Solutions to Homework 5.

(1) Let A be a Noetherian ring, M be a finitely generated A-module, and {N;};cs
a set of A-modules. Show:

Hom s (M, ®ie1N;) = @icrHoma (M.N;).
Proof. Obviously,

Hom 4 (A, ©ierNi) = @icr NV

> @;erHoma (A, N;).

Thus for every finitely generated free A-module F' = A™:

Homa (F, @ie1N;) = @ierHoma (F, N;).
If M is a finitely generated A-module, consider an exact sequence:

P —F—-M=0

where F; are finitely generated A-modules. This yields a commutative diagram
with exact rows:

0 —— Homa(M, ®icrN;) —— Homu(Fo, DierNi) —— Homa(F1, ®ie1N;)
| 1] | d

0 —— @iesHoma (M, N;) —— @ierHoma(Fy, N;) ——— @ierHomu(F1, N;)
Since g and h are isomorphisms, the five Lemma yields that f is an isomorphism.

(2) Let A be a commutative ring and M an A-module. Suppose that

0O—Ki—P—-M—0 and 0— Ky — P, — M —0

~

are exact sequences with projective modules P; and P,. Show that K| & P, =
Ko @ Py.

Proof. Consider the diagram with exact rows:

0 K - p -2 M 0
Lol
0 K, —>.p %2 . Mg 0

where the maps « and § have to be constructed so that the diagram commutes.
Since P; is projective and go surjective there is a map 3 : P, — P5 so that g2 = g1
and the right square commutes. This implies that im(8f1) C ker(g2) = im(f3) =
K. Thus there is a linear map « : K1 — K5 so that Gf; = foa and the left square
commutes. Consider the sequence:

() 0—>K11>P169KQL>P2—>0
1
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where 6 and 7 are defined as follows: (k1) = (f1(k1), (k1)) and 7(p1,k2) =
B(p1) — f2(k2). This definition makes the sequence (*) exact. Since P, is projective,
the assertion follows.

(3) Let A be a commutative domain, K its field of quotients. Prove:

(a) A torsion-free A-module M is injective if and only if M is divisible.
(b) K is the injective hull of A.

Proof. (a) By (6.79) every injective module is divisible. It remains to show that
a torsion-free divisible A-module M is injective. Let I C A be an ideal and f :
I — M an A-linear map. We need to show that f extends to a A-linear map
g: A — M. If f = 0 there is nothing to show. If f # 0 let a € I with
f(a) = m # 0. Since A is a domain, there is an element n € M so that m = an.
We claim that the map g : A — M defined by g(1) = n extends f. Let b € I, then
f(ab) = af(b) = bm = abn = g(ab) = ag(b). Since M is torsion-free, f(b) = g(b).
By (6.27) M is injective.

(b) By (a) K is an injective A-module. Since K is an essential extension of A, the
quotient field K is the injective hull of A.

(4) Let A be a Noetherian ring. Show that a direct sum of injective A-modules is
an injective A-module.

Proof. Let {E;};c; be a set of injective A-modules and F = @, E;. By (6.27)
we have to show that every A-linear map g : I — FE extends to an A-linear map
f: A — FE for every ideal I of A. Let I C A be an ideal and g : [ — FE an
A-linear map. Since A is Noetherian, I is finitely generated, say: I = (a,...,am).
For all 1 < k < m the ith component g(a); is zero for all but finitely many i € J.
Let i1,...,4, € J so that g(ag); =0 for alli € J — {i1,...,4,} and all 1 < k < m.
Then
im(g) C E' = ®}j_,E;; C E.

Let ¢’ : I — E’ be the map defined by g(a) = ¢’(a) for all a € I. Since the direct
product of injective modules is injective, E’ is an injective A-module and ¢’ extends
to an A-linear map f' : A — E’. f’ combined with the embedding € : £/ — F
extends g.

(5) Let A be a Noetherian ring and P C A a prime ideal.

(a) If E is an injective A-module show that Ep is both Ap-injective and A-
injective.

(b) Let M be an A-module and E(M) the injective hull of M. Then E(M)p is
the injective hull of the Ap-module Mp.

