Homework 7 (due: 3-26-08).

(1) Let A be a local Noetherian ring, $I\subseteq A$ an ideal, and M a finitely generated A/I-module. Show:

$$\operatorname{pd}_{(A/I)}(M) + \operatorname{pd}_{A}(A/I) = \operatorname{pd}_{A}(M)$$

provided that each of them is finite.

- (2) Let A be a regular local ring of dimension n, and $M \neq 0$ a finitely generated A-module. Show that the following are equivalent:
 - (a) M is free.
 - (b) M is a CM-module of dimension n.
- (3) Let A be a Noetherian domain of dimension 1, and let M be a nonzero finitely generated A-module of dimension 1. Show that M is a CM-module if and only if M is torsionfree.
- (4) Let (A, \mathfrak{m}, k) be a regular local ring of dimension n, and let $a, b \in \mathfrak{m} (0)$ be elements with a|b and $b \not |a$. Let S = A/(a) and T = A/(b). Show:
 - (a) S and T are CM-rings.
 - (b) S is a CM-module over T with $\dim(S) = \dim(T)$.
 - (c) S is not a free T-module.
- (5) Let A be a Noetherian ring, M a finitely generated A-module and $I \subseteq A$, and ideal of A. Show that $\operatorname{depth}_I(M) \geq 2$ if and only if the natural homomorphism $M \longrightarrow \operatorname{Hom}_A(I, M)$ is an isomorphism.
- (6) Let $\varphi:(A,\mathfrak{m})\longrightarrow (B,\mathfrak{n})$ be a local homomorphism of local Noetherian rings, and M an B-module which is finitely generated as an A-module.
 - (a) Suppose that $P \in \operatorname{Ass}_B(M)$ and let $x \in M$ with $\operatorname{ann}_B(x) = P$. Prove that φ induces an embedding $A/(P \cap A) \longrightarrow B/P \cong Bx$ which makes B/P into a finitely generated $A/(P \cap A)$ -module. Conclude that $P \cap A \neq \mathfrak{m}$ if $P \neq \mathfrak{n}$.
 - (b) Show that $\operatorname{depth}_A(M) = \operatorname{depth}_B(M)$.

- (7) Let A be a local Noetherian ring, M a finitely generated A-module and N an nth syzygy of M in a finite free resolution of M. Show that $\operatorname{depth}(N) \geq \min(n, \operatorname{depth}(A))$.
- (8) Let A be a local Noetherian ring, and

$$0 \to L_s \to L_{s-1} \to \ldots \to L_1 \to L_0 \to 0$$

a complex of finitely generated A-modules. Suppose that the following hold for i>0:

- (i) $depth(L_i) \geq i$
- (ii) depth $(H_i(L_{\bullet})) = 0$ or $H_i(L_{\bullet}) = 0$.

Show that L_{\bullet} is acyclic.

(This is Peskine and Szpiro's 'lemme d'acyclité'.)

Hint: Set $C_i = \operatorname{coker}(L_{i+1} \to L_i)$ and show by descending induction that $\operatorname{depth}(C_i) \geq i$ and $H_i(L_{\bullet}) = 0$ for i > 0.