Solutions to Homework 5.

(1) Let A be a Noetherian ring, M be a finitely generated A-module, and $\{N_i\}_{i\in I}$ a set of A-modules. Show:

$$\operatorname{Hom}_A(M, \bigoplus_{i \in I} N_i) \cong \bigoplus_{i \in I} \operatorname{Hom}_A(M, N_i).$$

Proof. Obviously,

$$\operatorname{Hom}_{A}(A, \bigoplus_{i \in I} N_{i}) \cong \bigoplus_{i \in I} N_{i}$$
$$\cong \bigoplus_{i \in I} \operatorname{Hom}_{A}(A, N_{i}).$$

Thus for every finitely generated free A-module $F = A^r$:

$$\operatorname{Hom}_A(F, \bigoplus_{i \in I} N_i) \cong \bigoplus_{i \in I} \operatorname{Hom}_A(F, N_i).$$

If M is a finitely generated A-module, consider an exact sequence:

$$F_1 \to F_0 \to M \to 0$$

where F_i are finitely generated A-modules. This yields a commutative diagram with exact rows:

Since q and h are isomorphisms, the five Lemma yields that f is an isomorphism.

(2) Let A be a commutative ring and M an A-module. Suppose that

$$0 \to K_1 \to P_1 \to M \to 0$$
 and $0 \to K_2 \to P_2 \to M \to 0$

are exact sequences with projective modules P_1 and P_2 . Show that $K_1 \oplus P_2 \cong K_2 \oplus P_1$.

Proof. Consider the diagram with exact rows:

where the maps α and β have to be constructed so that the diagram commutes. Since P_1 is projective and g_2 surjective there is a map $\beta: P_1 \to P_2$ so that $g_2\beta = g_1$ and the right square commutes. This implies that $\operatorname{im}(\beta f_1) \subseteq \ker(g_2) = \operatorname{im}(f_2) \cong K_2$. Thus there is a linear map $\alpha: K_1 \to K_2$ so that $\beta f_1 = f_2\alpha$ and the left square commutes. Consider the sequence:

$$(*) \quad 0 \to K_1 \xrightarrow{\theta} P_1 \oplus K_2 \xrightarrow{\tau} P_2 \to 0$$

where θ and τ are defined as follows: $\theta(k_1) = (f_1(k_1), \alpha(k_1))$ and $\tau(p_1, k_2) = \beta(p_1) - f_2(k_2)$. This definition makes the sequence (*) exact. Since P_2 is projective, the assertion follows.

- (3) Let A be a commutative domain, K its field of quotients. Prove:
 - (a) A torsion-free A-module M is injective if and only if M is divisible.
 - (b) K is the injective hull of A.

Proof. (a) By (6.79) every injective module is divisible. It remains to show that a torsion-free divisible A-module M is injective. Let $I \subseteq A$ be an ideal and $f: I \longrightarrow M$ an A-linear map. We need to show that f extends to a A-linear map $g: A \longrightarrow M$. If f = 0 there is nothing to show. If $f \neq 0$ let $a \in I$ with $f(a) = m \neq 0$. Since A is a domain, there is an element $n \in M$ so that m = an. We claim that the map $g: A \longrightarrow M$ defined by g(1) = n extends f. Let f(ab) = af(b) = af(b) = af(b) = ag(b). Since f(ab) = af(b) = af(b) = af(b) = af(b). By (6.27) f(ab) = af(b) =

- (b) By (a) K is an injective A-module. Since K is an essential extension of A, the quotient field K is the injective hull of A.
- (4) Let A be a Noetherian ring. Show that a direct sum of injective A-modules is an injective A-module.

Proof. Let $\{E_i\}_{i\in J}$ be a set of injective A-modules and $E=\oplus_{i\in J}E_i$. By (6.27) we have to show that every A-linear map $g:I\longrightarrow E$ extends to an A-linear map $f:A\longrightarrow E$ for every ideal I of A. Let $I\subseteq A$ be an ideal and $g:I\longrightarrow E$ an A-linear map. Since A is Noetherian, I is finitely generated, say: $I=(a_1,\ldots,a_m)$. For all $1\leq k\leq m$ the ith component $g(a_k)_i$ is zero for all but finitely many $i\in J$. Let $i_1,\ldots,i_r\in J$ so that $g(a_k)_i=0$ for all $i\in J-\{i_1,\ldots,i_r\}$ and all $1\leq k\leq m$. Then

$$\operatorname{im}(g) \subseteq E' = \bigoplus_{j=1}^r E_{i_j} \subseteq E.$$

Let $g': I \longrightarrow E'$ be the map defined by g(a) = g'(a) for all $a \in I$. Since the direct product of injective modules is injective, E' is an injective A-module and g' extends to an A-linear map $f': A \longrightarrow E'$. f' combined with the embedding $\epsilon: E' \longrightarrow E$ extends g.

