
Solutions to Homework 3.

(1) For a polynomial P (t) ∈ Q show that the following conditions are equivalent:
(a) P (n) ∈ Z for all integers n ∈ Z.
(b) P (n) ∈ Z for all but finitely many integers n ∈ Z.
(c) P (t) =

∑n
i=0 ai

(
t
i

)
with ai ∈ Z and n ∈ N suitable.

Proof. (a) ⇐ (b) trivial
(b) ⇐ (c) Note that the set {

(
t
i

)
}i∈N0 is a basis of the Q-vector space Q[t], where(

t
0

)
= 1 and

(
t
i

)
= (1/i!)t(t − 1) . . . (t − i + 1) for i > 0. Write P (t) =

∑n
i=0 ai

(
t
i

)
where ai ∈ Q and an 6= 0. We proceed by induction on n = deg(P (t)). For the
induction step consider the polynomial Q(t) = P (t + 1)− P (t). Then

Q(t) =
n∑

i=0

ai[
(

t + 1
i

)
−

(
t

i

)
] =

n∑
i=1

ai

(
t

i− 1

)
.

Thus deg(Q(t)) = n − 1 and by induction hypothesis a1, . . . , an ∈ Z. This implies
that a0 ∈ Z.
(c) ⇐ (a) trivial

(2) Show that S = {P (t) ∈ Q[t] |P (n) ∈ Z for all n ∈ Z} is a non-Noetherian
subring of Q[t].

Proof. Note that S is a subring of Q[t] with Z[t] ⊆ S ⊆ Q[t]. Since dim(Z[t]) = 2,
the Krull-Akizuki theorem does not apply.

We want to show that the ideal

P = (
(

t

i

)
)i≥1

is not finitely generated. Suppose that P is finitely generated. Then there is an
n ∈ N so that

P = (
(

t

1

)
, . . . ,

(
t

n

)
).

Hence for all i > n (
t

i

)
=

n∑
j=1

hij

(
t

j

)
where hij ∈ S. Write

hij =
m∑

k=0

aijk

(
t

k

)
where aijk ∈ Z. Thus(

t

i

)
=

n∑
j=1

n∑
k=0

aijk

(
t

k

)(
t

j

)
+

n∑
j=1

∑
k>n

aijk

(
t

k

)(
t

j

)
.

For all k > n write (
t

k

)
=

n∑
j=1

hkj

(
t

j

)
1
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and substitute(
t

i

)
=

n∑
j=1

n∑
k=0

aijk

(
t

k

)(
t

j

)
+

n∑
j,`=1

∑
k>n

aijkhk`

(
t

`

)(
t

j

)

=
n∑

j=1

n∑
k=0

aijk

(
t

k

)(
t

j

)
+

n∑
j,`=1

h̃k`

(
t

`

)(
t

j

)
.

Repeat by writing h̃k` =
∑s

u=0 ak`u

(
t
u

)
where ak`u ∈ Z. After i+1 steps we obtain

that (
t

i

)
=

∑
0≤νj≤n

uν1,...,νi+1

(
t

ν1

)
. . .

(
t

νi+1

)

+
∑

1≤µj≤n

vµ1,...,µi+1

(
t

µ1

)
. . .

(
t

µi+1

)

where uν1,...,νi+1 ∈ Z and vµ1,...,µi+1 ∈ S. Note that every term in the last sum has
degree > i. Thus the leading term (1/i!)ti of

(
t
i

)
corresponds to the i degree term

of

(∗)
∑

0≤νj≤n

uν1,...,νi+1

(
t

ν1

)
. . .

(
t

νi+1

)
.

Let i = q be a prime number with q > n and set m = n!. Then every coefficient
in (∗) is in Zm while 1/q! is not an element of Zm, a contradiction. Thus P is not
finitely generated and S is not Noetherian.

(3) Let A be a ring and n ∈ N an integer. Suppose that every ideal of A is generated
by at most n elements. Show that dim(A) ≤ 1.

