
Homework 1: Sample solutions.

(1) Let m denote the maximal ideal of A. Then:

e2 = e ⇒ e(e− 1) = 0
⇒ e ∈ m or 1− e ∈ m

⇒ 1− e ∈ A∗ or e ∈ A∗

⇒ e = 0 or 1− e = 0

(2) (b) ⇒ (a) trivial
(a) ⇒ (b) Let m ⊆ A be a maximal ideal with I ⊆ A. Then IAm = I2Am. Since

I is finitely generated by Nakayama IAm = 0. Again, since I is finitely generated
there is an element t ∈ A−m so that tI = 0. This shows that the annihilator of I,
J = ann(I) is not the zero ideal.

Claim: I + J = A

Proof of Claim. Suppose not. Then there is a maximal ideal n ⊆ A with I +J ⊆ n.
As before we see that IAn = 0 and there is an element s ∈ A−n with sI = 0. Thus
s ∈ J , a contradiction.

Take elements e ∈ I and t ∈ J so that e + t = 1. Then

I = Ie + It = Ie

and
Ae ⊆ I ⊆ Ae.

Thus I = Ae and e = e2 + et = e2.

(3) (a) Let a ∈ Jrad(A). Then for all b ∈ A the element 1− ab is a unit in A. Thus
ϕ(1− ab) = 1− ϕ(a)ϕ(b) is a unit in B for all b ∈ A. Since ϕ is surjective ϕ(a) is
in the Jacobson radical of B.

In general, we do not have that ϕ(Jrad(A)) = Jrad(B). For example, the canon-
ical map ϕ : Z −→ Z/(4) is a surjective homomorphism. Then Jrad(Z) = (0) but
Jrad(Z/(4)) = (2)/(4) 6= (0).
(b) We may assume that B = A/I for some ideal I ⊆ A and that ϕ : A −→ A/I is
the canonical map. Let m1, . . . ,mn be the maximal ideals of A and suppose that:

I ⊆ mi for 1 ≤ i ≤ r and I 6⊆ mi for r + 1 ≤ i ≤ n.

Then

Jrad(A/I) =
r⋂

i=1

(mi/I) = (∩r
i=1mi)/I.

Since I + (mr+1 ∩ . . . ∩mn) = A there are elements a ∈ I and b ∈ mr+1 ∩ . . . ∩mn

so that 1 = a + b. Let t ∈ m1 ∩ . . . ∩ mr. Then t = at + bt and ϕ(t) = ϕ(bt) with
bt ∈ Jrad(A). This shows ϕ(Jrad(A)) = Jrad(B).
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(4) (a) ⇒ (b): Suppose that

A− S =
⋃

P prime and P∩S=∅

P.

Assume that ab ∈ S and a /∈ S. Then there is a prime ideal P with P ∩ S = ∅ and
a ∈ P . But then ab ∈ P , a contradiction.
(b) ⇒ (a): Obviously, ⋃

P prime and P∩S=∅

P ⊆ A− S.

Suppose there is an element

a ∈ (A− S)− (
⋃

P prime and P∩S=∅

P ).

By assumption (b) ad /∈ S for all d ∈ A. This shows that S ∩ (a) = ∅. By Theorem
(1.10) there is a prime ideal Q ⊆ A with a ∈ Q and S ∩ Q = ∅, a contradiction.
(Note that the conditions of (b) imply that S is a multiplicative subset of A.)

(5) Consider the A-module M̄ = M/IM and let m ⊆ A be a maximal ideal of A.
If I 6⊆ m then Im = Am and M̄m = 0. If I ⊆ m then by assumption Mm = 0 and
M̄m = 0. By the local-global principle M̄ = 0.

(6) Suppose that Mm is torsion free for all maximal ideals m ⊆ A. Let n ∈ M and
a ∈ A− (0) with an = 0. If n 6= 0 the annihilator ann(n) is a proper ideal of A and
there is a maximal ideal m of A with ann(n) ⊆ m. This implies that n/1 6= 0 in
Mm. Since A is an integral domain the canonical map A −→ Am is injective. Let
t ∈ ann(n)− (0), then t/1 6= 0 in Am and (t/1)(n/1) = 0 in Mm, a contradiction.

The converse also holds true: Suppose that M is torsion free. Let m ⊆ A
be a maximal ideal of A. Suppose that r, t ∈ A − m, r ∈ A and n ∈ M with
(s/t)(n/r) = 0 in Mm. Then there is an element u ∈ A − m so that (us)n = 0 in
M . Since M is torsion free either n = 0 or us = 0. Thus n/r = 0 or s/t = 0.

(7) (a)⇐: Let f =
∑n

i=0 aix
i ∈ A[x] with a0 ∈ A∗ and ai nilpotent for all 1 ≤ i ≤ n.

Then there is an N ∈ N so that

(
n∑

i=1

aix
i)N = 0.

