MTH910 Homework 1 (due: 9/28/07).

All rings are commutative with identity!

- (1) Let A be a ring with exactly one maximal ideal and $e \in A$ an element. e is called an *idempotent element* if $e^2 = e$. Show that the only idempotent elements of A are 0 and 1.
- (2) Let A be a ring and $I \subseteq A$ a finitely generated ideal. Show that the following are equivalent:
 - (a) $I^2 = I$
 - (b) I = Ae for some idempotent element $e \in A$.
- (3) Let $\varphi: A \longrightarrow B$ be a surjective homomorphism of rings. Show:
 - (a) $\varphi(\operatorname{Jrad}(A)) \subseteq \operatorname{Jrad}(B)$. Give an example to show that equality fails in general.
 - (b) If A is a semilocal ring then $\varphi(\operatorname{Jrad}(A)) = \operatorname{Jrad}(B)$.
- (4) Let A be a ring and $S \subseteq A$ a subset. Show that the following are equivalent:
 - (a) A S is the union of prime ideals.
 - (b) $1 \in S$ and $(ab \in S \Leftrightarrow a \in S \text{ and } b \in S)$.
- (5) Let M be an A-module and $I \subseteq A$ an ideal. Suppose that $M_{\mathfrak{m}} = (0)$ for every maximal ideal $\mathfrak{m} \subseteq A$ with $I \subseteq \mathfrak{m}$. Show that M = IM.
- (6) Suppose that A is an integral domain. An A-module M is called torsion free if for all $a \in A (0)$ and all $m \in M (0)$: $am \neq 0$. Show that M is a torsion free A-module if $M_{\mathfrak{m}}$ is a torsion free $A_{\mathfrak{m}}$ -module for all maximal ideals $\mathfrak{m} \in A$.

- (7) Let $f = \sum_{i=0}^{n} \in A[x]$ be an element in the polynomial ring over A. Show:
 - (a) f is invertible in A[x] if and only if $a_0 \in A^*$ is invertible and a_i are nilpotent for all $i \geq 1$.
 - (b) f is a zerodivisor in A[x] if and only if there is an element $b \in A (0)$ so that bf = 0.
- (8) Show that Jrad(A[x]) = nil(A[x]) for any ring A.
- (9) Let A be a ring and M a finitely generated A-module. Consider the set of submodules of M: $\Lambda = \{IM \mid I \subseteq A \text{ an ideal}\}$ and suppose that Λ satisfies the a.c.c. and the d.c.c. Show that M is an Artinian A-module.