Homework 1: Sample solutions.

(1) Let \mathfrak{m} denote the maximal ideal of A. Then:

$$e^2 = e \Rightarrow e(e-1) = 0$$

 $\Rightarrow e \in \mathfrak{m} \text{ or } 1 - e \in \mathfrak{m}$
 $\Rightarrow 1 - e \in A^* \text{ or } e \in A^*$
 $\Rightarrow e = 0 \text{ or } 1 - e = 0$

(2) (b) \Rightarrow (a) trivial

(a) \Rightarrow (b) Let $\mathfrak{m} \subseteq A$ be a maximal ideal with $I \subseteq A$. Then $IA_{\mathfrak{m}} = I^2A_{\mathfrak{m}}$. Since I is finitely generated by Nakayama $IA_{\mathfrak{m}} = 0$. Again, since I is finitely generated there is an element $t \in A - \mathfrak{m}$ so that tI = 0. This shows that the annihilator of I, $J = \operatorname{ann}(I)$ is not the zero ideal.

Claim: I + J = A

Proof of Claim. Suppose not. Then there is a maximal ideal $\mathfrak{n} \subseteq A$ with $I + J \subseteq \mathfrak{n}$. As before we see that $IA_{\mathfrak{n}} = 0$ and there is an element $s \in A - \mathfrak{n}$ with sI = 0. Thus $s \in J$, a contradiction.

Take elements $e \in I$ and $t \in J$ so that e + t = 1. Then

$$I = Ie + It = Ie$$

and

$$Ae \subseteq I \subseteq Ae$$
.

Thus I = Ae and $e = e^2 + et = e^2$.

(3) (a) Let $a \in \operatorname{Jrad}(A)$. Then for all $b \in A$ the element 1 - ab is a unit in A. Thus $\varphi(1 - ab) = 1 - \varphi(a)\varphi(b)$ is a unit in B for all $b \in A$. Since φ is surjective $\varphi(a)$ is in the Jacobson radical of B.

In general, we do not have that $\varphi(\operatorname{Jrad}(A)) = \operatorname{Jrad}(B)$. For example, the canonical map $\varphi : \mathbb{Z} \longrightarrow \mathbb{Z}/(4)$ is a surjective homomorphism. Then $\operatorname{Jrad}(\mathbb{Z}) = (0)$ but $\operatorname{Jrad}(\mathbb{Z}/(4)) = (2)/(4) \neq (0)$.

(b) We may assume that B = A/I for some ideal $I \subseteq A$ and that $\varphi : A \longrightarrow A/I$ is the canonical map. Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ be the maximal ideals of A and suppose that:

$$I \subseteq \mathfrak{m}_i$$
 for $1 \leq i \leq r$ and $I \not\subseteq \mathfrak{m}_i$ for $r+1 \leq i \leq n$.

Then

$$\operatorname{Jrad}(A/I) = \bigcap_{i=1}^{r} (\mathfrak{m}_i/I) = (\cap_{i=1}^{r} \mathfrak{m}_i)/I.$$

Since $I + (\mathfrak{m}_{r+1} \cap \ldots \cap \mathfrak{m}_n) = A$ there are elements $a \in I$ and $b \in \mathfrak{m}_{r+1} \cap \ldots \cap \mathfrak{m}_n$ so that 1 = a + b. Let $t \in \mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_r$. Then t = at + bt and $\varphi(t) = \varphi(bt)$ with $bt \in \operatorname{Jrad}(A)$. This shows $\varphi(\operatorname{Jrad}(A)) = \operatorname{Jrad}(B)$.

(4) (a) \Rightarrow (b): Suppose that

$$A - S = \bigcup_{P \text{ prime and } P \cap S = \emptyset} P.$$

Assume that $ab \in S$ and $a \notin S$. Then there is a prime ideal P with $P \cap S = \emptyset$ and $a \in P$. But then $ab \in P$, a contradiction.

(b) \Rightarrow (a): Obviously,

$$\bigcup_{P \text{ prime and } P \cap S = \emptyset} P \subseteq A - S.$$

Suppose there is an element

$$a \in (A - S) - (\bigcup_{P \text{ prime and } P \cap S = \emptyset} P).$$

By assumption (b) $ad \notin S$ for all $d \in A$. This shows that $S \cap (a) = \emptyset$. By Theorem (1.10) there is a prime ideal $Q \subseteq A$ with $a \in Q$ and $S \cap Q = \emptyset$, a contradiction. (Note that the conditions of (b) imply that S is a multiplicative subset of A.)

