
Homework 2: Sample solutions.

(1) Consider the polynomial ring A = K[x, y, z] over a field K and the prime ideals
P1 = (x, y) and P2 = (x, z) of A. Find two distinct shortest primary decompositions
of I = P1P2.

Proof.

I = (x2, xy, xz, yz)

= (x, y) ∩ (x, z) ∩ (x2, y, z)

= (x, y) ∩ (x, z) ∩ (x, y, z)2

(2) Let A be a Noetherian ring, P ⊆ A a prime ideal, and iA,P : A −→ AP the
canonical map into the localization. Define P (n) = i−1

A,P (PnAP ) and show:

(a) P (n) is a P -primary ideal.
(b) P (n) is the P -primary component of Pn.
(c) P (n) = Pn if and only if Pn is a primary ideal.

Proof.

Lemma. Let ϕ : A −→ B be a homomorphism of rings and let Q′ ⊆ B be a
P ′-primary ideal. Then Q = ϕ−1(Q′) is a P = ϕ−1(P ′)-primary ideal of A.

Proof of Lemma. Let a, b ∈ A with ab ∈ Q and a /∈ Q. Then ϕ(a)ϕ(b) ∈ Q′ and
ϕ(a) /∈ Q′. Since Q′ is primary there is an m ∈ N so that ϕ(b)m ∈ Q′. Thus bm ∈ Q
and Q is a primary ideal. Since rad(Q) = P it follows that Q is P -primary.

(a) Since PAP is the maximal ideal of AP the ideal PnAP is PAP -primary. The
lemma shows that P (n) = i−1

A,P (PnAP ) is P -primary.
(b) Let Pn = Q1 ∩ . . . ∩Qr be a shortest primary decomposition of Pn with Qi a
Pi-primary ideal. Since rad(Pn) = P = P1 ∩ . . . ∩ Pr the prime ideal P = P1 is
minimal in Ass(A/Pn). By Theorem (2.40) Q1 = i−1

A,P (PnAP ) = P (n).
(c) follows from (a) and (b).

(3) Let A be a Noetherian ring and P ⊆ A a prime ideal. Let SP (0) denote the
kernel of the canonical map iA,P : A −→ AP . Show:

(a) SP (0) ⊆ P
(b) rad(SP (0)) = P if and only if P is a minimal prime of A.
(c) If P is a minimal ideal of A then SP (0) is the smallest P -primary ideal.

Proof. (a) Let a ∈ A with iA,P (a) = a/1 = 0. Then there is a t ∈ A − P with
ta = 0. Since t /∈ P we have that a ∈ P .
(b) ⇒: Suppose that rad(SP (0)) = P and let x ∈ PAP . Then x = p/s for some
p ∈ P and s /∈ P . By assumption pn ∈ SP (0) for some n ∈ N and therefore xn =
pn/sn = 0. This shows that PAP ⊆ rad(AP ). Since rad(AP ) is the intersection of
all minimal prime ideals of AP , it follows that PAP = nil(AP ) and that PAP is
the only prime ideal of AP . Thus P is a minimal prime ideal of A.
⇐ If P is a minimal prime ideal of A then nil(AP ) = PAP . Thus for all

p ∈ P there is an n ∈ N with (p/1)n = 0. This implies that pn ∈ SP (0) and
P ⊆ rad(SP (0).
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(c) Suppose that P is a minimal prime ideal of A and that Q ⊆ A is a P -primary
ideal. We claim that Q = i−1

A,P (QAP ). Obviously, Q ⊆ i−1
A,P (QAP ). In order to

show the other inclusion let a ∈ i−1
A,P (QAP ). Then a/1 ∈ QAP and there is a

t ∈ A − P with ta ∈ Q. Since Q is primary with rad(Q) = P , we have that
tn /∈ Q for all n ∈ N. Thus a ∈ Q. This shows that Q = i−1

A,P (QAP ) and therefore
SP (0) = i−1

A,P (0) ⊆ i−1
A,P (QAP ) = Q. It remains to show that SP (0) is P -primary.

Since AP is a Noetherian local ring with exactly one prime ideal PAP the zero ideal
of AP is PAP -primary. By the Lemma of Problem 2, SP (0) is P -primary.

(4) Let A be a Noetherian ring and I, J ⊆ A ideals with IAP ⊆ JAP for all
P ⊆ Ass(A/J). Show that I ⊆ J .

Proof. Suppose that Ass(A/J) = {P1, . . . , Pn} with P1, . . . , Pr the maximal el-
ements in Ass(A/J). Then S = A − ∪n

i=1Pi = A − ∪r
i=1Pi is a multiplicative

subset of A. The localization S−1A is a semilocal ring with r maximal ideals
P1S

−1A, . . . , PrS
−1A. Moreover, for all 1 ≤ i ≤ r:

(S−1A)PiS−1A
∼= APi

.

