Solutions to Homework 3.

- (1) For a polynomial $P(t) \in \mathbb{Q}$ show that the following conditions are equivalent:
 - (a) $P(n) \in \mathbb{Z}$ for all integers $n \in \mathbb{Z}$.
 - (b) $P(n) \in \mathbb{Z}$ for all but finitely many integers $n \in \mathbb{Z}$.
 - (c) $P(t) = \sum_{i=0}^{n} a_i \binom{t}{i}$ with $a_i \in \mathbb{Z}$ and $n \in \mathbb{N}$ suitable.

Proof. (a) \Leftarrow (b) trivial

(b) \Leftarrow (c) Note that the set $\{\binom{t}{i}\}_{i\in\mathbb{N}_0}$ is a basis of the \mathbb{Q} -vector space $\mathbb{Q}[t]$, where $\binom{t}{0}=1$ and $\binom{t}{i}=(1/i!)t(t-1)\dots(t-i+1)$ for i>0. Write $P(t)=\sum_{i=0}^n a_i\binom{t}{i}$ where $a_i\in\mathbb{Q}$ and $a_n\neq 0$. We proceed by induction on $n=\deg(P(t))$. For the induction step consider the polynomial Q(t)=P(t+1)-P(t). Then

$$Q(t) = \sum_{i=0}^{n} a_{i} \begin{bmatrix} t+1 \\ i \end{bmatrix} - {t \choose i} = \sum_{i=1}^{n} a_{i} {t \choose i-1}.$$

Thus deg(Q(t)) = n - 1 and by induction hypothesis $a_1, \ldots, a_n \in \mathbb{Z}$. This implies that $a_0 \in \mathbb{Z}$.

 $(c) \Leftarrow (a) \text{ trivial}$

(2) Show that $S = \{P(t) \in \mathbb{Q}[t] | P(n) \in \mathbb{Z} \text{ for all } n \in \mathbb{Z}\}$ is a non-Noetherian subring of $\mathbb{Q}[t]$.

Proof. Note that S is a subring of $\mathbb{Q}[t]$ with $\mathbb{Z}[t] \subseteq S \subseteq \mathbb{Q}[t]$. Since $\dim(\mathbb{Z}[t]) = 2$, the Krull-Akizuki theorem does not apply.

We want to show that the ideal

$$P = {\binom{t}{i}}_{i \ge 1}$$

is not finitely generated. Suppose that P is finitely generated. Then there is an $n\in\mathbb{N}$ so that

$$P = (\binom{t}{1}, \dots, \binom{t}{n}).$$

Hence for all i > n

$$\binom{t}{i} = \sum_{j=1}^{n} h_{ij} \binom{t}{j}$$

where $h_{ij} \in S$. Write

$$h_{ij} = \sum_{k=0}^{m} a_{ijk} \binom{t}{k}$$

where $a_{ijk} \in \mathbb{Z}$. Thus

$$\binom{t}{i} = \sum_{j=1}^{n} \sum_{k=0}^{n} a_{ijk} \binom{t}{k} \binom{t}{j} + \sum_{j=1}^{n} \sum_{k>n} a_{ijk} \binom{t}{k} \binom{t}{j}.$$

For all k > n write

$$\binom{t}{k} = \sum_{j=1}^{n} h_{kj} \binom{t}{j}$$

and substitute

Repeat by writing $\tilde{h}_{k\ell} = \sum_{u=0}^{s} a_{k\ell u} \binom{t}{u}$ where $a_{k\ell u} \in \mathbb{Z}$. After i+1 steps we obtain that

$$\begin{pmatrix} t \\ i \end{pmatrix} = \sum_{0 \le \nu_j \le n} u_{\nu_1, \dots, \nu_{i+1}} \begin{pmatrix} t \\ \nu_1 \end{pmatrix} \dots \begin{pmatrix} t \\ \nu_{i+1} \end{pmatrix}$$

$$+ \sum_{1 \le \mu_i \le n} v_{\mu_1, \dots, \mu_{i+1}} \begin{pmatrix} t \\ \mu_1 \end{pmatrix} \dots \begin{pmatrix} t \\ \mu_{i+1} \end{pmatrix}$$

