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ABSTRACT. Let K be a field, m and n positive integers, and X = {z1,...,zn},
and Y = {y1,...,ym} sets of independent variables over K. Let A be the localized
polynomial ring K[X]x). We prove that every prime ideal P in A = K[[X]] that
is maximal with respect to P N A = (0) has height n — 1. We consider the mixed
power series/polynomial rings B := K|[[X]] [Y](x y) and C := K[Y]y)[[X]]. For
each prime ideal P of B = C that is maximal with respect to either P N B = (0) or
PN C = (0), we prove that P has height n + m — 2. We also prove each prime ideal
P of K[[X,Y]] that is maximal with respect to P N K[[X]] = (0) is of height either
mormn-+m—2.

1. Introduction and Background.

Let (R,m) be a Noetherian local integral domain and let R denote the m-adic
completion of R. The generic formal fiber ring of R is the localization (R\ (0)) 'R
of R. The formal fibers of R are the fibers of the morphism Specfi — Spec R; for a
prime ideal P of R, the formal fiber over P is Spec((Rp/PRp)®r R ). The formal
fibers encode important information about the structure of R. For example, the
local ring R is excellent provided it is universally catenary and has geometrically
regular formal fibers [2, (7.8.3), page 214].

Let R < S be an injective homomorphism of commutative rings. If R is an inte-
gral domain, the generic fiber ring of the map R < S is the localization (R\ (0))~1S
of S. In this article we study generic fiber rings for “mixed” polynomial and power
series rings over a field. More precisely, for K a field, m and n positive integers,
and X = {x1,... ,xz,} and Y = {y1,... ,ym} sets of variables over K, we consider
the local rings A := K[X](x), B := K[[X]][Y](x,y) and C := K[Y]y)[[X]], as well
as their completions A = K[[X]] and B = C = K[[X,Y]]. Notice that there is a

canonical inclusion map B — C.
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We have the following local embeddings.

A=K X]x)—= A=K[X]], A—B=C=K[X,Y]] and
<_>

Q)

B = K[[X)|[Y)ix.v) = C = K[Y))[[X]] = B = € = K[[X]) [¥).

Matsumura proves in [7] that the generic formal fiber ring of A has dimension
n—1=dim A — 1, and the generic formal fiber rings of B and C have dimension
n+m—2=dimB — 2 =dimC — 2. However he does not address the question of
whether all maximal ideals of the generic formal fiber rings for A, B and C have
the same height. If the field K is countable, it follows from [3, Prop. 4.10, page 36]
that all maximal ideals of the generic formal fiber ring of A have the same height.

In answer to a question raised by Matsumura in [7], Rotthaus in [10] establishes
the following result. Let n be a positive integer. Then there exist excellent regular
local rings R such that dim R = n and such that the generic formal fiber ring of
R has dimension ¢, where the value of ¢ may be taken to be any integer between 0
and dim R — 1. It is also shown in [10, Corollary 3.2] that there exists an excellent
regular local domain having the property that its generic formal fiber ring contains
maximal ideals of different heights.

Let T be a complete Noetherian local ring and let C be a finite set of incomparable
prime ideals of T'. Charters and Loepp in [1] (see also [6, Theorem 17]) determine
necessary and sufficient conditions for T to be the completion of a Noetherian
local domain T such that the generic formal fiber of T' has as maximal elements
precisely the prime ideals in C. If T is of characteristic zero, Charters and Loepp
give necessary and sufficient conditions to obtain such a domain 7" that is excellent.
The finite set C may be chosen to contain prime ideals of different heights. This
provides many examples where the generic formal fiber ring contains maximal ideals

of different heights.

Our main results may be summarized as follows.

1.1 Theorem. With the above notation, we prove that all mazimal ideals of the
generic formal fiber rings of A, B and C' have the same height. In particular, we

prove:

(1) If P is a prime ideal of A mazimal with respect to PN A = (0), then
ht(P) =n — 1.
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(2) If P is a prime ideal of B mawzimal with respect to P N B = (0), then
ht(P) =n+m — 2.
(3) If P is a prime ideal of C mawimal with respect to P N C = (0), then
ht(P) =n+m —2.
(4) In addition, there are at most two possible values for the height of a mazimal
ideal of the generic fiber ring (A \ (0))~1C of the inclusion map A < C.
(a) If n > 2 and P is a prime ideal of C mazimal with respect to
PN A=(0), then either ht P =n+m — 2 or ht P = m.
(b) If n =1, then all mazimal ideals of the generic fiber ring
(A\ (0))"1C have height m.