- (5) Consider the A-module $\bar{M}=M/IM$ and let $\mathfrak{m}\subseteq A$ be a maximal ideal of A. If $I\nsubseteq\mathfrak{m}$ then $I_{\mathfrak{m}}=A_{\mathfrak{m}}$ and $\bar{M}_{\mathfrak{m}}=0$. If $I\subseteq\mathfrak{m}$ then by assumption $M_{\mathfrak{m}}=0$ and $\bar{M}_{\mathfrak{m}}=0$. By the local-global principle $\bar{M}=0$.
- (6) Suppose that $M_{\mathfrak{m}}$ is torsion free for all maximal ideals $\mathfrak{m} \subseteq A$. Let $n \in M$ and $a \in A (0)$ with an = 0. If $n \neq 0$ the annihilator $\mathrm{ann}(n)$ is a proper ideal of A and there is a maximal ideal \mathfrak{m} of A with $\mathrm{ann}(n) \subseteq \mathfrak{m}$. This implies that $n/1 \neq 0$ in $M_{\mathfrak{m}}$. Since A is an integral domain the canonical map $A \longrightarrow A_{\mathfrak{m}}$ is injective. Let $t \in \mathrm{ann}(n) (0)$, then $t/1 \neq 0$ in $A_{\mathfrak{m}}$ and (t/1)(n/1) = 0 in $M_{\mathfrak{m}}$, a contradiction.

The converse also holds true: Suppose that M is torsion free. Let $\mathfrak{m} \subseteq A$ be a maximal ideal of A. Suppose that $r,t\in A-\mathfrak{m},\ r\in A$ and $n\in M$ with (s/t)(n/r)=0 in $M_{\mathfrak{m}}$. Then there is an element $u\in A-\mathfrak{m}$ so that (us)n=0 in M. Since M is torsion free either n=0 or us=0. Thus n/r=0 or s/t=0.

(7) (a) \Leftarrow : Let $f = \sum_{i=0}^{n} a_i x^i \in A[x]$ with $a_0 \in A^*$ and a_i nilpotent for all $1 \le i \le n$. Then there is an $N \in \mathbb{N}$ so that

$$(\sum_{i=1}^{n} a_i x^i)^N = 0.$$

With $g = (1/a_0) \sum_{i=1}^{n} a_i x^i$ we have that

$$(1+g)(1-g+g^2-\ldots\pm g^{N-1})=0$$

and f is invertible.

 \Rightarrow Let $g = \sum_{i=0}^{m} b_i x^i \in A[x]$ with fg = 1. Then $a_0 b_0 = 1$ and $a_0 \in A^*$. The case where n = 0 or m = 0 is trivial. Assume $n, m \ge 1$.

Claim: For all $0 \le r \le m$ it holds that $a_n^{r+1}b_{m-r} = 0$.

Proof. By induction on r. If r = 0 then $a_n b_m = 0$. Suppose that $a_n^{k+1} b_{m-k} = 0$ for all $0 \le k < r \le m$. Then

$$a_n^r = a_n^r f g = \sum_{\ell=0}^{n+m} a_n^r (\sum_{i+j=\ell} a_i b_j) x^{\ell}.$$

Consider the coefficient of x^{n+m-r} :

$$a_n^r(a_nb_{m-r} + a_{n-1}b_{m-r+1} + \ldots + a_{n-r}b_m).$$

Since $a_n^r b_\ell = 0$ for all $\ell > m - r$ it follows that $a_n^{r+1} b_{m-r} = 0$.

Thus

$$a_n^{m+1}b_0 = 0.$$

Since b_0 is invertible we obtain that $a_n^{m+1}=0$. Since a_n is nilpotent the element a_nx^n is contained in every maximal ideal of A[x]. Thus $h=f-a_nx^n$ is invertible and we can apply the same argument in order to obtain that a_{n-1} is nilpotent, etc. (b) The backward direction is trivial. In order to prove the forward direction let $f=\sum_{i=0}^n a_ix^i, g=\sum_{i=0}^m b_ix^i\in A[x]$ with fg=0. We may assume that $f\neq 0$ and that g is a polynomial of minimal degree with fg=0. Since $a_nb_m=0$ the polynomial a_ng is either zero or has a smaller degree than g. Since $f(a_ng_m)=0$ it follows that $a_ng=0$.

Claim: $a_i g = 0$ for all $0 \le i \le n$.

