COMMUTATIVE ALGEBRA HOMEWORK*6, DUE 2-27-08

- (1) Let k be a field, R = k[x, y, z] the polynomial ring in 3 variables over k. Show:
 - (a) x(x-1), xy-1, xz is a regular sequence in R.
 - (b) x(x-1), xz, xy-1 is not a regular sequence in R.
- (2) Let k be a field, $R = k[x,y]_{(x,y)}$ the localized polynomial ring, and $S = R[z]/(xz,yz,z^2)$, where z is a variable over R. Determine dim(S) and depth(S).
- (3) Let k be a field and x_1, x_2, x_3, x_4 variables over k. Show that the ring $A = (k[x_1, x_2, x_3, x_4]/(x_1x_3, x_1x_4, x_2x_3, x_2x_4))_{(x_1, x_2, x_3, x_4)}$ is not a CM-ring.

Definition. Let A be a ring and M an A-module. A sequence $a_{\bullet} = a_1, \ldots, a_n \in A$ is called weakly M-regular or a weak M-sequence, if for all $1 \leq i \leq n$ the element a_i is a nonzero divisor in $M/(a_1, \ldots, a_{i-1})M$.

(4) Let A be a ring, M an A-module, and a_{\bullet} a weakly M-regular sequence. Let

$$N_2 \longrightarrow N_1 \longrightarrow N_0 \longrightarrow M \longrightarrow 0$$

is an exact sequence of A-modules. Show that the induced sequence

$$N_2/(a_{\bullet})N_2 \longrightarrow N_1/(a_{\bullet})N_1 \longrightarrow N_0/(a_{\bullet})N_0 \longrightarrow M/(a_{\bullet})M \longrightarrow 0$$

is exact.

(5) Let A be a ring and

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

an exact sequence of A-modules. Suppose that the sequence a_{\bullet} is a weakly regular for M' and M''. Show that a_{\bullet} is weakly M-regular.

COMMUTATIVE ALGEBRA HOMEWORK*6, DUE 2-27-08

(6) Extend the result of problem (4) to show: Let A be a ring, and $a_{\bullet} = a_1, \ldots, a_n \in A$ a sequence of elements in A. If the complex

$$N_{\bullet}: \ldots \to N_m \xrightarrow{\varphi_m} N_{m-1} \to \ldots \to N_0 \to N_{-1} \to 0$$

is exact and a_{\bullet} is weakly N_i -regular for all i, then the complex $N_{\bullet} \otimes_A A/(a_{\bullet})$ is exact.

- (7) Let A be a ring, M an A-module.
 - (a) Prove that if a_{\bullet} is weakly M-regular then $\operatorname{Tor}_{1}^{A}(M,A/(a_{\bullet}))=0$.
 - (b) If, in addition, a_{\bullet} is a weak A-sequence, prove that $\operatorname{Tor}_{i}^{A}(M, A/(a_{\bullet})) = 0$ for all $i \geq 1$.
- (8) Let A be a ring, M an A-module, $a_1, a_2, \ldots, a_n \in A$. Set $I = (a_1, \ldots, a_n) \subseteq A$ and assume that $IM \neq M$. Prove that the sequence a_1, \ldots, a_n is M-quasi regular if and only if $a_1 + I^2, \ldots, a_n + I^2 \in I/I^2$ is $\operatorname{gr}_I(M)$ -regular.