Homework 4 (due: 12-10-07).

(1) Prove the Five Lemma:

Consider a commutative diagram with exact rows:

and prove:

- (a) If t_2 and t_4 are surjective and t_5 is injective, then t_3 is surjective.
- (b) If t_2 and t_4 are injective and t_1 is surjective, then t_3 is injective.
- (c) If t_1, t_2, t_4 and t_5 are isomorphisms, then t_3 is an isomorphism.
- (2) Let A be a commutative ring with $1 \neq 0$ and let P and Q be projective A-modules. Show that $Q \otimes_A P$ is a projective A-module.
- (3) Let A be a commutative local ring, and

$$0 \longrightarrow F_n \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_0 \longrightarrow 0$$

an exact sequence of finitely generated free A-modules. Prove that

$$\sum_{i=0}^{n} (-1)^i \operatorname{rk}(F_i) = 0$$

where for a finitely generated free A-module F rk(F) denotes the number of elements in a basis of F.

(4) Let A be a ring, $S = A[x_1, \dots, x_n]$ the polynomial ring over A in n variables, and let

$$f = \sum_{(i) \in \mathbf{N}^n} a_{(i)} x_1^{i_1} \dots x_n^{i_n}$$

be a polynomial in S. Put T = S/(f). Show:

- (a) If $(a_{(i)})_{(i)\in\mathbf{N}^n}=A$ then T is flat over A.
- (b) If $(a_{(i)})_{(i)\in \mathbb{N}^n-(0)}=A$ then T is faithfully flat over A.