- (5) Let A be a Noetherian ring and $P \subseteq A$ a prime ideal.
 - (a) If E is an injective A-module show that E_P is both A_P -injective and A-injective.
 - (b) Let M be an A-module and E(M) the injective hull of M. Then $E(M)_P$ is the injective hull of the A_P -module M_P .
 - (c) Let E^{\bullet} be a minimal injective resolution of an A-module M. Show that E_P^{\bullet} is a minimal injective resolution of the A_P -module M_P .

Proof. (a) Let $P, Q \subseteq A$ be prime ideals and let E(A/Q) be the injective hull of A/Q. If $Q \subseteq P$, by (7.59) and (7.60):

$$E(A/Q) = E(A/Q)_P = E_{A_P}(A_P/QA_P)$$

is an injective A_P -module and an injective A-module. If $Q \not\subseteq P$, let $a \in Q - P$ and $\zeta \in E(A/Q)$. By (7.59) there is an $n \in \mathbb{N}$ so that $Q^n \zeta = 0$. Thus $a^n \zeta = 0$ and $E(A/Q)_P = 0$.

If E be any injective A-module, then by (7.53)

$$E \cong \bigoplus_{\alpha \in \Lambda} E(A/Q_{\alpha})$$

where $Q_{\alpha} \in \operatorname{Spec}(A)$ for all $\alpha \in \Lambda$. Thus

$$E_P = \bigoplus_{\alpha \in \Lambda} E(A/Q_\alpha)_P$$

and E_P is an injective A_P -module and an injective A-module (Problem 3). (b) By (7.63):

$$E(M) = \bigoplus_{\alpha \in \Lambda} E(A/Q_{\alpha}).$$

Let $\Lambda' = \{ \alpha \in \Lambda \mid Q_{\alpha} \subseteq P \}$. Then

$$E(M)_P = \bigoplus_{\alpha \in \Lambda'} E(A/Q_\alpha).$$

Moreover, we can consider $E(M)_P$ as an A-submodule of E(M). By (a) $E(M)_P$ is an injective A_P -module which contains M_P . It remains to show that $E(M)_P$ is an essential extension of M_P . Let $N \subseteq E(M)_P$ be a nonzero A_P -submodule of $E(M)_P$. Considering N as an A-submodule of E(M) we obtain that $U = N \cap M \neq 0$ since E(M) is an essential extension of M. Then $U_P \subseteq N \cap M_P$. By (7.59) every $a \in A - P$ induces an automorphism on $E(M)_P$. This implies that $U_P \neq 0$ and that $E(M)_P$ is an essential extension of M_P (as A_P -modules).

(c) Let $(E^{\bullet}, \partial^{\bullet})$ be a minimal injective resolution of M. Then $E^{i} = E(Z^{i}(E^{\bullet})) = E(\ker(\partial^{i}))$ for all i. By (a) $(E_{P}^{\bullet}, \partial_{P}^{\bullet})$ is an injective resolution of M_{P} . Since localization is flat, for all i:

$$\ker(\partial^i)_P = \ker(\partial^i_P)$$

and $(E_P^{\bullet}, \partial_P^{\bullet})$ is a minimal resolution of M_P .

- (6) Let M be an A-module. Show that the following are equivalent:
 - (a) M is a flat A-module.
 - (b) For every ideal $I \subseteq A$ the canonical morphism:

$$I \otimes_A M \longrightarrow IM$$

is injective.

(c) For every finitely generated ideal $I \subseteq A$ the canonical morphism:

$$I \otimes_A M \longrightarrow IM$$

is injective.

