Solutions to Homework 3.

(1) For a polynomial P(¢) € Q show that the following conditions are equivalent:
(a) P(n) € Z for all integers n € Z.
(b) P(n) € Z for all but finitely many integers n € Z.
(c) P(t) =Y ;a;(}) with a; € Z and n € N suitable.
Proof. (a) < (b) trivial
(b) < (c) Note that the set {()}ien, is a basis of the Q-vector space Q[t], where
(()=1and () = (1/iNt(t—1)...(t—i+1) for i > 0. Write P(t) = 31", a;(})
where a; € Q and a,, # 0. We proceed by induction on n = deg(P(t)). For the
induction step consider the polynomial Q(¢) = P(t + 1) — P(t). Then

Q) = §[<tf1> B (Z)] - ;“Qfl)

Thus deg(Q(t)) = n — 1 and by induction hypothesis ay,...,a, € Z. This implies
that ag € Z.
(c) < (a) trivial

(2) Show that S = {P(t) € Q[t]|P(n) € Z for all n € Z} is a non-Noetherian
subring of Q[¢].

Proof. Note that S is a subring of Q[t] with Z[t] C S C QJt]. Since dim(Z[t]) = 2,
the Krull-Akizuki theorem does not apply.
We want to show that the ideal

is not finitely generated. Suppose that P is finitely generated. Then there is an
n € N so that

Hence for all i > n

where h;; € S. Write

where a;;;, € Z. Thus

() -2 () 0)+ 2 Ze () ()
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For all kK > n write



and substitute
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Repeat by writing ilkg = ZZ:O Aktn (Z) where agg, € Z. After i+ 1 steps we obtain
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Let i = ¢ be a prime number with ¢ > n and set m = n!. Then every coefficient
in (%) is in Z,, while 1/¢! is not an element of Z,,, a contradiction. Thus P is not
finitely generated and S is not Noetherian.

(3) Let A be aring and n € N an integer. Suppose that every ideal of A is generated
by at most n elements. Show that dim(A) < 1.

Proof. First note that A is a Noetherian ring. We need to show that for every
prime ideal P C A, htP = dim(Ap) < 1. Since every ideal of Ap is extended from
an ideal of A, we may assume that A is a local Noetherian ring with maximal ideal
m and that every ideal of A is generated by at most n elements. Let P(t) € Q[t] be
the Hilbert-Samuel polynomial of A with respect to the maximal ideal m, that is,
for s € N with s > ng:

( ) N A/ms+1 ZEA Z/mz+1

Since £4(m’/mi*t1) is the minimal number of generators of the ideal m’, it follows
that
P(s)<(s+1)n

where n is a fixed integer. This implies that deg(P(t)) < 1. Since deg(P(t)) =
dim(A) the assertion follows.

(4) Let f € C[zq,...,zy] be an irreducible polynomial and let Y = Z(f) be the
algebraic variety defined by f. Y is called non-singular or smooth at a point P € Y
if not all of the partial derivatives 0f/0x; vanish at P. Let A(Y") be the coordinate
ring of Y and let mp C A(Y) be the maximal ideal of A(Y) corresponding to P
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(that is, if P = (aq,...,ay,), then mp = (1 —aq,..., 2, — ay)/(f)). Show that ¥V
is smooth at P if and only if the ring A(Y ), is regular.

Proof. In the following set R = Clx1, ..., x,]. First note that there are the following
equivalences:

P:(alv"'aan)EYZZ(f)@f(ala"'aan):O

& flzr,...,z0) € (X1 —any ooy Ty — ay)
n

<:>f(l‘1,...,l'n): hz(mz—al)
i=1

where h; € R. (Note that the forward direction is an application of Taylor’s for-
mula.) Thus for all 1 <i <n:

af/&vz = Z@h]/axz(% — (Ij) + hl
Jj=1

Thus P is a non-singular point of Y if and only if h;(ai,...,a,) # 0 for some
1 < i < n, or equivalently, h; ¢ (1 — a1,...,2, — ap) for some 1 < i < n. Set
m=(z; —ay,...,r, —ay) C R.