We were motivated to consider generic fiber rings for the embeddings displayed
above because of questions related to [4] and [5] and ultimately because of the

following question posed by Melvin Hochster.

1.2 Question. Let R be a complete local domain. Can one describe or somehow
classify the local maps of R to a complete local domain S such that U~1S is a field,
where U = R\ (0), i.e., such that the generic fiber of R < S is trivial?

Hochster remarks that if, for example, R is equal characteristic zero, one obtains

such extensions by starting with
(1.2.1) R = Kllz1,...,xn]] = T = L{[x1,.., Tns Y1, - Ym]| = T/P =S,

where K is a subfield of L, the z;,y; are formal indeterminates, and P is a prime
ideal of T" maximal with respect to being disjoint from the image of R\ {0}. Of
course, such prime ideals P correspond to the maximal ideals of the generic fiber
(R\ (0))7T.

In Theorem 7.2, we answer Question 1.2 in the special case where the extension
arises from the embedding in (1.2.1) with the field L = K. We prove in this case
that the dimension of the extension ring S must be either 2 or n.

In [5] we study extensions of integral domains R < 8 such that, for every
nonzero Q € SpecS, we have @ N R # (0). Such extensions are called trivial
generic fiber extensions or TGF extensions in [5]. One obtains such an extension
by considering a composition R < T — T/P = S, where T is an extension ring
of R and P € SpecT is maximal with respect to P N R = (0). Thus the generic
fiber ring and so also Theorem 1.1 give information regarding TGF extensions in

the case where the smaller ring is a mixed polynomial/power series ring.
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In addition, Theorem 1.1 is useful in the study of (1.2.1), because the map in
(1.2.1) factors through:

R=Kl[z1,...,xn]] = K[[z1,- .-y xn]] [Y1,- -, Ym] = T = L[[x1, ..., Tn, Y1,y -+ s Yn)]-

Section 2 contains implications of Weierstrass’ Preparation Theorem to the prime
ideals of power series rings. We first prove a technical proposition regarding a
change of variables that provides a “nice” generating set for a given prime ideal P
of a power series ring; then in Theorem 2.3 we prove that, in certain circumstances,
a larger prime ideal can be found with the same contraction as P to a certain
subring. In Sections 3 and 4, we prove parts 2 and 3 of Theorem 1.1 stated above.
In Section 5 we use a result of Valabrega for the two-dimensional case. We then
apply this result in Section 6 to prove part 1 of Theorem 1.1, and in Section 7 we

prove part 4.

2. Variations on a theme of Weierstrass.

In this section, we apply the Weierstrass Preparation Theorem [12, Theorem 5,
page 139, and Corollary 1, page 145] to examine the structure of a given prime
ideal P in the power series ring A = K[[X]], where X = {z1,... ,2,} is a set of
n variables over the field K. Here A = K[X]x) is the localized polynomial ring
in these variables. Our procedure is to make a change of variables that yields a

regular sequence in P of a nice form.

2.1 Notation. By a change of variables, we mean a finite sequence of ‘polynomial’
change of variables of the type described below, where X = {z1,...,z,} is a set of

n variables over the field K. For example, with e;, f; € N, consider

x> x ot = 2, Ty Ty + 202 = 29, e
€n —
Tp_1 > Tp_1+x, b= 2p_1, Tn > Tn = Zn,

followed by:

z1— 21 =11, Zgl—>22+212:t2, RN

f’n—l

Zp—1 > 2Zp—1+t 2] =1p_1, Ty > 2p + 21" =ty

Thus a change of variables defines an automorphism of A that restricts to an auto-
morphism of A.
We also consider a change of variables for subrings of A and A. For example, if

Ay = Klza,...,2,] C Aand S = K[[zs,...,2,]] C A, then by a change of variables
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inside A1 and S, we mean a finite sequence of automorphisms of A and A of the
type described above on xo,... ,z, that leave the variable x; fixed. In this case we

obtain an automorphism of A that restricts to an automorphism on each of S, A
and Al.

2.2 Proposition. Let A := K[[X]] = K[[zy,...,2,]] and let P € Spec A with
1 € P and ht P =r, where 1 <r <n—1. There exists a change of variables r1
z1 =1 (%1 18 fized), T2 > 2o, ..., Ty > 2y, and a regular sequence fi,..., f. € P
so that, upon setting Z1 = {z1,... ,2n—r}, Z2 = {Zn—rt1,.-. y2n} and Z = Z1UZs,

we have

f1 € K[[Z1]] [2Zn—r+1s-- - Zn—1] [2n] is monic as a polynomial in z,
f2 € K[[Z1]] [Zn—r+1s-- - 2n—2] [2n—1] 1S monic as a polynomial in z,_1, etc
fr € K[[Z1]] [2n—r+1] is monic as a polynomial in zp—ri1.

