projdim}_{A}(M) = \operatorname{projdim}_{A}(A/I) + \operatorname{projdim}_{(A/I)}(M).$$

- (2) Let A be a regular local ring of dimension n, and $M \neq 0$ a finitely generated A-module. Show that the following are equivalent:
 - (a) M is free.
 - (b) M is a CM-module of dimension n.

Proof. (a) \Rightarrow (b) trivial

(b) \Rightarrow (a) Let M be a CM A-module with $\dim(M) = \dim(A) = n$. Then $\operatorname{depth}(M) = n$. Since A is a RLR, $\operatorname{projdim}_A(M) < \infty$ and by Auslander-Buchsbaum:

$$\operatorname{projdim}_{A}(M) = 0.$$

Thus M is free.

(3) Let A be a Noetherian domain of dimension 1, and let M be a nonzero finitely generated A-module of dimension 1. Show that M is a CM-module if and only if M is torsionfree.

Proof. \Leftarrow : Suppose that M is torsionfree and let $\mathfrak{m} \subseteq A$ be a maximal ideal of A. Then $M_{\mathfrak{m}}$ is a torsionfree $A_{\mathfrak{m}}$ -module. Thus every $a \in A_{\mathfrak{m}} - (0)$ is a NZD of $M_{\mathfrak{m}}$ and depth $(M_{\mathfrak{m}}) \geq 1$. Since $\dim(A_{\mathfrak{m}}) = 1$, the module $M_{\mathfrak{m}}$ is CM.

- \Rightarrow : Suppose that M is a CM-module of dimension 1. Let $a \in A$ and $m \in M (0)$ with am = 0. Then $a \in P$ for some $P \in \mathrm{Ass}_A(M)$. If $P \neq (0)$, then $M_P \neq 0$ is a CM-module over A_P . Since $\dim(M) = 1$ and A a domain, $\mathrm{ann}_A(M) = (0)$ and since M is finitely generated, $\mathrm{ann}_A(M_P) = \mathrm{ann}(M)_P = (0)$. Thus $\dim(M_P) = 1$ with $PA_P \in \mathrm{Ass}_{A_P}(M_P)$, a contradiction to M_P a CM-module.
- (4) Let (A, \mathfrak{m}, k) be a regular local ring of dimension n, and let $a, b \in \mathfrak{m} (0)$ be elements with a|b and $b \not\mid a$. Let S = A/(a) and T = A/(b). Show:
 - (a) S and T are CM-rings.
 - (b) S is a CM-module over T with $\dim(S) = \dim(T)$.
 - (c) S is not a free T-module.

Proof. By assumption b = ar for some $r \in A$. Let $\varphi : A/(b) = T \longrightarrow A/(a) = S$ denote the natural map.

- (a) A is a RLR and a, b are regular elements of A. Thus S and T are CM-rings.
- (b) Obviously, $\dim(S) = \dim(T) = 1$. Let b, x_1, \ldots, x_{n-1} be a maximal regular sequence of A. Then x_1, \ldots, x_{n-1}, b is also a regular sequence of A and for all $Q \in \operatorname{Ass}_A(A/(x_1, \ldots, x_{n-1}))$, $b \notin Q$. Thus for all $Q \in \operatorname{Ass}_A(A/(x_1, \ldots, x_{n-1}))$, $a \notin Q$ and a, x_1, \ldots, x_{n-1} is a regular sequence of A. In particular, $x_1 + (b), \ldots, x_{n-1} + (b) \in T$ is a regular sequence of the T-module S. S is a CM-module over T.
- (c) Since $b \not\mid a$, ann_T(S) = $(a)/(b) \neq (0)$ and S is not a free T-module.
- (5) Let A be a Noetherian ring, M a finitely generated A-module and $I \subseteq A$ an ideal of A. Show that $\operatorname{depth}_I(M) \geq 2$ if and only if the natural homomorphism $M \longrightarrow \operatorname{Hom}_A(I, M)$ is an isomorphism.