For all 1 ≤ i ≤ r:

((I + J)S−1A/JS−1A)PiS−1A
∼= (I + J)APi

/JAPi
= (0)

and by the local-global principle IS−1A ⊆ JS−1A. Since I is a finitely generated
ideal there is a t ∈ S so that tI ⊆ J or equivalently t(I + J)/J = 0 in A/J . But t
is a NZD in A/J and hence I = J .

(5) Let A be a Noetherian ring and a ∈ A a NZD of A. Show that Ass(A/(a)) =
Ass(A/(an)) for all n ∈ N.

Proof. Since a ∈ A is a NZD, the A-linear map:

ϕ : A/(an−1) −→ aA/(an)

defined by ϕ(x + (an−1)) = ax + (an) is an isomorphism of A-modules. From the
short exact sequence;

0 −→ A/(an−1)
ϕ−→ A/(an) −→ A/(a) −→ 0

we obtain that

Ass(A/(an)) ⊆ Ass(A/(an−1)) ∪Ass(A/(a)).

The proof is by induction on n. Since

Ass(A/(an)) ⊆ Ass(A/(an−1)) ∪Ass(A/(a))

and
Ass(A/(an−1)) = Ass(aA/(an)) ⊆ Ass(A/(an))

the induction hypothesis

Ass(A/(an−1)) = Ass(A/(a))
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yields that
Ass(A/(an)) = Ass(A/(a)).

(6) Let A be a ring so that for every maximal ideal m ⊆ A the localization Am is
Noetherian. Suppose that for every element a ∈ A− (0) there are at most finitely
many maximal ideals m ⊆ A so that a ∈ m. Show that A is a Noetherian ring. Is
the converse true?

Proof. Let I ⊆ A be a nonzero ideal. Since every a ∈ I − (0) is contained in
at most finitely many maximal ideals, the ideal I is contained in at most finitely
many maximal ideals. Suppose that I 6= A and let m1, . . . ,ms be the maximal
ideals containing I. Since Ami

is Noetherian for all 1 ≤ i ≤ s there are elements
a1, . . . , an ∈ I so that

IAmi
= (a1/1, . . . , an/1)Ami

for all 1 ≤ i ≤ s.

Let J = (a1, . . . , an) be the ideal of A which is generated by the a′is. Obviously,
J ⊆ I. Let m1, . . . ,ms,ms+1, . . . ,mt be the maximal ideals containing J . If s = t
then I = J since Im = Jm for all maximal ideals m ⊆ A. Suppose that s < t.
Then for all s + 1 ≤ i ≤ t we have I 6⊆ mi. For all s + 1 ≤ i ≤ t take an element
bi ∈ I −mi. We claim that

I = (a1, . . . , an, bs+1, . . . , bt).

Let K = (a1, . . . , an, bs+1, . . . , bt) and let m ⊆ A be a maximal ideal of A. If
m 6= mi for all 1 ≤ i ≤ t then Im = Km = Am, since J ⊆ K. If m = mi for some
s+1 ≤ i ≤ t then Im = Am = Km since bi /∈ m = mi. If m = mi for some 1 ≤ i ≤ s,
then Im = Jm = Km since J ⊆ K ⊆ I. Thus for all maximal ideals m ⊆ A we have
that Im = Km. By the local-global principle I = K.

The converse is false. Let A = K[x, y] where K is an infinite field. Then
x ∈ (x, y + a) for all a ∈ K.

(7) Let K be a field and T = K[{xi|i ∈ N}] the polynomial ring in infinitely many
(countably) many variables over K. Let {ni} be a strictly increasing sequence of
positive integers which satisfies the condition: 0 < ni−ni−1 < ni+1−ni for all i ∈ N.
Consider the prime ideals Pi = (xj |ni ≤ j < ni+1) in T and set S = T − ∪i∈NPi

and A = S−1T . Show
(a) The maximal ideals of A are exactly the ideals S−1Pi for all i ∈ N.
(b) The ring AS−1Pi

is Noetherian of dimension ni+1 − ni.
(c) A is a Noetherian ring of infinite dimension.

(This example is due to M. Nagata.)

Proof. (a) Let iT,S : T −→ A be the canonical map into the localization and m ⊆ A

be a maximal ideal of A. The preimage i−1
T,S(m) = P is a prime ideal of T with

P ∩ S = ∅. This implies that
P ⊆ ∪i∈NPi.

Note that for every nonzero element f ∈ T there is an integer t ∈ N so that
f ∈ K[x1, . . . , xt]. If f ∈ P is a nonzero element with f ∈ K[x1, . . . , xt], then there
is a maximal j so that nj ≤ t. We claim that for this integer j:

(∗) P ⊆ ∪j
i=1Pi.
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Proof of (*). Suppose that there is an element g ∈ P −∪j
i=1Pi. Since P ⊆ ∪i∈NPi,

there is an ` > j so that g ∈ P`. Then we can write

g =
∑

aαmα

where aα ∈ K − (0) and mα monomials with the following property:
(i) For all α there is an i with n` ≤ i < n`+1 so that xi divides mα.
(ii) For all 1 ≤ k ≤ j there is an mα(k) such that xi does not divide mα(k) for

all nk ≤ i < nk+1.
If f =

∑
bβnβ with bβ ∈ K − (0) and nβ monomials, consider the sum:

f + g =
∑

bβnβ +
∑

aαmα.