Claim: h; ¢ m < the maximal ideal mRy, of Ry, is generated by 1 —aq,...,zi—1—
a;—1, f, Ti4+1l — Qj41y--+3Tn — Qp.

Proof of Claim: ” = 7 Since h; is a unit in Ry,:

(v —a1,..., 21— a1, [,%it1 — Qig1,. .., Tn — Q)R =

([131 —QA1y...,Lj—1 — ai_l,hi(xi — ai),xiﬂ — Qj41y-- 3T — an) =
(Ty — @1, i1 — i1, T — A, Tyl — i1y - Ty — Q) =
mR.,

7" <"Ifh; emforall 1 <i<mn,then f € m? and m/m? = m/((f)+m?). Thus the
maximal ideal of Ry, /(f)Ry is minimally generated by n elements (dim(m/(f) +
m?) = n) and f is not part of a minimal system of generators of m. This shows
that claim.

Thus P is a smooth point of Y if and only if f is part of a minimal system
of generators of mRy, or, equivalently, if and only if edim((R/(f))m) = n —1 =
dim((R/(f))m). Since R/(f) = A(Y) we have that P is smooth on Y if and only if
A(Y) is a regular local ring at P.

(5) Let K be a field, R = K[x1,...,z,] the polynomial ring over K, and I C R an
ideal. Show that:
ht/ + dim(R/I) = dim(R).

Proof. (a) We first show that we may assume that [ is a prime ideal of R. Suppose
that for every prime ideal P C R:

htP + dim(R/P) = dim(R) = n.

Let I C R be an ideal and let P C R be a prime ideal with I C P and htl = htP.
Assume that htI + dim(R/I) # n. Since htP + dim(R/P) = n, this implies that
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dim(R/I) > dim(R/P). Let @ C R be a prime ideal with I C @ and dim(R/I) =
dim(R/Q). Since dim(R/Q) = n — htQ > dim(R/P) = n — htP it follows that
htP > ht@, a contradiction, since ht] = inf{htP|I C P € Spec(R)}.

(b) We claim that every maximal ideal of R has height n. The proof is by induction
on n. The case n = 1 is trivial. Suppose that n > 1 and that m € R is a maximal
ideal of R. Then R/m = KJay,...,ay] is an algebraic field extension of K. By
(3.15) m = (f1,..., fn) where f; € K[z1,...,2;] monic in x;. Set L = Klz1]/(f1),
where f; is the minimal polynomial of a; over K. Then m = m/(f1) is a maximal
ideal of L[xa,...,z,] and by induction hypothesis htm = n — 1. Therefore htm = n.
(c) Let P C R be a prime ideal. If P is maximal, then by (b):

htP + dim(R/P) = n.

Suppose that dim(R/P) = r > 0. The elements 1 + P,...,x, + P generate the
quotient field Q(R/P) over K. Moreover, Q(R/P) has transcendence degree r over
K and we may assume that 1 + P,...,z, + P is a transcendence basis of Q(R/P)
over K. This implies that P N K[z1,...,z,] = 0. If Q is a prime ideal of R with
P C @ and P # @, then

dim(R/Q) < dim(R/P).

Thus Q(R/Q) has transcendence degree < r over K. This implies that for all prime
ideals @ with P C @ and P # Q,

QNKlxy,...,z,] #0
and with S = K|[z1,...,z,] — (0) the ideal PS™!R is maximal in S™!R. Note that
ST'R=Llz,q1,...,2,]
where L = K(z1,...,z,) = Q(K|z1,...,2.]). By (b),
htPS 'R =htP =n—r.

This shows that ht P 4+ dim(R/P) = n.

(6) Let A C B be an extension of rings such that the set B — A is closed under
multiplication. Show that A is integrally closed in B.

Proof. Let b € B — (0) be integral over A. Then there is a minimal integer n € N
so that b satisfies an integral equation of degree n:

b" + an_lbnil +...+ab+ap=0 with a; € A.
Since n is minimal, b € A if and only if n = 1. If b ¢ A and n > 1, then
V'l fa, b4 day ¢ A,

but
b(bn_l + an_lbn_2 + ...+ CLl) = —ag € A,

a contradiction. Hence n = 1 and b € A.