Proof. (a) \Rightarrow (b) \Rightarrow (c): trivial

(c) \Rightarrow (b): Suppose that $I \subseteq A$ is an ideal and that the canonical map $\varphi : I \otimes_A M \longrightarrow IM$ is not injective. Then there are elements $a_i \in I$ and $m_i \in M$ for $1 \leq i \leq n$ with $\sum_{i=1}^n a_i \otimes m_i \neq 0$ in $I \otimes_A M$ and $\sum_{i=1}^n a_i m_i = 0$ in M. Let $I_0 = (a_1, \ldots, a_n) \subseteq A$ and consider the commutative diagram:

$$I_0 \otimes_A M \xrightarrow{\delta} I_0 M$$

$$\downarrow \psi \qquad \qquad \epsilon \downarrow$$

$$I \otimes_A M \xrightarrow{\varphi} I M$$

where ϵ is the embedding. By assumption (c) δ is injective. Then $\sum_{i=1}^{n} a_i \otimes m_i \neq 0$ in $I_0 \otimes_A M$ and $\epsilon \delta(\sum_{i=1}^{n} a_i \otimes m_i) = 0$, a contradiction.

(b) \Rightarrow (a): Let $0 \longrightarrow N' \longrightarrow N$ be an exact sequence of A-modules. We have to show that the sequence $0 \longrightarrow N' \otimes_A M \longrightarrow N \otimes_A M$ is exact. We may consider $N' \subseteq N$ as a submodule of N. Consider the following set of submodules of N: $\Gamma = \{T \subseteq N \mid T \text{ a submodule of } N \text{ with } N' \subseteq T \text{ and } 0 \longrightarrow N' \otimes_A M \longrightarrow T \otimes_A M \text{ exact } \}$. Since $N' \in \Gamma$, $\Gamma \neq \emptyset$. Γ is partially ordered by inclusion. We want to show that Γ is inductively ordered. Let $\{T_i\}_{i\in I}$ be a chain in Γ and let $T_0 = \bigcup_{i\in I} T_i$. Let $\rho: N' \otimes_A M \longrightarrow T_0 \otimes_A M$ be the induced map and let $m_i \in M$ and $t_i \in N'$ with $\rho(\sum_{i=0}^n n_i \otimes m_i) = 0$. Write $T_0 \otimes_A M$ as $A^{(T_0 \times M)}/U$ where $A^{(T_0 \times M)}$ is the free module with basis $T_0 \times M$ and U is the submodule generated by elements (x+x',y)-(x,y)-(x',y),(x,y+y')-(x,y)-(x,y'),(ax,y)-a(x,y),(x,ay)-a(x,y) for $x,x' \in T_0,y,y' \in M$ and $a \in A$. Since $\sum_{i=0}^n n_i \otimes m_i = 0$ in $T_0 \otimes M$, $\sum_{i=0}^n n_i \otimes m_i$ is a finite linear combination of the generators of U. Thus there is an $i \in I$ so that $\sum_{i=0}^n n_i \otimes m_i = 0$ in $T_j \otimes_A M$. This implies that $\sum_{i=0}^n n_i \otimes m_i = 0$ in $N' \otimes_A M$ and ρ is injective.

By Zorn's Lemma Γ contains a maximal element T. If $T \neq N$ take an element $n \in N - T$ and consider the submodule K = T + An. Then $K/T \cong A/I$ for some ideal $I \subseteq A$. Consider the exact sequence

$$0 \to I \to A \to A/I \to 0.$$

Tensoring with M yields a long exact sequence:

$$\operatorname{Tor}_1^A(A,M) = 0 \to \operatorname{Tor}_1^A(A/I,M) \to I \otimes_A M \xrightarrow{h} M \to M/IM \to 0.$$

By assumption h is injective and therefore $\operatorname{Tor}_1^A(A/I,M)=0$. The exact sequence

$$0 \to T \to K \to K/T \to 0$$

yields a long exact sequence:

$$\to \operatorname{Tor}_1^A(K/T, M) \to T \otimes_A M \xrightarrow{\tau} K \otimes_A M \to K/T \otimes_A M \to 0$$

Since $\operatorname{Tor}_1^A(K/T,M) \cong \operatorname{Tor}_1^A(A/I,M) = 0$, τ is injective and so is the composition of maps:

$$N' \otimes_A M \to T \otimes_A M \xrightarrow{\tau} K \otimes_A M.$$

Thus $K \in \Gamma$ and the assertion that T = N follows.

(7) Let A be a ring, $S = A[x_1, \ldots, x_n]$ the polynomial ring over A in n variables, and let

$$f = \sum_{(i) \in \mathbb{N}^n} a_{(i)} x_1^{i_1} \dots x_n^{i_n}$$

be a polynomial in S. Put T = S/(f). Show:

- (a) If $(a_{(i)})_{(i)\in\mathbb{N}^n}=A$ then T is flat over A.
- (b) If $(a_{(i)})_{(i)\in\mathbb{N}^n-(0)}=A$ then T is faithfully flat over A.