With g = (1/a0)
∑n

i=1 aix
i we have that

(1 + g)(1− g + g2 − . . .± gN−1) = 0

and f is invertible.
⇒ Let g =

∑m
i=0 bix

i ∈ A[x] with fg = 1. Then a0b0 = 1 and a0 ∈ A∗. The case
where n = 0 or m = 0 is trivial. Assume n, m ≥ 1.
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Claim: For all 0 ≤ r ≤ m it holds that ar+1
n bm−r = 0.

Proof. By induction on r. If r = 0 then anbm = 0. Suppose that ak+1
n bm−k = 0 for

all 0 ≤ k < r ≤ m. Then

ar
n = ar

nfg =
n+m∑
`=0

ar
n(

∑
i+j=`

aibj)x`.

Consider the coefficient of xn+m−r:

ar
n(anbm−r + an−1bm−r+1 + . . . + an−rbm).

Since ar
nb` = 0 for all ` > m− r it follows that ar+1

n bm−r = 0.

Thus
am+1

n b0 = 0.

Since b0 is invertible we obtain that am+1
n = 0. Since an is nilpotent the element

anxn is contained in every maximal ideal of A[x]. Thus h = f − anxn is invertible
and we can apply the same argument in order to obtain that an−1 is nilpotent, etc.
(b) The backward direction is trivial. In order to prove the forward direction let
f =

∑n
i=0 aix

i, g =
∑m

i=0 bix
i ∈ A[x] with fg = 0. We may assume that f 6= 0

and that g is a polynomial of minimal degree with fg = 0. Since anbm = 0 the
polynomial ang is either zero or has a smaller degree than g. Since f(angm) = 0 it
follows that ang = 0.

Claim: aig = 0 for all 0 ≤ i ≤ n.

Proof. We show by induction on r that an−rg = 0 for all 0 ≤ r ≤ n. We already
know that ang = 0. Suppose the statement is shown for all 0 ≤ k < r. If an−rg 6= 0
then deg(g) = deg(an−rg) since f(an−rg) = 0 and g of minimal degree. This
implies that an−rbm, the leading coefficient of an−rg, is nonzero. The coefficient of
xn+m−r of fg(= 0) is:∑

i+j=m+n−r

aibj = an−rbm +
∑

i+j=m+n−r;i>n−r

aibj = 0.

By induction hypothesis the right hand sum is 0. Thus an−rbm = 0.

The claim implies that bmf = 0.

(8) Obviously, nil(A[x]) ⊆ Jrad(A[x]). Let f =
∑n

i=0 aix
i ∈ Jrad(A[x]). Then for

all g ∈ A[x]:
1− fg ∈ A[x]∗.

Thus, for g = x the polynomial 1− xf = 1−
∑n

i=0 aix
i+1 ∈ A[x]∗. By Problem 7:

ai ∈ nil(A) for all 0 ≤ i ≤ n and f ∈ nil(A[x]).

(9) We consider M as an (A/ann)(M)-module and assume that ann(M) = (0).
Claim (a) : A is a semilocal ring.
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Proof (a). Consider the following subset of Λ:

Γ1 = {JM | J is a finite product of maximal ideals of A}.

By assumption Γ1 has a minimal element JM where J = m1 . . .mn. If w ∈
m-Spec(A) is a maximal ideal different from the mi then by the minimality of JM :
JM = wJM . Then, since JAw = Aw we have that Mw = wMw. By Nakayama’s
Lemma Mw = 0. Using again that M is finitely generated we see that there is an
element t ∈ A−w with tM = 0, a contradiction to ann(M) = 0.

Claim (b) : For every ideal I ⊆ A the A-module IM is finitely generated.

Proof (b). Let I ⊆ A be an ideal. Consider the set

Γ2 = {JM | J ⊆ I and JM is a finitely generated A-module}.

By assumption Γ2 has a maximal element J0M . If x ∈ IM then there are finite
many elements a1, . . . , an ∈ I and m1, . . . ,mn ∈ M with x =

∑n
i=1 aimi ∈ (J0 +

(a1, . . . , an))M and by the maximality of J0M we have that x ∈ J0M . Thus
J0M = IM and IM is a finitely generated A-module.

(c) Suppose that m-Spec(A) = {m1, . . . ,mn}. By the a.c.c. there is an inte-
ger k ∈ N so that (m1, . . . ,mn)kM = (m1, . . . ,mn)k+1M . By (b) the A-module
(m1, . . . ,mn)kM is finitely generated and thus by Nakayama (m1, . . . ,mn)kM = 0.

(d) Set I(k1,...,kn) = mk1
1 mk2

2 . . .mkn
n and consider the chain of submodules:

M ⊇ I(1,0,...,0)M ⊇ . . . ⊇ I(k,0,...,0)M ⊇ I(k,0,...,0)M ⊇ . . . ⊇ I(k,k,...,k)M.

Each factor module

N(k,...,k,t,0,...,0) = mk
1 . . .mk

i mt
i+1M/mk

1 . . .mk
i mt+1

i+1M

is a finitely generated vector space over Ki+1 = A/mi+1 and every N(k,...,k,t,0,...,0)

is an A-module of finite length. Thus M is an A-module of finite length.