Proof. We show by induction on r that $a_{n-r}g=0$ for all $0 \le r \le n$. We already know that $a_ng=0$. Suppose the statement is shown for all $0 \le k < r$. If $a_{n-r}g \ne 0$ then $\deg(g)=\deg(a_{n-r}g)$ since $f(a_{n-r}g)=0$ and g of minimal degree. This implies that $a_{n-r}b_m$, the leading coefficient of $a_{n-r}g$, is nonzero. The coefficient of x^{n+m-r} of fg(=0) is:

$$\sum_{i+j=m+n-r} a_i b_j = a_{n-r} b_m + \sum_{i+j=m+n-r; i > n-r} a_i b_j = 0.$$

By induction hypothesis the right hand sum is 0. Thus $a_{n-r}b_m = 0$.

The claim implies that $b_m f = 0$.

(8) Obviously, $\operatorname{nil}(A[x]) \subseteq \operatorname{Jrad}(A[x])$. Let $f = \sum_{i=0}^n a_i x^i \in \operatorname{Jrad}(A[x])$. Then for all $g \in A[x]$:

$$1 - fg \in A[x]^*.$$

Thus, for g = x the polynomial $1 - xf = 1 - \sum_{i=0}^{n} a_i x^{i+1} \in A[x]^*$. By Problem 7: $a_i \in \text{nil}(A)$ for all $0 \le i \le n$ and $f \in \text{nil}(A[x])$.

(9) We consider M as an (A/ann)(M)-module and assume that ann(M) = (0). Claim (a): A is a semilocal ring.

Proof (a). Consider the following subset of Λ :

$$\Gamma_1 = \{JM \mid J \text{ is a finite product of maximal ideals of } A\}.$$

By assumption Γ_1 has a minimal element JM where $J=\mathfrak{m}_1...\mathfrak{m}_n$. If $\mathfrak{w}\in \mathrm{m}\text{-}\mathrm{Spec}(A)$ is a maximal ideal different from the \mathfrak{m}_i then by the minimality of JM: $JM=\mathfrak{w}JM$. Then, since $JA_{\mathfrak{w}}=A_{\mathfrak{w}}$ we have that $M_{\mathfrak{w}}=\mathfrak{w}M_{\mathfrak{w}}$. By Nakayama's Lemma $M_{\mathfrak{w}}=0$. Using again that M is finitely generated we see that there is an element $t\in A-\mathfrak{w}$ with tM=0, a contradiction to $\mathrm{ann}(M)=0$.

Claim (b): For every ideal $I \subseteq A$ the A-module IM is finitely generated.

Proof (b). Let $I \subseteq A$ be an ideal. Consider the set

$$\Gamma_2 = \{JM \mid J \subseteq I \text{ and } JM \text{ is a finitely generated } A\text{-module}\}.$$

By assumption Γ_2 has a maximal element J_0M . If $x \in IM$ then there are finite many elements $a_1, \ldots, a_n \in I$ and $m_1, \ldots, m_n \in M$ with $x = \sum_{i=1}^n a_i m_i \in (J_0 + (a_1, \ldots, a_n))M$ and by the maximality of J_0M we have that $x \in J_0M$. Thus $J_0M = IM$ and IM is a finitely generated A-module.

- (c) Suppose that $\operatorname{m-Spec}(A) = \{\mathfrak{m}_1, \dots, \mathfrak{m}_n\}$. By the a.c.c. there is an integer $k \in \mathbb{N}$ so that $(\mathfrak{m}_1, \dots, \mathfrak{m}_n)^k M = (\mathfrak{m}_1, \dots, \mathfrak{m}_n)^{k+1} M$. By (b) the A-module $(\mathfrak{m}_1, \dots, \mathfrak{m}_n)^k M$ is finitely generated and thus by Nakayama $(\mathfrak{m}_1, \dots, \mathfrak{m}_n)^k M = 0$.
 - (d) Set $I_{(k_1,\ldots,k_n)} = \mathfrak{m}_1^{k_1}\mathfrak{m}_2^{k_2}\ldots\mathfrak{m}_n^{k_n}$ and consider the chain of submodules:

$$M \supseteq I_{(1,0,\ldots,0)}M \supseteq \ldots \supseteq I_{(k,0,\ldots,0)}M \supseteq I_{(k,0,\ldots,0)}M \supseteq \ldots \supseteq I_{(k,k,\ldots,k)}M.$$

Each factor module

$$N_{(k,\ldots,k,t,0,\ldots,0)}=\mathfrak{m}_1^k\ldots\mathfrak{m}_i^k\mathfrak{m}_{i+1}^tM/\mathfrak{m}_1^k\ldots\mathfrak{m}_i^k\mathfrak{m}_{i+1}^{t+1}M$$

is a finitely generated vector space over $K_{i+1} = A/\mathfrak{m}_{i+1}$ and every $N_{(k,\ldots,k,t,0,\ldots,0)}$ is an A-module of finite length. Thus M is an A-module of finite length.