5

(7) Let A be a normal domain, K = Q(A) its field of quotients, and f(z) € Alx]
a monic polynomial. Show that f(z) is irreducible in KJz] if and only if f(x) is
irreducible in Alx].

Proof. Let K denote the algebraic closure of K. Suppose that f = gh with g,h €
K [z] monic polynomials and g irreducible in K[z]. Let o € K be a root of g. Then
f(a) = 0 and « is integral over A, since f € A[z] is monic. Note that g is the
minimal polynomial of o over K. By (5.18), g € A[x]. This shows that every monic
irreducible component of f in K[x] is a polynomial in A[z]. Thus f is reducible in
Alz]. The converse is trivial.

(8) Let K C L be an extension of fields, @ C L[zy,...,z,] a prime ideal in the
polynomial ring in n variables over L, and P = Q N K|z1,...,z,] its contraction
to the polynomial ring over K. Show that ht@) > htP and that equality holds if L
is algebraic over K. Use this to show that if two polynomials f,g € K[x1,...,x,]
have no common divisor in K|z1,...,x,], then f and g have no common divisor in
Llzq,...,zp].

Proof. Consider the extension of rings:
A=Klzy,...,x,]/P C B=Llxy,...,2,]/Q.

Suppose (after renumbering if necessary) that 1+ P, ..., z, + P is a transcendence
basis of A over K. Thus for r + 1 < ¢ < n the element z; + P is algebraic over
K(x1+P,...,z, +P) C Q(A), where Q(A) is the quotient field of A. This implies
that z; + Q € B is algebraic over L(z; + Q,...,x, + Q) for all r + 1 < i < n.
Therefore

dim(B) = trdegr(B) < trdeg(A) = dim(A).

By problem (5)
n —ht@Q = dim(B) < n — htP = dim(A)

and thus ht@Q > htP. If K C L is algebraic, the extension K[xi,...,z,] C
L[z, ...,x,] is integral. By (5.25): htP > ht(@ and hence ht@ = htP.

Suppose that K C L is algebraic and that ¢ € L[xy,...,z,] is a prime element
with ¢|f and ¢|g. The prime element ¢ generates the height one prime ideal
Q= (q) € L[xy,...,zy,). Thus P = QN K|z1,...,x,] is a prime ideal of height one
which is principal, P = (p). Since f,g € P, f and g have the common divisor p in
Klzy,...,zy).

(9) Let A C B be an integral extension of domains with A a normal domain, and
K = Q(A) the field of quotients of A. Let I C A be an ideal, b € B an element,
and f(x) = 2" + a,_12" "' + ... + ap the minimal polynomial of b over K. Show
that b € rad(IB) if and only if a; € rad(]) for all 0 <7 <n —1.

Proof. 7 <7 If a; € rad(I) for all 0 < i < n—1, then b" = —(a,_1b" 1 +...+ag) €
rad(/)B C rad(B).
” =7 First note that f(x) € Alz], since A is normal. We claim that

(x) rad(IB)N A =rad(I).

7

The inclusion ” D 7 is trivial. For the other inclusion note that

rad(IB) = ﬂ[gQQ
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and
rad(I) = ﬂ[gpP

where () and P are prime ideals in B and A, respectively. For every prime ideal
P € Spec(A) there is a prime ideal @) € Spec(B) with P = QN A. Thus rad(/B) C
rad(/). (Note that the claim is true for any integral extension A C B.)

Since A C B is integral, the extension of the quotient fields K = Q(A) C L =
Q(B) is algebraic. Let K = L be the algebraic closure of K and L, and let B be
the integral closure of A (or B) in L. Assume that 81, ..., 3, are the distinct roots
of f(z)in L with b= 3;. Then 8,...,3, € B. Every automorphism 7 € Autx (L)
restricts to an automorphism 7|5 of B. For all 1 < i < r let 0; € Autx (L) be a
K-automorphism with o;(b) = 3;. Since b € rad(IB), also o;(b) = 3; € rad(IB) for
all 1 <7 < r. Since the coefficients a; of f(z) are elementary symmetric functions
in the 3;, we have that a; € rad(IB) for all 0 <i < n — 1. Thus by () a; € rad(I)
forall0<i<n-—1.