where $u_{\nu_1,...,\nu_{i+1}} \in \mathbb{Z}$ and $v_{\mu_1,...,\mu_{i+1}} \in S$. Note that every term in the last sum has degree > i. Thus the leading term $(1/i!)t^i$ of $\binom{t}{i}$ corresponds to the i degree term of

$$(*) \qquad \sum_{0 \le \nu_i \le n} u_{\nu_1, \dots, \nu_{i+1}} \binom{t}{\nu_1} \dots \binom{t}{\nu_{i+1}}.$$

Let i = q be a prime number with q > n and set m = n!. Then every coefficient in (*) is in \mathbb{Z}_m while 1/q! is not an element of \mathbb{Z}_m , a contradiction. Thus P is not finitely generated and S is not Noetherian.

(3) Let A be a ring and $n \in \mathbb{N}$ an integer. Suppose that every ideal of A is generated by at most n elements. Show that $\dim(A) \leq 1$.

Proof. First note that A is a Noetherian ring. We need to show that for every prime ideal $P \subseteq A$, $\operatorname{ht} P = \dim(A_P) \le 1$. Since every ideal of A_P is extended from an ideal of A, we may assume that A is a local Noetherian ring with maximal ideal \mathfrak{m} and that every ideal of A is generated by at most n elements. Let $P(t) \in \mathbb{Q}[t]$ be the Hilbert-Samuel polynomial of A with respect to the maximal ideal \mathfrak{m} , that is, for $s \in \mathbb{N}$ with $s \ge n_0$:

$$P(s) = \ell_A(A/\mathfrak{m}^{s+1}) = \sum_{i=0}^{s} \ell_A(\mathfrak{m}^i/\mathfrak{m}^{i+1}).$$

Since $\ell_A(\mathfrak{m}^i/\mathfrak{m}^{i+1})$ is the minimal number of generators of the ideal \mathfrak{m}^i , it follows that

$$P(s) \le (s+1)n$$

where n is a fixed integer. This implies that $\deg(P(t)) \leq 1$. Since $\deg(P(t)) = \dim(A)$ the assertion follows.

(4) Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be an irreducible polynomial and let Y = Z(f) be the algebraic variety defined by f. Y is called *non-singular* or *smooth* at a point $P \in Y$ if not all of the partial derivatives $\partial f/\partial x_i$ vanish at P. Let A(Y) be the coordinate ring of Y and let $\mathfrak{m}_P \subseteq A(Y)$ be the maximal ideal of A(Y) corresponding to P

(that is, if $P = (a_1, \ldots, a_n)$, then $\mathfrak{m}_P = (x_1 - a_1, \ldots, x_n - a_n)/(f)$). Show that Y is smooth at P if and only if the ring $A(Y)_{\mathfrak{m}_P}$ is regular.

Proof. In the following set $R = \mathbb{C}[x_1, \dots, x_n]$. First note that there are the following equivalences:

$$P = (a_1, \dots, a_n) \in Y = Z(f) \Leftrightarrow f(a_1, \dots, a_n) = 0$$
$$\Leftrightarrow f(x_1, \dots, x_n) \in (x_1 - a_n, \dots, x_n - a_n)$$
$$\Leftrightarrow f(x_1, \dots, x_n) = \sum_{i=1}^n h_i(x_i - a_i)$$

where $h_i \in R$. (Note that the forward direction is an application of Taylor's formula.) Thus for all $1 \le i \le n$:

$$\partial f/\partial x_i = \sum_{j=1}^n \partial h_j/\partial x_i(x_j - a_j) + h_i.$$

Thus P is a non-singular point of Y if and only if $h_i(a_1, \ldots, a_n) \neq 0$ for some $1 \leq i \leq n$, or equivalently, $h_i \notin (x_1 - a_1, \ldots, x_n - a_n)$ for some $1 \leq i \leq n$. Set $\mathfrak{m} = (x_1 - a_1, \ldots, x_n - a_n) \subseteq R$.

