Homework 2: Sample solutions.

(1) Consider the polynomial ring A = K|[x,y, z] over a field K and the prime ideals
P, = (z,y) and P, = (2, 2) of A. Find two distinct shortest primary decompositions
of I = P1P2.

Proof.

I = (2% 2y, 22,y2)
= (z,y) N (z,2) N (2*,y, 2)
= (z,y) N (z,2) N (z,y,2)°

(2) Let A be a Noetherian ring, P C A a prime ideal, and iy p : A — Ap the
canonical map into the localization. Define P(") = i;}P(P"A p) and show:

(a) P™ is a P-primary ideal.
(b) P™ is the P-primary component of P".
(¢c) P™ = P™if and only if P" is a primary ideal.

Proof.

Lemma. Let ¢ : A — B be a homomorphism of rings and let Q' C B be a
P'-primary ideal. Then Q = ¢~ 1(Q’) is a P = o~ Y(P')-primary ideal of A.

Proof of Lemma. Let a,b € A with ab € @ and a ¢ Q. Then p(a)p(b) € Q' and
e(a) ¢ Q'. Since @’ is primary there is an m € N so that ¢(b)"™ € Q. Thus b™ € Q
and @ is a primary ideal. Since rad(Q) = P it follows that @ is P-primary.

(a) Since PAp is the maximal ideal of Ap the ideal P"Ap is PAp-primary. The
lemma shows that P(") = i;‘}P(P"A p) is P-primary.

(b) Let P* = Q1 N...NQ, be a shortest primary decomposition of P" with Q; a
P;-primary ideal. Since rad(P™) = P = Py N...N P, the prime ideal P = P is
minimal in Ass(A4/P™). By Theorem (2.40) Q; = iZ}P(P"Ap) = pm,

(c) follows from (a) and (b).

(3) Let A be a Noetherian ring and P C A a prime ideal. Let Sp(0) denote the
kernel of the canonical map i4 p : A — Ap. Show:

(a) Sp(0) € P

(b) rad(Sp(0)) = P if and only if P is a minimal prime of A.

(c) If P is a minimal ideal of A then Sp(0) is the smallest P-primary ideal.

Proof. (a) Let @ € A with i4 p(a) = a/1 = 0. Then there is a t € A — P with
ta = 0. Since t ¢ P we have that a € P.
(b) =: Suppose that rad(Sp(0)) = P and let x € PAp. Then x = p/s for some
p € P and s ¢ P. By assumption p” € Sp(0) for some n € N and therefore ™ =
p"/s™ = 0. This shows that PAp C rad(Ap). Since rad(Ap) is the intersection of
all minimal prime ideals of Ap, it follows that PAp = nil(Ap) and that PAp is
the only prime ideal of Ap. Thus P is a minimal prime ideal of A.

< If P is a minimal prime ideal of A then nil(Ap) = PAp. Thus for all
p € P there is an n € N with (p/1)" = 0. This implies that p” € Sp(0) and
P Crad(Sp(0).
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(c) Suppose that P is a minimal prime ideal of A and that @ C A is a P-primary
ideal. We claim that Q = i;‘}P(QAp). Obviously, Q C iZ}P(QAp). In order to
show the other inclusion let a € i;‘}P(QAp). Then a/1 € QAp and there is a
t € A— P with ta € Q. Since @ is primary with rad(Q) = P, we have that
t" ¢ @ for all n € N. Thus a € Q. This shows that @ = Z'Z}P(QAP) and therefore
Sp(0) =i,'5(0) Ci,'s(QAp) = Q. It remains to show that Sp(0) is P-primary.
Since Ap is'a Noetherian local ring with exactly one prime ideal PAp the zero ideal
of Ap is PAp-primary. By the Lemma of Problem 2, Sp(0) is P-primary.

(4) Let A be a Noetherian ring and I,J C A ideals with TAp C JAp for all
P C Ass(A/J). Show that I C J.

Proof. Suppose that Ass(A/J) = {Py,...,P,} with Py,..., P, the maximal el-
ements in Ass(A/J). Then S = A - U, P, = A — U]_, P, is a multiplicative
subset of A. The localization S™1A is a semilocal ring with r maximal ideals
PS7'A,... P.S71'A. Moreover, for all 1 <i < r:
(S7'A)p g 14 = Ap,.
Foralll <z<r:
((T+7)S™ A/ IS A) pss 4 = (T + J)Ap, [T Ap, = (0)

and by the local-global principle IS~*A C JS~!A. Since I is a finitely generated
ideal there is a t € S so that tI C J or equivalently ¢(I + J)/J =0in A/J. But ¢
is a NZD in A/J and hence I = J.