(c) Let E*® be a minimal injective resolution of an A-module M. Show that E},
is a minimal injective resolution of the Ap-module Mp.

Proof. (a) Let P,Q C A be prime ideals and let F(A/Q) be the injective hull of
AJQ. I Q C P, by (7.59) and (7.60):

E(A/Q)=E(A/Q)p = Ea,(Ap/QAp)

is an injective A p-module and an injective A-module. If Q € P, let a € Q@ — P and
¢ € E(A/Q). By (7.59) there is an n € N so that Q"¢ = 0. Thus a"( = 0 and
E(A/Q)p =0.



If E be any injective A-module, then by (7.53)

E= @aGAE(A/Qa)

where @, € Spec(A) for all &« € A. Thus

EP — @QEAE(A/Qa)P

and Ep is an injective Ap-module and an injective A-module (Problem 3).
(b) By (7.63):
E(M) = ©aenE(A/Qn)-

Let ' ={a € A|Qy C P}. Then
E(M)P :@QEA’E(A/Q())'

Moreover, we can consider E(M)p as an A-submodule of E(M). By (a) E(M)p
is an injective Ap-module which contains Mp. It remains to show that E(M)p
is an essential extension of Mp. Let N C E(M)p be a nonzero Ap-submodule of
E(M)p. Considering N as an A-submodule of E(M) we obtain that U = NNM # 0
since E(M) is an essential extension of M. Then Up C N N Mp. By (7.59) every
a € A — P induces an automorphism on E(M)p. This implies that Up # 0 and
that E(M)p is an essential extension of Mp (as Ap-modules).

(c) Let (E*®,0*) be a minimal injective resolution of M. Then E* = E(Z'(E®)) =
E(ker(9%)) for all i. By (a) (E%,d%) is an injective resolution of Mp. Since local-
ization is flat, for all ¢:

ker(9")p = ker(0%)

and (E%,0%) is a minimal resolution of Mp.

(6) Let M be an A-module. Show that the following are equivalent:

(a) M is a flat A-module.
(b) For every ideal I C A the canonical morphism:

I®@sM— IM

is injective.
(c) For every finitely generated ideal I C A the canonical morphism:

IR M — IM
is injective.

Proof. (a) = (b) = (c): trivial

(c) = (b): Suppose that I C A is an ideal and that the canonical map ¢ : I ®4
M — IM is not injective. Then there are elements a; € I and m; € M for
i <nwith Y 1a; ®m; #0in I ®4 M and Y. ;a;m; = 0in M. Let
(a1,...,a,) € A and consider the commutative diagram:

To@a M —> s I,M

al |

IT@oaM —2— IM
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where € is the embedding. By assumption (c) § is injective. Then Y 7" | a; ®@m; # 0
in [y ®4 M and €5(>_"_; a; ® m;) = 0, a contradiction.

(b) = (a): Let 0 — N’ — N be an exact sequence of A-modules. We have to
show that the sequence 0 — N’ ®4 M — N ®4 M is exact. We may consider
N’ C N as a submodule of N. Consider the following set of submodules of N: T' =
{T C N|T asubmodule of N with N/ C Tand0 — N'®4 M — T® 4 M exact }.
Since N’ € I', T" # 0. T is partially ordered by inclusion. We want to show that
I' is inductively ordered. Let {T;}ic; be a chain in I" and let Ty = U;erT;. Let
p: N @x M — Ty @4 M be the induced map and let m; € M and t; € N’
with p(31yni ® m;) = 0. Write Ty ®4 M as ATXM) /U where AToxM) g
the free module with basis Ty x M and U is the submodule generated by elements
(2", 4)— (2, 9) — (2", ), (5, y+9')— (2, 9)— (2,9'), (a3, y) —a(, ), (2, 09) —a(z, y)
for x,2' € Ty,y,y’ € M anda € A. Since ) . yn;@m; = 0in ToQM, Y. n,Qm;
is a finite linear combination of the generators of U. Thus there is an j € I so that
Soion; ®m; =0in T; ®4 M. This implies that Y ;" ;n;, @ m; = 01in N @4 M
and p is injective.