Claim: $h_i \notin \mathfrak{m} \Leftrightarrow \text{the maximal ideal } \mathfrak{m}R_{\mathfrak{m}} \text{ of } R_{\mathfrak{m}} \text{ is generated by } x_1 - a_1, \dots, x_{i-1} - a_{i-1}, f, x_{i+1} - a_{i+1}, \dots, x_n - a_n.$

Proof of Claim: " \Rightarrow " Since h_i is a unit in $R_{\mathfrak{m}}$:

$$(x_1-a_1,\ldots,x_{i-1}-a_{i-1},f,x_{i+1}-a_{i+1},\ldots,x_n-a_n)R_{\mathfrak{m}}=\\(x_1-a_1,\ldots,x_{i-1}-a_{i-1},h_i(x_i-a_i),x_{i+1}-a_{i+1},\ldots,x_n-a_n)=\\(x_1-a_1,\ldots,x_{i-1}-a_{i-1},x_i-a_i,x_{i+1}-a_{i+1},\ldots,x_n-a_n)=\\\mathfrak{m}R_{\mathfrak{m}}$$

" \Leftarrow " If $h_i \in \mathfrak{m}$ for all $1 \leq i \leq n$, then $f \in \mathfrak{m}^2$ and $\mathfrak{m}/\mathfrak{m}^2 = \mathfrak{m}/((f) + \mathfrak{m}^2)$. Thus the maximal ideal of $R_{\mathfrak{m}}/(f)R_{\mathfrak{m}}$ is minimally generated by n elements $(\dim(\mathfrak{m}/(f) + \mathfrak{m}^2) = n)$ and f is not part of a minimal system of generators of \mathfrak{m} . This shows that claim.

Thus P is a smooth point of Y if and only if f is part of a minimal system of generators of $\mathfrak{m}R_{\mathfrak{m}}$ or, equivalently, if and only if $\operatorname{edim}((R/(f))_{\mathfrak{m}}) = n-1 = \operatorname{dim}((R/(f))_{\mathfrak{m}})$. Since R/(f) = A(Y) we have that P is smooth on Y if and only if A(Y) is a regular local ring at P.

(5) Let K be a field, $R = K[x_1, \ldots, x_n]$ the polynomial ring over K, and $I \subseteq R$ an ideal. Show that:

$$htI + dim(R/I) = dim(R).$$

Proof. (a) We first show that we may assume that I is a prime ideal of R. Suppose that for every prime ideal $P \subseteq R$:

$$htP + dim(R/P) = dim(R) = n.$$

Let $I \subseteq R$ be an ideal and let $P \subseteq R$ be a prime ideal with $I \subseteq P$ and htI = htP. Assume that $htI + \dim(R/I) \neq n$. Since $htP + \dim(R/P) = n$, this implies that $\dim(R/I) > \dim(R/P)$. Let $Q \subseteq R$ be a prime ideal with $I \subseteq Q$ and $\dim(R/I) = \dim(R/Q)$. Since $\dim(R/Q) = n - \operatorname{ht}Q > \dim(R/P) = n - \operatorname{ht}P$ it follows that $\operatorname{ht}P > \operatorname{ht}Q$, a contradiction, since $\operatorname{ht}I = \inf\{\operatorname{ht}P \mid I \subseteq P \in \operatorname{Spec}(R)\}$.

(b) We claim that every maximal ideal of R has height n. The proof is by induction on n. The case n=1 is trivial. Suppose that n>1 and that $\mathfrak{m}\in R$ is a maximal ideal of R. Then $R/\mathfrak{m}=K[\alpha_1,\ldots,\alpha_n]$ is an algebraic field extension of K. By (3.15) $\mathfrak{m}=(f_1,\ldots,f_n)$ where $f_i\in K[x_1,\ldots,x_i]$ monic in x_i . Set $L=K[x_1]/(f_1)$, where f_1 is the minimal polynomial of α_1 over K. Then $\bar{\mathfrak{m}}=\mathfrak{m}/(f_1)$ is a maximal ideal of $L[x_2,\ldots,x_n]$ and by induction hypothesis $ht\bar{\mathfrak{m}}=n-1$. Therefore $ht\mathfrak{m}=n$. (c) Let $P\subseteq R$ be a prime ideal. If P is maximal, then by (b):

