Homework 3 (due: 11-14-07).

- (1) For a polynomial $P(t) \in \mathbb{Q}$ show that the following conditions are equivalent:
 - (a) $P(n) \in \mathbb{Z}$ for all integers $n \in \mathbb{Z}$.
 - (b) $P(n) \in \mathbb{Z}$ for all but finitely many integers $n \in \mathbb{Z}$.
 - (c) $P(t) = \sum_{i=0}^{n} a_i \binom{t}{i}$ with $a_i \in \mathbb{Z}$ and $n \in \mathbb{N}$ suitable.
- (2) Show that $S = \{P(t) \in \mathbb{Q}[t] \mid P(n) \in \mathbb{Z} \text{ for all } n \in \mathbb{Z}\}$ is a non-Noetherian subring of $\mathbb{Q}[t]$.
- (3) Let A be a ring and $n \in \mathbb{N}$ an integer. Suppose that every ideal of A is generated by st most n elements. Show that $\dim(A) \leq 1$.
- (4) Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be an irreducible polynomial and let Y = Z(f) be the algebraic variety defined by f. Y is called *non-singular* or *smooth* at a point $P \in Y$ if not all of the partial derivatives $\partial f/\partial x_i$ vanish at P. Let A(Y) be the coordinate ring of Y and let $\mathfrak{m}_P \subseteq A(Y)$ be the maximal ideal of A(Y) corresponding to P (that is, if $P = (a_1, \ldots, a_n)$, then $\mathfrak{m}_P = (x_1 a_1, \ldots, x_n a_n)/(f)$). Show that Y is smooth at P if and only if the ring $A(Y)_{\mathfrak{m}_P}$ is regular.
- (5) Let K be a field, $R = K[x_1, \ldots, x_n]$ the polynomial ring over K, and $I \subseteq R$ an ideal. Show that;

$$\operatorname{ht} I + \dim(R/I) = \dim(R).$$

- (6) Let $A \subseteq B$ be an extension of rings such that the set B-A is closed under multiplication. Show that A is integrally closed in B.
- (7) Let A be a normal domain, K = Q(A) its field of quotients, and $f(x) \in A[x]$ a monic polynomial. Show that f(x) is irreducible in K[x] if and only if f(x) is irreducible in A[x].
- (8) Let $K \subseteq L$ be an extension of fields, $Q \subseteq l[x_1, \ldots, x_n]$ a prime ideal in the polynomial ring in n variables over L, and $P = Q \cup K[x_1, \ldots, x_n]$ its contraction to the polynomial ring over K. Show that $\operatorname{ht} Q \ge \operatorname{ht} P$ and that equality holds if L is algebraic over K, Use this to show that if two polynomials $f, g \in K[x_1, \ldots, x_n]$ have no common divisor in $K[x_1, \ldots, x_n]$, then f and g have no common divisor in $L[x_1, \ldots, x_n]$.

(9) Let $A \subseteq B$ be an integral extension of domains with A a normal domain, and K = Q(A) the field of quotients of A. Let $I \subseteq A$ be an ideal, $b \in B$ an element, and $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$ the minimal polynomial of b over K. Show that $b \in \operatorname{rad}(IB)$ if and only if $a_i \in I$ for all $0 \le i \le n-1$.