(5) Let A be a Noetherian ring and a € A a NZD of A. Show that Ass(A/(a)) =
Ass(A/(a™)) for all n € N.

Proof. Since a € A is a NZD, the A-linear map:
prAf(@" ") — ad/(a")

defined by ¢(z + (a"~ 1)) = ax + (a™) is an isomorphism of A-modules. From the
short exact sequence;

0— A/(a" ") % AJ(a™) — AJ(a) — 0
we obtain that
Ass(A/(a")) C Ass(A/(a"71)) U Ass(4/(a)).
The proof is by induction on n. Since
Ass(A/(a")) C Ass(A/(a"71)) U Ass(A/(a))

and

Ass(A/(a™ 1)) = Ass(aA/(a™)) C Ass(A/(a"))
the induction hypothesis

Ass(A/(a"™1)) = Ass(A/(a))



yields that
Ass(A/(a™)) = Ass(A/(a)).

(6) Let A be a ring so that for every maximal ideal m C A the localization Ay, is
Noetherian. Suppose that for every element a € A — (0) there are at most finitely
many maximal ideals m C A so that a € m. Show that A is a Noetherian ring. Is
the converse true?

Proof. Let I C A be a nonzero ideal. Since every a € I — (0) is contained in
at most finitely many maximal ideals, the ideal I is contained in at most finitely
many maximal ideals. Suppose that I # A and let mq,..., ms; be the maximal
ideals containing /. Since Ay, is Noetherian for all 1 < i < s there are elements
ai,...,a, € I so that

IAw, = (a1/1,...,a,/1)Ay, forall 1<i<s.

Let J = (ai,...,ay) be the ideal of A which is generated by the a;s. Obviously,
JCI. Let my,...,mg, mgyq,...,m; be the maximal ideals containing J. If s =¢
then I = J since I, = J, for all maximal ideals m C A. Suppose that s < t.
Then for all s+ 1 <4 <t we have I  m;. For all s+ 1 < i <t take an element
b; € I —m;. We claim that

I:(al,...,an,bs+1,...,bt).

Let K = (a1,...,an,bs41,...,b¢) and let m C A be a maximal ideal of A. If
m#m,; for all 1 < ¢ <t then I, = Ky, = A, since J C K. If m = m; for some
s+1<i<tthen Iy, = Ap = Ky since b; ¢ m =m,;. If m =m,; for some 1 <7 <'s,
then I, = Jn = Ky, since J C K C I. Thus for all maximal ideals m C A we have
that I, = K. By the local-global principle I = K.

The converse is false. Let A = K[z,y| where K is an infinite field. Then
z € (x,y+a)foralackK.

(7) Let K be a field and T = K[{xz;|i € N}] the polynomial ring in infinitely many
(countably) many variables over K. Let {n;} be a strictly increasing sequence of
positive integers which satisfies the condition: 0 < n;—n;_1 < n;41—n; forall¢ € N.
Consider the prime ideals P; = (z;|n; < j < nit1) in T and set S = T — UjenP;
and A = S~IT. Show

(a) The maximal ideals of A are exactly the ideals S™!P; for all i € N.

(b) The ring Ag-1p, is Noetherian of dimension n;;1 — n;.

(c) A is a Noetherian ring of infinite dimension.

(This example is due to M. Nagata.)

Proof. (a) Let i s : T'— A be the canonical map into the localization and m C A
be a maximal ideal of A. The preimage zils(m) = P is a prime ideal of T" with
PN S =(. This implies that

P C UienF;.

Note that for every nonzero element f € T there is an integer t € N so that
f € Klxy,...,x]. If f € P is a nonzero element with f € K|x1,...,x¢], then there
is a maximal j so that n; <¢. We claim that for this integer j:
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Proof of (*). Suppose that there is an element g € P — nglPi. Since P C UjenP;,
there is an £ > j so that g € P,. Then we can write

9= Gama

where a, € K — (0) and m, monomials with the following property:

(i) For all «v there is an ¢ with ny < i < ngyq so that z; divides my,.
(ii) For all 1 <k < j there is an mq ) such that z; does not divide mq gy for
all n, <i < Nk41-

If f=> bgnsg with bg € K — (0) and ng monomials, consider the sum:

f+g:Zbgn5+Zaama.