Proof. $\Gamma: M \longrightarrow \operatorname{Hom}_A(I, M)$ is defined by: $\Gamma(m)(a) = am$ for all $m \in M, a \in I$. \Rightarrow : Let $x, y \in I$ be a regular sequence in M. If $m, n \in M$ with $\Gamma(m) = \Gamma(n)$, then xm = xn and m = n, since x is regular. Thus Γ is injective.

In order to show that Γ is surjective, let $\varphi: I \longrightarrow M$ be an A-linear map and set $\varphi(x) = m$. Then $\varphi(xy) = ym = x\varphi(y) \in xM$. Thus there is an element $n \in M$ so that m = xn. We claim that $\varphi = \Gamma(n)$. Let $t \in I$, then $\varphi(tx) = txn = x\varphi(t)$. Since x is regular, $\varphi(t) = tn$ and thus $\varphi = \Gamma(n)$.

 \Leftarrow : If depth_I(M) = 0 then there is a prime ideal $P \in \operatorname{Ass}(M)$ with $I \subseteq P$. Let $m \in M$ with ann(m) = P. Then $\Gamma(m) = 0$ and Γ fails to be injective. Thus depth_I(M) ≥ 1 . The exact sequence: $0 \to I \to A \to A/I \to 0$ induces a long exact sequence:

$$0 \to \operatorname{Hom}_A(A/I, M) \to \operatorname{Hom}_A(A, M) \xrightarrow{*} \operatorname{Hom}_A(I, M) \to \operatorname{Ext}_A^1(A/I, M) \to 0.$$

Since Γ is an isomorphism, the map * is an isomorphism and $\operatorname{Ext}_A^1(A/I, M) = 0$. By (8.14) $\operatorname{depth}_I(M) \geq 2$.

- (6) Let $\varphi:(A,\mathfrak{m})\longrightarrow (B,\mathfrak{n})$ be a local homomorphism of local Noetherian rings, and M an B-module which is finitely generated as an A-module.
 - (a) Suppose that $P \in \operatorname{Ass}_B(M)$ and let $x \in M$ with $\operatorname{ann}_B(x) = P$. Prove that φ induces an embedding $A/(P \cap A) \longrightarrow B/P \cong Bx$ which makes B/P into a finitely generated $A/(P \cap A)$ -module. Conclude that $P \cap A \neq \mathfrak{m}$ if $P \neq \mathfrak{n}$.
 - (b) Show that $\operatorname{depth}_A(M) = \operatorname{depth}_B(M)$.

Proof. Since M is finitely generated as an A-module, M is also finitely generated as a B-module.

(a) If $P \in Ass_B(M)$ and $x \in M$ with ann(x) = P, then $Bx \cong B/P$. The induced map

$$A/(P \cap A) \longrightarrow B/P \cong Bx$$

is injective. Since Bx is an A-submodule of M, $Bx \cong B/P$ is a finitely generated A-module. Thus B/P is finite (integral) over $A/(P \cap A)$ and $A/(P \cap A)$ is a field if and only if B/P is a field.

(b) By induction on $\operatorname{depth}_A(M)$. If $\operatorname{depth}_A(M) = 0$, then $\mathfrak{m} \in \operatorname{Ass}_A(M)$. Then there is a $P \in \operatorname{Ass}_B(M)$ with $\varphi(\mathfrak{m}) \subseteq P$. Then $P \cap A = \mathfrak{m}$ and by (a) we have that $P = \mathfrak{n}$. Thus $\operatorname{depth}_B(M) = 0$.

If $\operatorname{depth}_A(M) \geq 1$, let $x \in \mathfrak{m}$ be an M-regular element. Then $x = \varphi(x)$ is also a regular element of the B-module M. Thus $\operatorname{depth}_A(M/xM) = \operatorname{depth}_A(M) - 1$ and $\operatorname{depth}_B(M/xM) = \operatorname{depth}_B(M) - 1$. Obviously, M/xM is a B-module and finitely generated as A-module. By induction hypothesis $\operatorname{depth}_A(M/xM) = \operatorname{depth}_B(M/xM)$ and the statement follows.

(7) Let A be a local Noetherian ring, M a finitely generated A-module and N an nth syzygy of M in a finite free resolution of M. Show that $\operatorname{depth}(N) \geq \min(n, \operatorname{depth}(A))$.