By Zorn’s Lemma I' contains a maximal element T. If T' £ N take an element
n € N —T and consider the submodule K =T + An. Then K/T = A/I for some
ideal I C A. Consider the exact sequence

0—-I—A— A/l —0.

Tensoring with M yields a long exact sequence:

Tor (A, M) = 0 — Tor{(A/T, M) — T @4 M 25 M — M/IM — 0.

By assumption h is injective and therefore Tor{!(A/I, M) = 0. The exact sequence
0—-T—-K-—K/T—0

yields a long exact sequence:

— Tori(K/T,M) = T@s M S5 K®@x M — K/T®, M — 0
Since Tor{ (K /T, M) = Tor{!(A/I, M) = 0, T is injective and so is the composition

of maps:
N @4 M—>Tos M-S K®,4 M.

Thus K € I" and the assertion that T"= N follows.

7) Let A be a ring, S = Alz1,...,x,]| the polynomial ring over A in n variables,
g
and let
(¢)eNn

be a polynomial in S. Put T'= S/(f). Show:

(a) If (a(;))@)enn = A then T is flat over A.
b) If (ay)ienn—(o) = A then T is faithfully flat over A.
(4))(i)eN"—(0)



Proof. (a) Let S = A[z1,...,z,] and
f= Z a(i)xlf Lane S

(i)eNm

with (a(;y) = A. Problem 7 of Homework 1 implies that f is a regular element of
A. The same argument shows that for all ideals I C A the element f + IS is a
regular element of (A/I)[x1,...,x,] = S/IS. Fix an ideal I # (0) of A. We claim
that Tor{'(A/I,S) = 0. Let T = S/(f). Then there is an exact sequence:

0—>SLS—>T—>O

where the first map is multiplication by f. Tensoring with A/I yields a long exact
sequence:

Tord(A/1,S) — Tor(A/I,S/(f)) — S/IS L S/IS — T/IT — 0.

Since S is a free A-module, Tor{!(A/I,S) = 0 and since f is S/IS-regular, it follows
that Tor'(A/I,S/(f)) = 0.
The exact sequence 0 — I — A — A/I — 0 yields the long exact sequence:

Tor{'(A/1,S/(f)) =0 — I ©4 S/(f) — S/(f) — A/I @4 (S/(f)) — 0.

Thus the canonical map I®4(S/(f)) — 1.S/(f) is bijective and the assertion follows
with Problem 6.

(b) Assume that (a(;))u)enn—) = A. By (a) S/(f) is a flat A-module. We have
to show that for every maximal ideal m of A: mS/(f) # S/(f) or equivalently that
(mS, f) # S. Since (ag))@yenn—0) = A there is a (j) € N so that a(;) ¢ m. Thus
f+mSeS/mS=(A/m)[xy,...,x,] is a non constant polynomial. In particular,
f -+ mS is not a unit and thus (mS, f) # S.

(8) Let ¢ : (R,m) — (S, n) be alocal homomorphism of local Noetherian rings, and
let N be an R-flat S-module such that N/mN has finite length (as an S-module).
Show that for every finite length R-module M:

ls(M ®g N) = lp(M)lg(N/mN).

Proof. We show by induction on n = lg(M) that Ig(M ®r N) < oo and that
ls(M ®g N) = Ilg(M)lg(N/mN). If n = 1, then M = R/m and M ®pr N =
R/m®r N =2 N/mN.

Suppose that [gr(M) =n+ 1. Since M is an R-module of finite length, we know
that m € Ass(M). Thus there is an element v € M so that U = Av = A/m.
Consider the exact sequence 0 — U — M — M/U — 0. Then [g(U) = 1 and
IrR(M/U) = n. Since N is R-flat, the sequence

0 -U®rN—->M@r N — M/U®Rr N —0

is exact. By induction hypothesis Is(U ®g N) < oo and lg((M/U) ®g N) < oo,
thus lg(M ®r N) < co. Moreover,
ls(M®r N) =1s(U®@grN)+1s((M/U) ®r N)
=lsg(N/mN) + (Ir(M) — 1)ls(N/mN)
:lR(M)ls(N/mN).