$$htP + dim(R/P) = n.$$

Suppose that $\dim(R/P) = r > 0$. The elements $x_1 + P, \ldots, x_n + P$ generate the quotient field Q(R/P) over K. Moreover, Q(R/P) has transcendence degree r over K and we may assume that $x_1 + P, \ldots, x_r + P$ is a transcendence basis of Q(R/P) over K. This implies that $P \cap K[x_1, \ldots, x_r] = 0$. If Q is a prime ideal of R with $P \subseteq Q$ and $P \neq Q$, then

$$\dim(R/Q) < \dim(R/P)$$
.

Thus Q(R/Q) has transcendence degree < r over K. This implies that for all prime ideals Q with $P \subseteq Q$ and $P \neq Q$,

$$Q \cap K[x_1,\ldots,x_r] \neq 0$$

and with $S = K[x_1, \dots, x_r] - (0)$ the ideal $PS^{-1}R$ is maximal in $S^{-1}R$. Note that

$$S^{-1}R = L[x_{r+1}, \dots, x_n]$$

where $L = K(x_1, ..., x_r) = Q(K[x_1, ..., x_r])$. By (b),

$$htPS^{-1}R = htP = n - r.$$

This shows that $htP + \dim(R/P) = n$.

(6) Let $A \subseteq B$ be an extension of rings such that the set B - A is closed under multiplication. Show that A is integrally closed in B.

Proof. Let $b \in B - (0)$ be integral over A. Then there is a minimal integer $n \in \mathbb{N}$ so that b satisfies an integral equation of degree n:

$$b^n + a_{n-1}b^{n-1} + \ldots + a_1b + a_0 = 0$$
 with $a_i \in A$.

Since n is minimal, $b \in A$ if and only if n = 1. If $b \notin A$ and n > 1, then

$$b^{n-1} + a_{n-1}b^{n-2} + \ldots + a_1 \notin A$$
,

but

$$b(b^{n-1} + a_{n-1}b^{n-2} + \ldots + a_1) = -a_0 \in A$$
,

a contradiction. Hence n = 1 and $b \in A$.

(7) Let A be a normal domain, K = Q(A) its field of quotients, and $f(x) \in A[x]$ a monic polynomial. Show that f(x) is irreducible in K[x] if and only if f(x) is irreducible in A[x].

Proof. Let \bar{K} denote the algebraic closure of K. Suppose that f = gh with $g, h \in K[x]$ monic polynomials and g irreducible in K[x]. Let $\alpha \in \bar{K}$ be a root of g. Then $f(\alpha) = 0$ and α is integral over A, since $f \in A[x]$ is monic. Note that g is the minimal polynomial of α over K. By (5.18), $g \in A[x]$. This shows that every monic irreducible component of f in K[x] is a polynomial in A[x]. Thus f is reducible in A[x]. The converse is trivial.

(8) Let $K \subseteq L$ be an extension of fields, $Q \subseteq L[x_1, \ldots, x_n]$ a prime ideal in the polynomial ring in n variables over L, and $P = Q \cap K[x_1, \ldots, x_n]$ its contraction to the polynomial ring over K. Show that $\operatorname{ht} Q \ge \operatorname{ht} P$ and that equality holds if L is algebraic over K. Use this to show that if two polynomials $f, g \in K[x_1, \ldots, x_n]$ have no common divisor in $K[x_1, \ldots, x_n]$, then f and g have no common divisor in $L[x_1, \ldots, x_n]$.