In addition:

(1) P is a minimal prime of the ideal (f1,..., f»)A.

(2) The (Z3)-adic completion of K[[Z1]][Z2](z) is identical to the (f1,..., fr)-
adic completion and both equal A = K[[X]] = K[[Z]).

(3) If Py := PN K[[Z1]|[Z2](z), then P A = P, that is, P is extended from
K([2:]][22)(z)-

(4) The ring extension:
K([Z1]) = K([[21]] [ 22)(z)/ 1 = K[[Z]]/ P
is finite (and integral).

Proof. Since Aisa unique factorization domain, there exists a nonzero prime ele-
ment f in P. The power series f is therefore not a multiple of x1, and so f must
contain a monomial term z2 ...z’ with a nonzero coefficient in K. This nonzero
coefficient in K may be assumed to be 1. There exists an automorphism o : A— A

defined by the change of variables:

T T Tg >ty 1= ToHar? ... Tpo1 > lpo1 = Tpotay Tt Ty > Ty
with es,...,en—1 € N chosen suitably so that f written as a power series in the

variables zi,ts,...,t,_1, %, contains a term a,x;", where s,, is a positive integer,
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and a, € K is nonzero. We assume that the integer s, is minimal among all
integers ¢ such that a term ax!, occurs in f with a nonzero coefficient a € K; we

further assume that the coefficient a,, = 1. By Weierstrass we have that:
[ =me,

where m € K{[z1,t2,...,tn—1]][z,] is a monic polynomial in z,, of degree s,, and
¢ is a unit in A. Since f € P is a prime element, m € P is also a prime element.

Using Weierstrass again, every element g € P can be written as:
g =mh+yq,

where h € K[[z1,t2,...,th_1,2,4]] = A and q € K[[z1,ta, ..., tn_1]] [z,] is a poly-

nomial in z,, of degree less than s,. Note that

K([x1,t2,. .., th1]] = K[[x1,t2,.. ., th-1]] [za]/(m)

is an integral (finite) extension. Thus the ring Kl[z1,t2,...,th—1]][zs]/(m) is
complete. Moreover, the two ideals (x1,to,...,th—1,m) = (x1,t2,...,tn_1,25")
and (x1,t2,...,th—1,2n) of By := K|[x1,ta,...,tn_1]] [z,] have the same radical.

Therefore A is the (m)-adic and the (z,,)-adic completion of By and P is extended
from By.

This implies the statement for r = 1, with f; = m, 2z, = x,, 21 = =1, 29 =
toy ooy Zn—1 =tn_1, Z1 ={x1,t2,...,tn_1} and Zy = {z,} = {x, }. In particular,
when r = 1, P is minimal over mA\, so P =mA.

For r > 1 we continue by induction on r. Let Py := PNK|[[z1,ta,...,t,_1]]. Since
m ¢ Kl[z1,ta,...,t,—1]] and P is extended from By := K|[[z1,t2,...,tn-1]][Zn],
then P N By has height r and ht Py = r — 1. Since z; ¢ P, we have x; ¢ P, and by
the induction hypothesis there is a change of variables t5 — 29,...,t,_1 — z,_1 of

K]|[xy,ta,...,t,—1]] and elements fo,..., f, € Py so that:

foe K([z1,22. ., 2Zn—r]] [#n—r+1,- - - s Zn—2] [2n—1] 1s monic in z, 1

fs € K[[x1,22- -, 2n—r]] [Zn—rt1s- -+ 2n—3] [Zn—2] is monic in z,_s, etc

fr € Kllx1,22, -, Zn—r|] [Zn—r+1] is monic in z,_,41,
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and fo, ..., f, satisfy the assertions of Proposition 2.2 for F,.
It follows that m, fo,..., f, is a regular sequence of length r and that P is a
minimal prime of the ideal (m, fa,... ,fT)A\. Set z, = ©,. We now prove that m

may be replaced by a polynomial f; € K[[z1,22,...,2n—r]] [Zn—rt1,---,2n]. Write

Sn
m= E QiZn,
1=0

where the a; € K[[x1,22,...,2,-1]]. For each i < s,, apply Weierstrass to a; and

fo2 in order to obtain:

a; = fah; + q;,

where h; is a power series in K [[z1, 22, ..., 2n—1]] and ¢; € K[[z1,22,...,2n—2]] [2n-1]