Proof. Let

$$F_{\bullet}: \ldots F_m \xrightarrow{\varphi_m} F_{m-1} \to \ldots \to F_1 \xrightarrow{\varphi_1} F_0(\xrightarrow{\varphi_0} M) \to 0$$

be a finite free resolution of M and let $L_m = \ker(\varphi_{m-1})$ be an mth syzygy module of M where $m \geq 1$. The proof is by induction on m. If m = 1, then L_1 is a submodule of a free A-module, thus $\operatorname{depth}(L_1) \geq \min(1, \operatorname{depth}(A))$. If n > 1 consider the induced exact sequence:

$$0 \to L_m \to F_{n-1} \to L_{m-1} \to 0.$$

By induction hypothesis

$$\operatorname{depth}(L_{m-1}) \ge \min(m-1, \operatorname{depth}(A))$$

and by (8.22);

$$\operatorname{depth}(L_m) \ge \min(\operatorname{depth}(F_{m-1}), \operatorname{depth}(L_{m-1}) + 1).$$

Thus

$$depth(L_m) \ge min(m, depth(A)).$$

(8) Let A be a local Noetherian ring, and

$$0 \to L_s \to L_{s-1} \to \ldots \to L_1 \to L_0 \to 0$$

a complex of finitely generated A-modules. Suppose that the following hold for i > 0:

- (i) depth $(L_i) \geq i$
- (ii) depth $(H_i(L_{\bullet})) = 0$ or $H_i(L_{\bullet}) = 0$.

Show that L_{\bullet} is acyclic.

(This is Peskine and Szpiro's 'lemme d'acyclité'.)

Hint: Set $C_i = \operatorname{coker}(L_{i+1} \to L_i)$ and show by descending induction that $\operatorname{depth}(C_i) \geq i$ and $H_i(L_{\bullet}) = 0$ for i > 0.

Proof. Consider

$$(*_s)$$
 $0 \to L_s \xrightarrow{\varphi_s} L_{s-1} \to C_{s-1} \to 0.$

We claim that φ_s is injective. Let $K_s = H_s(L_{\bullet}) = \ker(\varphi_s)$. Since K_s is a submodule of L_s and $\operatorname{depth}(L_s) \geq s$ it follows that $\operatorname{depth}(K_s) > 0$ or $K_s = 0$. Thus $K_s = 0$. In particular, $(*_s)$ is an exact sequence and by (8.22): $\operatorname{depth}(C_s) \geq s$

 $\min(\operatorname{depth}(L_s), \operatorname{depth}(L_{s-1})) \geq s-1$. The proof is by decreasing induction. For the induction step assume that $\operatorname{depth}(C_i) \geq j$ for all $j \geq i+1$ and that

$$0 \to L_s \to L_{s-1} \to \ldots \to L_{i+1}$$

is exact. We need to show that $depth(C_i) \geq i$ and that

$$(**) \quad 0 \to L_s \to L_{s-1} \to \dots \to L_{i+2} \xrightarrow{\varphi_{i+2}} L_{i+1} \xrightarrow{\varphi_{i+1}} L_i$$

is exact. Note that φ_{i+1} factors:

$$L_{i+1} \xrightarrow{\varphi_{i+1}} L_i$$

$$\downarrow$$

$$C_{i+1}$$

Then

$$H_{i+1}(L_{\bullet}) = \ker(\varphi_{i+1})/\operatorname{im}(\varphi_{i+2}) \subseteq L_{i+1}/\operatorname{im}(\varphi_{i+2}).$$

Since depth $(C_{i+1}) \ge i+1 > 0$, either $H_{i+1}(L_{\bullet}) = 0$ or depth $(H_{i+1}(L_{\bullet})) > 0$. Thus by assumption $H_{i+1}(L_{\bullet}) = 0$ and the sequence (**) is exact. This yields a short exact sequence:

$$(*_i)$$
 $0 \to C_{i+1} \to L_i \to C_i \to 0.$

Thus by (8.22):

$$\operatorname{depth}(C_i) \ge \min(\operatorname{depth}(C_{i+1}) - 1, \operatorname{depth}(L_i)) \ge i.$$