Proof. Consider the extension of rings:

$$A = K[x_1, \dots, x_n]/P \subseteq B = L[x_1, \dots, x_n]/Q$$

Suppose (after renumbering if necessary) that $x_1 + P, \ldots, x_r + P$ is a transcendence basis of A over K. Thus for $r+1 \leq i \leq n$ the element $x_i + P$ is algebraic over $K(x_1 + P, \ldots, x_r + P) \subseteq Q(A)$, where Q(A) is the quotient field of A. This implies that $x_i + Q \in B$ is algebraic over $L(x_1 + Q, \ldots, x_r + Q)$ for all $r+1 \leq i \leq n$. Therefore

$$\dim(B) = \operatorname{trdeg}_L(B) \le \operatorname{trdeg}(A) = \dim(A).$$

By problem (5)

$$n - htQ = \dim(B) \le n - htP = \dim(A)$$

and thus $\operatorname{ht} Q \geq \operatorname{ht} P$. If $K \subseteq L$ is algebraic, the extension $K[x_1, \ldots, x_n] \subseteq L[x_1, \ldots, x_n]$ is integral. By (5.25): $\operatorname{ht} P \geq \operatorname{ht} Q$ and hence $\operatorname{ht} Q = \operatorname{ht} P$.

Suppose that $K \subseteq L$ is algebraic and that $q \in L[x_1, \ldots, x_n]$ is a prime element with $q \mid f$ and $q \mid g$. The prime element q generates the height one prime ideal $Q = (q) \in L[x_1, \ldots, x_n]$. Thus $P = Q \cap K[x_1, \ldots, x_n]$ is a prime ideal of height one which is principal, P = (p). Since $f, g \in P$, f and g have the common divisor p in $K[x_1, \ldots, x_n]$.

(9) Let $A \subseteq B$ be an integral extension of domains with A a normal domain, and K = Q(A) the field of quotients of A. Let $I \subseteq A$ be an ideal, $b \in B$ an element, and $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$ the minimal polynomial of b over K. Show that $b \in \operatorname{rad}(IB)$ if and only if $a_i \in \operatorname{rad}(I)$ for all $0 \le i \le n-1$.

Proof. " \Leftarrow " If $a_i \in \operatorname{rad}(I)$ for all $0 \le i \le n-1$, then $b^n = -(a_{n-1}b^{n-1} + \ldots + a_0) \in \operatorname{rad}(I)B \subseteq \operatorname{rad}(B)$.

" \Rightarrow " First note that $f(x) \in A[x]$, since A is normal. We claim that

$$(*)$$
 rad $(IB) \cap A = rad(I)$.

The inclusion " \supseteq " is trivial. For the other inclusion note that

$$rad(IB) = \cap_{I \subseteq Q} Q$$

and

$$rad(I) = \cap_{I \subseteq P} P$$

where Q and P are prime ideals in B and A, respectively. For every prime ideal $P \in \operatorname{Spec}(A)$ there is a prime ideal $Q \in \operatorname{Spec}(B)$ with $P = Q \cap A$. Thus $\operatorname{rad}(IB) \subseteq \operatorname{rad}(I)$. (Note that the claim is true for any integral extension $A \subseteq B$.)

Since $A \subseteq B$ is integral, the extension of the quotient fields $K = Q(A) \subseteq L = Q(B)$ is algebraic. Let $\bar{K} = \bar{L}$ be the algebraic closure of K and L, and let \bar{B} be the integral closure of A (or B) in \bar{L} . Assume that β_1, \ldots, β_n are the distinct roots of f(x) in \bar{L} with $b = \beta_1$. Then $\beta_1, \ldots, \beta_r \in \bar{B}$. Every automorphism $\tau \in \operatorname{Aut}_K(\bar{L})$ restricts to an automorphism $\tau|_{\bar{B}}$ of \bar{B} . For all $1 \leq i \leq r$ let $\sigma_i \in \operatorname{Aut}_K(\bar{L})$ be a K-automorphism with $\sigma_i(b) = \beta_i$. Since $b \in \operatorname{rad}(IB)$, also $\sigma_i(b) = \beta_i \in \operatorname{rad}(I\bar{B})$ for all $1 \leq i \leq r$. Since the coefficients a_j of f(x) are elementary symmetric functions in the β_i , we have that $a_i \in \operatorname{rad}(I\bar{B})$ for all $0 \leq i \leq n-1$. Thus by (*) $a_i \in \operatorname{rad}(I)$ for all $0 \leq i \leq n-1$.