Since f ∈ K[x1, . . . , xt] with t < n` the monomials nβ and mα do not cancel each
other. Furthermore nβ /∈ Pr for all r > j and g /∈ Pi for i ≤ j and f + g /∈ Pi for
all i ∈ N, a contradiction. This proves the claim.

(*) implies that P ⊆ Pi for some i ∈ N and hence m = PA ⊆ PiA. Since m is
maximal m = PiA (and P = Pi).
(b)

AS−1Pi
∼= TPi

= K(xj |j ∈ N with j < ni or j ≥ ni+1)[xni
, . . . , xni+1−1]P̃i

where P̃i is the prime ideal generated by xni
, . . . , xni+1−1. This shows that AS−1Pi

is a Noetherian ring of dimension ni+1 − ni.
(c) Let d ∈ A − (0) be a nonunit of A. Then d = f/g where f, g ∈ T and g ∈ S.
Since f is contained in only finitely many Pi the element d is contained in only
finitely many maximal ideals of A. By Problem (6) the ring A is Noetherian. Since
dim(AS−1Pi

) = ni+1 − ni and ni+1 − ni → ∞ if i → ∞, the dimension of A is
infinite.

(8) Let K be an algebraically closed field and Y ⊆ An
K an irreducible algebraic

variety of dimension r. Let H be a hypersurface of An
K with Y 6⊆ H. Show that

every irreducible component of Y ∩H has dimension ≤ r − 1.

Proof. We know that Y = Z(P ) where P ⊆ K[x1, . . . , xn] is a prime ideal. Since
H is a hypersurface, H = Z(f) for some f ∈ K[x1, . . . , xn] and Y 6⊆ H implies that
f /∈ P . Then

Y ∩H = Z(P ) ∩ Z(f) = Z(P + (f)).

If P + (f) = k[x1, . . . , xn], then Y ∩H = ∅ and dim(Y ∩H) ≤ r − 1. If P + (f) 6=
K[x1, . . . , xn] then f is a nonzero nonunit in the domain A(Y ) = k[x1, . . . , xn]/P .
Thus

dim(K[x1, . . . , xn]/(P + (f))) < dim(k[x1, . . . , xn]/P ) = dim(A(Y )).

In particular, dim(A(Y ∩H)) = dim(K[x1, . . . , xn]/(rad(P + (f))) ≤ r − 1.

(9) Show:
(a) A Noetherian topological space is quasi-compact, that is, every open cover

has a finite subcover.
(b) Any subset of a Noetherian topological space is Noetherian.
(c) A Hausdorff Noetherian space is a finite set with the discrete topology.
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Proof. (a) Let X be a Noetherian topological space and X = ∪i∈IUi an open cover
of X. Construct an ascending chain of open subsets as follows: If i1 ∈ I with
Ui1 6= X then there is an i2 ∈ I so that Ui2 6⊆ Ui1 . Then Ui1 ( Ui1 ∪ Ui2 . Suppose
i1, . . . , im have been chosen so that for all 1 < k ≤ m

Ui1 ∪ . . . ∪ Uik−1 ( Ui1 ∪ . . . Uik
.

If X = Ui1 ∪ . . . Uim
we are done. Otherwise there is an im+1 ∈ I so that Uim+1 6⊆

Ui1 ∪ . . . Uim
, etc. Since every ascending chain of open sets in X is stationary, this

process stops after finitely many steps with X = Ui1 ∪ . . . Ui`
.

(b) Let X be a Noetherian topological space and Y ⊆ X a nonempty subset.
Suppose that for all i ∈ N there are given open subsets Ũi ⊆ Y of Y so that

Ũ1 ⊆ Ũ2 ⊆ . . . ⊆ Ũn ⊆ . . .

is an increasing chain of open subsets of Y . Then there are open subsets Ui ⊆ X
of X so that Ũi = Ui ∩ Y . Set Vn = U1 ∪U2 ∪ . . .∪Un and note that Vn ∩ Y = Ũn.

V1 ⊆ V2 ⊆ . . . ⊆ Vn ⊆ . . .

is an ascending chain of open subsets of X. Since X is Noetherian there is an n ∈ N
so that Vn = Vn+k for all k ∈ N. This implies that Ũn = Vn∩Y = Vn+k∩Y = Ũn+k

for all k ∈ N and Y is Noetherian.
(c) Since X is Noetherian, X = X1 ∪ . . .∪Xn where Xi are the irreducible compo-
nents of X. If X is a Noetherian Hausdorff space so is every Xi and we may assume
that X is irreducible. We claim that X = {P} is a one point space. Suppose that
P,Q ∈ X with P 6= Q. Then there are open subsets U, V ⊆ X with P ∈ U , Q ∈ V
and U ∩V = ∅. But then X = (X−U)∪(X−V ) with X−U 6= X and X−V 6= X,
contradicting that X is irreducible.