Proof. First note that A is a Noetherian ring. We need to show that for every
prime ideal P ⊆ A, htP = dim(AP ) ≤ 1. Since every ideal of AP is extended from
an ideal of A, we may assume that A is a local Noetherian ring with maximal ideal
m and that every ideal of A is generated by at most n elements. Let P (t) ∈ Q[t] be
the Hilbert-Samuel polynomial of A with respect to the maximal ideal m, that is,
for s ∈ N with s ≥ n0:

P (s) = `A(A/ms+1) =
s∑

i=0

`A(mi/mi+1).

Since `A(mi/mi+1) is the minimal number of generators of the ideal mi, it follows
that

P (s) ≤ (s + 1)n

where n is a fixed integer. This implies that deg(P (t)) ≤ 1. Since deg(P (t)) =
dim(A) the assertion follows.

(4) Let f ∈ C[x1, . . . , xn] be an irreducible polynomial and let Y = Z(f) be the
algebraic variety defined by f . Y is called non-singular or smooth at a point P ∈ Y
if not all of the partial derivatives ∂f/∂xi vanish at P . Let A(Y ) be the coordinate
ring of Y and let mP ⊆ A(Y ) be the maximal ideal of A(Y ) corresponding to P
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(that is, if P = (a1, . . . , an), then mP = (x1 − a1, . . . , xn − an)/(f)). Show that Y
is smooth at P if and only if the ring A(Y )mP

is regular.

Proof. In the following set R = C[x1, . . . , xn]. First note that there are the following
equivalences:

P = (a1, . . . , an) ∈ Y = Z(f) ⇔ f(a1, . . . , an) = 0

⇔ f(x1, . . . , xn) ∈ (x1 − an, . . . , xn − an)

⇔ f(x1, . . . , xn) =
n∑

i=1

hi(xi − ai)

where hi ∈ R. (Note that the forward direction is an application of Taylor’s for-
mula.) Thus for all 1 ≤ i ≤ n:

∂f/∂xi =
n∑

j=1

∂hj/∂xi(xj − aj) + hi.

Thus P is a non-singular point of Y if and only if hi(a1, . . . , an) 6= 0 for some
1 ≤ i ≤ n, or equivalently, hi /∈ (x1 − a1, . . . , xn − an) for some 1 ≤ i ≤ n. Set
m = (x1 − a1, . . . , xn − an) ⊆ R.
Claim: hi /∈ m ⇔ the maximal ideal mRm of Rm is generated by x1−a1, . . . , xi−1−
ai−1, f, xi+1 − ai+1, . . . , xn − an.
Proof of Claim: ” ⇒ ” Since hi is a unit in Rm:

(x1 − a1, . . . , xi−1 − ai−1, f, xi+1 − ai+1, . . . , xn − an)Rm =

(x1 − a1, . . . , xi−1 − ai−1, hi(xi − ai), xi+1 − ai+1, . . . , xn − an) =

(x1 − a1, . . . , xi−1 − ai−1, xi − ai, xi+1 − ai+1, . . . , xn − an) =
mRm

” ⇐ ” If hi ∈ m for all 1 ≤ i ≤ n, then f ∈ m2 and m/m2 = m/((f)+m2). Thus the
maximal ideal of Rm/(f)Rm is minimally generated by n elements (dim(m/(f) +
m2) = n) and f is not part of a minimal system of generators of m. This shows
that claim.

Thus P is a smooth point of Y if and only if f is part of a minimal system
of generators of mRm or, equivalently, if and only if edim((R/(f))m) = n − 1 =
dim((R/(f))m). Since R/(f) = A(Y ) we have that P is smooth on Y if and only if
A(Y ) is a regular local ring at P .

(5) Let K be a field, R = K[x1, . . . , xn] the polynomial ring over K, and I ⊆ R an
ideal. Show that:

htI + dim(R/I) = dim(R).

Proof. (a) We first show that we may assume that I is a prime ideal of R. Suppose
that for every prime ideal P ⊆ R:

htP + dim(R/P ) = dim(R) = n.