Since f € Klx1,...,x¢] with ¢t < ny the monomials ng and m, do not cancel each
other. Furthermore ng ¢ P, for all r > j and g ¢ P, for i < j and f+ g ¢ P, for
all ¢ € N, a contradiction. This proves the claim.

(*) implies that P C P; for some i € N and hence m = PA C P;A. Since m is
maximal m = P,A (and P = P)).
(b)

As—lpl, = Tpi = K(H?]‘] € N with j <n; or j > ni+1)[mni,.. . ,mni+1_1]15i

where P; is the prime ideal generated by Tpyse vy Ty —1. Lhis shows that Ag-1p,
is a Noetherian ring of dimension n;11 — n;.

(c) Let d € A — (0) be a nonunit of A. Then d = f/g where f,g € T and g € S.
Since f is contained in only finitely many P; the element d is contained in only
finitely many maximal ideals of A. By Problem (6) the ring A is Noetherian. Since
dim(Ag-1p,) = ni41 —n; and ni41 —n; — oo if i@ — oo, the dimension of A is
infinite.

(8) Let K be an algebraically closed field and Y C A} an irreducible algebraic
variety of dimension r. Let H be a hypersurface of A% with Y ¢ H. Show that
every irreducible component of Y N H has dimension < r — 1.

Proof. We know that Y = Z(P) where P C K|x1,...,%,] is a prime ideal. Since
H is a hypersurface, H = Z(f) for some f € K[z1,...,2,] and Y € H implies that
f ¢ P. Then

YNH=ZP)NZ(f)=Z(P+ (f)).

IfP+(f)=FkKz,...,¢xp), then YNH =0 and dim(Y N H) <r—1. If P+ (f) #
K[x1,...,z,) then f is a nonzero nonunit in the domain A(Y') = k[x1,...,z,]/P.
Thus

dim(Klz1,...,2,]/(P+ (f))) < dim(k[z1,...,z,]/P) = dim(A(Y)).
In particular, dim(A(Y N H)) = dim(K[z1,...,z,]/(rad(P + (f))) <r — 1.

(9) Show:
(a) A Noetherian topological space is quasi-compact, that is, every open cover
has a finite subcover.
(b) Any subset of a Noetherian topological space is Noetherian.
(¢) A Hausdorff Noetherian space is a finite set with the discrete topology.
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Proof. (a) Let X be a Noetherian topological space and X = U;c;U; an open cover
of X. Construct an ascending chain of open subsets as follows: If i; € I with
Ul1 7é X then there is an i9 € I so that U;,  U;,. Then U;, € U;, UU,,. Suppose
i1,...,%mn have been chosen so that for all 1 <k < m

Ul-lU UUzklgUilu-“Uik-
If X =U; U...U;, we are done. Otherwise there is an 4,11 € I so that U; ,, &
U;, U...U;, , etc. Since every ascending chain of open sets in X is stationary, this
process stops after finitely many steps with X =U;, U...U;,.
(b) Let X be a Noetherian topological space and ¥ C X a nonempty subset.
Suppose that for all i € N there are given open subsets U; C Y of Y so that

U, CU,C...CU, C

is an increasing chain of open subsets of Y. Then there are open subsets U; C X
oszothatU UnNY.SetV, =U;0UU0;U...UU, and note that V,, NY = U

ViCVoeC...CV,C...

is an ascending chain of open subsets of X. Since X is Noetherian there is ann € N
so that V,, = V,, 1 for all £ € N. This implies that U, =V,NY = Vo NY = Un+k
for all kK € N and Y is Noetherian.

(c) Since X is Noetherian, X = X; U...UX,, where X; are the irreducible compo-
nents of X. If X is a Noetherian Hausdorff space so is every X; and we may assume
that X is irreducible. We claim that X = {P} is a one point space. Suppose that
P, Q € X with P # Q. Then there are open subsets U,V C X with Pc U, Q €V
and UNV = (. But then X = (X —U)U(X —V) with X —U # X and X -V # X,
contradicting that X is irreducible.