Proof. (a) Let $S = A[x_1, \ldots, x_n]$ and

$$f = \sum_{(i) \in \mathbb{N}^n} a_i(i) x_1^{i_1} \dots x_n^{i_n} \in S$$

with $(a_{(i)}) = A$. Problem 7 of Homework 1 implies that f is a regular element of A. The same argument shows that for all ideals $I \subseteq A$ the element f + IS is a regular element of $(A/I)[x_1, \ldots, x_n] \cong S/IS$. Fix an ideal $I \neq (0)$ of A. We claim that $\text{Tor}_1^A(A/I, S) = 0$. Let T = S/(f). Then there is an exact sequence:

$$0 \to S \xrightarrow{f} S \to T \to 0$$

where the first map is multiplication by f. Tensoring with A/I yields a long exact sequence:

$$\operatorname{Tor}_1^A(A/I,S) \to \operatorname{Tor}_1^A(A/I,S/(f)) \to S/IS \xrightarrow{f} S/IS \to T/IT \to 0.$$

Since S is a free A-module, $\operatorname{Tor}_1^A(A/I, S) = 0$ and since f is S/IS-regular, it follows that $\operatorname{Tor}_1^A(A/I, S/(f)) = 0$.

The exact sequence $0 \to I \to A \to A/I \to 0$ yields the long exact sequence:

$$\operatorname{Tor}_1^A(A/I, S/(f)) = 0 \to I \otimes_A S/(f) \to S/(f) \to A/I \otimes_A (S/(f)) \to 0.$$

Thus the canonical map $I \otimes_A (S/(f)) \to IS/(f)$ is bijective and the assertion follows with Problem 6.

- (b) Assume that $(a_{(i)})_{(i)\in\mathbb{N}^n-(0)}=A$. By (a) S/(f) is a flat A-module. We have to show that for every maximal ideal \mathfrak{m} of A: $\mathfrak{m}S/(f)\neq S/(f)$ or equivalently that $(\mathfrak{m}S,f)\neq S$. Since $(a_{(i)})_{(i)\in\mathbb{N}^n-(0)}=A$ there is a $(j)\in\mathbb{N}^n$ so that $a_{(j)}\notin\mathfrak{m}$. Thus $f+\mathfrak{m}S\in S/\mathfrak{m}S\cong (A/\mathfrak{m})[x_1,\ldots,x_n]$ is a non constant polynomial. In particular, $f+\mathfrak{m}S$ is not a unit and thus $(\mathfrak{m}S,f)\neq S$.
- (8) Let $\varphi:(R,\mathfrak{m})\longrightarrow (S,\mathfrak{n})$ be a local homomorphism of local Noetherian rings, and let N be an R-flat S-module such that $N/\mathfrak{m}N$ has finite length (as an S-module). Show that for every finite length R-module M:

$$l_S(M \otimes_R N) = l_R(M)l_S(N/\mathfrak{m}N).$$

Proof. We show by induction on $n = l_R(M)$ that $l_S(M \otimes_R N) < \infty$ and that $l_S(M \otimes_R N) = l_R(M)l_S(N/\mathfrak{m}N)$. If n = 1, then $M \cong R/\mathfrak{m}$ and $M \otimes_R N \cong R/\mathfrak{m} \otimes_R N \cong N/\mathfrak{m}N$.

Suppose that $l_R(M) = n + 1$. Since M is an R-module of finite length, we know that $\mathfrak{m} \in \mathrm{Ass}(M)$. Thus there is an element $v \in M$ so that $U = Av \cong A/\mathfrak{m}$. Consider the exact sequence $0 \to U \to M \to M/U \to 0$. Then $l_R(U) = 1$ and $l_R(M/U) = n$. Since N is R-flat, the sequence

$$0 \to U \otimes_R N \to M \otimes_R N \to M/U \otimes_R N \to 0$$

is exact. By induction hypothesis $l_S(U \otimes_R N) < \infty$ and $l_S((M/U) \otimes_R N) < \infty$, thus $l_S(M \otimes_R N) < \infty$. Moreover,

$$l_S(M \otimes_R N) = l_S(U \otimes_R N) + l_S((M/U) \otimes_R N)$$

= $l_S(N/\mathfrak{m}N) + (l_R(M) - 1)l_S(N/\mathfrak{m}N)$
= $l_R(M)l_S(N/\mathfrak{m}N)$.