Let I ⊆ R be an ideal and let P ⊆ R be a prime ideal with I ⊆ P and htI = htP .
Assume that htI + dim(R/I) 6= n. Since htP + dim(R/P ) = n, this implies that
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dim(R/I) > dim(R/P ). Let Q ⊆ R be a prime ideal with I ⊆ Q and dim(R/I) =
dim(R/Q). Since dim(R/Q) = n − htQ > dim(R/P ) = n − htP it follows that
htP > htQ, a contradiction, since htI = inf{htP | I ⊆ P ∈ Spec(R)}.
(b) We claim that every maximal ideal of R has height n. The proof is by induction
on n. The case n = 1 is trivial. Suppose that n > 1 and that m ∈ R is a maximal
ideal of R. Then R/m = K[α1, . . . , αn] is an algebraic field extension of K. By
(3.15) m = (f1, . . . , fn) where fi ∈ K[x1, . . . , xi] monic in xi. Set L = K[x1]/(f1),
where f1 is the minimal polynomial of α1 over K. Then m̄ = m/(f1) is a maximal
ideal of L[x2, . . . , xn] and by induction hypothesis htm̄ = n−1. Therefore htm = n.
(c) Let P ⊆ R be a prime ideal. If P is maximal, then by (b):

htP + dim(R/P ) = n.

Suppose that dim(R/P ) = r > 0. The elements x1 + P, . . . , xn + P generate the
quotient field Q(R/P ) over K. Moreover, Q(R/P ) has transcendence degree r over
K and we may assume that x1 + P, . . . , xr + P is a transcendence basis of Q(R/P )
over K. This implies that P ∩K[x1, . . . , xr] = 0. If Q is a prime ideal of R with
P ⊆ Q and P 6= Q, then

dim(R/Q) < dim(R/P ).

Thus Q(R/Q) has transcendence degree < r over K. This implies that for all prime
ideals Q with P ⊆ Q and P 6= Q,

Q ∩K[x1, . . . , xr] 6= 0

and with S = K[x1, . . . , xr]− (0) the ideal PS−1R is maximal in S−1R. Note that

S−1R = L[xr+1, . . . , xn]

where L = K(x1, . . . , xr) = Q(K[x1, . . . , xr]). By (b),

htPS−1R = htP = n− r.

This shows that htP + dim(R/P ) = n.

(6) Let A ⊆ B be an extension of rings such that the set B − A is closed under
multiplication. Show that A is integrally closed in B.

Proof. Let b ∈ B − (0) be integral over A. Then there is a minimal integer n ∈ N
so that b satisfies an integral equation of degree n:

bn + an−1b
n−1 + . . . + a1b + a0 = 0 with ai ∈ A.

Since n is minimal, b ∈ A if and only if n = 1. If b /∈ A and n > 1, then

bn−1 + an−1b
n−2 + . . . + a1 /∈ A,

but
b(bn−1 + an−1b

n−2 + . . . + a1) = −a0 ∈ A,

a contradiction. Hence n = 1 and b ∈ A.
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(7) Let A be a normal domain, K = Q(A) its field of quotients, and f(x) ∈ A[x]
a monic polynomial. Show that f(x) is irreducible in K[x] if and only if f(x) is
irreducible in A[x].

Proof. Let K̄ denote the algebraic closure of K. Suppose that f = gh with g, h ∈
K[x] monic polynomials and g irreducible in K[x]. Let α ∈ K̄ be a root of g. Then
f(α) = 0 and α is integral over A, since f ∈ A[x] is monic. Note that g is the
minimal polynomial of α over K. By (5.18), g ∈ A[x]. This shows that every monic
irreducible component of f in K[x] is a polynomial in A[x]. Thus f is reducible in
A[x]. The converse is trivial.

(8) Let K ⊆ L be an extension of fields, Q ⊆ L[x1, . . . , xn] a prime ideal in the
polynomial ring in n variables over L, and P = Q ∩K[x1, . . . , xn] its contraction
to the polynomial ring over K. Show that htQ ≥ htP and that equality holds if L
is algebraic over K. Use this to show that if two polynomials f, g ∈ K[x1, . . . , xn]
have no common divisor in K[x1, . . . , xn], then f and g have no common divisor in
L[x1, . . . , xn].

Proof. Consider the extension of rings:

A = K[x1, . . . , xn]/P ⊆ B = L[x1, . . . , xn]/Q.

Suppose (after renumbering if necessary) that x1 +P, . . . , xr +P is a transcendence
basis of A over K. Thus for r + 1 ≤ i ≤ n the element xi + P is algebraic over
K(x1 + P, . . . , xr + P ) ⊆ Q(A), where Q(A) is the quotient field of A. This implies
that xi + Q ∈ B is algebraic over L(x1 + Q, . . . , xr + Q) for all r + 1 ≤ i ≤ n.
Therefore

dim(B) = trdegL(B) ≤ trdeg(A) = dim(A).

By problem (5)
n− htQ = dim(B) ≤ n− htP = dim(A)

and thus htQ ≥ htP . If K ⊆ L is algebraic, the extension K[x1, . . . , xn] ⊆
L[x1, . . . , xn] is integral. By (5.25): htP ≥ htQ and hence htQ = htP .

Suppose that K ⊆ L is algebraic and that q ∈ L[x1, . . . , xn] is a prime element
with q | f and q | g. The prime element q generates the height one prime ideal
Q = (q) ∈ L[x1, . . . , xn]. Thus P = Q∩K[x1, . . . , xn] is a prime ideal of height one
which is principal, P = (p). Since f, g ∈ P , f and g have the common divisor p in
K[x1, . . . , xn].

(9) Let A ⊆ B be an integral extension of domains with A a normal domain, and
K = Q(A) the field of quotients of A. Let I ⊆ A be an ideal, b ∈ B an element,
and f(x) = xn + an−1x

n−1 + . . . + a0 the minimal polynomial of b over K. Show
that b ∈ rad(IB) if and only if ai ∈ rad(I) for all 0 ≤ i ≤ n− 1.

Proof. ” ⇐ ” If ai ∈ rad(I) for all 0 ≤ i ≤ n−1, then bn = −(an−1b
n−1+. . .+a0) ∈

rad(I)B ⊆ rad(B).
” ⇒ ” First note that f(x) ∈ A[x], since A is normal. We claim that

(∗) rad(IB) ∩A = rad(I).

The inclusion ” ⊇ ” is trivial. For the other inclusion note that

rad(IB) = ∩I⊆QQ
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and
rad(I) = ∩I⊆P P

where Q and P are prime ideals in B and A, respectively. For every prime ideal
P ∈ Spec(A) there is a prime ideal Q ∈ Spec(B) with P = Q∩A. Thus rad(IB) ⊆
rad(I). (Note that the claim is true for any integral extension A ⊆ B.)

Since A ⊆ B is integral, the extension of the quotient fields K = Q(A) ⊆ L =
Q(B) is algebraic. Let K̄ = L̄ be the algebraic closure of K and L, and let B̄ be
the integral closure of A (or B) in L̄. Assume that β1, . . . , βn are the distinct roots
of f(x) in L̄ with b = β1. Then β1, . . . , βr ∈ B̄. Every automorphism τ ∈ AutK(L̄)
restricts to an automorphism τ |B̄ of B̄. For all 1 ≤ i ≤ r let σi ∈ AutK(L̄) be a
K-automorphism with σi(b) = βi. Since b ∈ rad(IB), also σi(b) = βi ∈ rad(IB̄) for
all 1 ≤ i ≤ r. Since the coefficients aj of f(x) are elementary symmetric functions
in the βi, we have that ai ∈ rad(IB̄) for all 0 ≤ i ≤ n− 1. Thus by (∗) ai ∈ rad(I)
for all 0 ≤ i ≤ n− 1.