is a polynomial in z,,_;. With g5, =1 = a,,, we define
Sn
my = Z QiZy,.
i=0

Now (my, fa,... ,fT)A\ = (m, fa,... ,fr)zzl\ and we may replace m by m; which is a

polynomial in z,_; and z,. To continue, for each i < s,,, write:

q; = Zbijzi_l Wlth bij c K[[l‘l,ZQ,...,Zn_QH.
gk
For each b;;, we apply Weierstrass to b;; and f3 to obtain:

bij = fahij + qij,

where ¢;; € K|[[z1, 22, ..., 2n—3]] [#n—2]. Set
mg = Z(Iz‘jzfl_lzfl € K[[z1,22,...,2n-3]] [2n—2, 2n—1, 2n]
i7j

with g5, 0 = 1. It follows that (mo, fo,... ,fr);l\ = (m, fa,... ,fr);l\. Continuing
this process by applying Weierstrass to the coefficients of zfl_szl_lzfl and fy, we
establish the existence of a polynomial f; € K[[Z1]] [zn—r+1,---,2n] that is monic
in z, so that (f1, fo,... ,fr)zzl\ = (m, fa,... ,fT)A\. Therefore P is a minimal prime
of (fi,---, fr)A.

The extension

K([Z\]] — K[[z1]][22)/(f1,- -, fr)
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is integral and finite. Thus the ring K[[Z1]] [Z2]/(f1,- .., fr) is complete. This im-
plies A = K[[x1, 22, ..,2,]] is the (f1,..., f-)-adic (and the (Z3)-adic) completion
of K|[[Z1]][Z2](z) and that P is extended from K[[Z1]] [Z2](z). This completes the
proof of Proposition 2.2. [

The following theorem is the technical heart of the paper.

2.3 Theorem. Let K be a field and let y and X = {x1,...,x,} be variables over
K. Assume that V is a discrete valuation domain with completion V = K][[y]
and that Kly] CV C K[[y]]. Also assume that the field K((y)) = K|[[y]] [1/y] has
uncountable transcendence degree over the quotient field Q(V') of V. Set Ry :=
V[[X]] and R = Ry = K[[y, X]]. Let P € SpecR be such that:

() PC(X)R (s0y ¢ P), and
(i) dim(R/P) > 2.

Then there is a prime ideal @ € Spec R such that
(1) PCQC XR,
(2) dim(R/Q) =2, and
(3) PN Ry =QN Ry.

In particular, PN K[[X]] = Q@ N K[[X]].
Proof. Assume that P has height r. Since dim(R/P) > 2, we have 0 <r <n — 1.

If » > 0, then there exist a transformation x; + z1,...,z, — 2z, and elements

fi,..., fr € P, by Proposition 2.2, so that the variable y is fixed, and

fireKlly,z1,. -, 2n—r|| [#n—r+1,- -+, 2n] 1s monic in z,,
fo € Klly,z1,.-, 2n—r|| [#n—r+1,- -+ Zn—1] is monic in z,_; etc,
fr € Klly,21,. -, 2n—r|| [#n—r+1] is monic in z,_,41,

and the assertions of Proposition 2.2 are satisfied. In particular, P is a minimal
prime of (f1,...,fr)R. Let Z1 = {z1,...,2n—r} and Zo = {zp—r11,-- -, Zn—1,2n}-
By Proposition 2.2, if D := K[y, Z1]] [Z2](z) and Py := PN D, then PIR = P.

The following diagram shows these rings and ideals.



GENERIC FIBER RINGS 9

R =Ky, X]] = Klly, 21, Z,]]

D = K|y, Z1]] [ Z5]z)

P=PR

Pr=PnND

Note that f1,..., f. € P1. Let g1,...,g9s € P; be other generators such that

P =(fi,-.-sfry91,---,9s)D. Then P = PiR = (f1,..., fry91,-..,9s)R. For each
() == (i1,---,%n) € N" and j, k with 1 < j <r, 1 <k < s, let aj (), by, ;) denote
the coefficients in K[[y]] of the f;, gi, so that

fi= Z a2t 2 gr = Z br,iy 2t .. 25 € K[y]] [[Z])-
(9)eN" (i)ENm

Define

A { {aj,(i), bk,(i)} - K[[y]], forr >0
' 0, for r = 0.

A key observation here is that in either case the set A is countable.

To continue the proof, we consider S := Q(V(A)) N K[[y]], a discrete valuation
domain, and its field of quotients L := Q(V(A)). Since A is a countable set, the
field K ((y)) is (still) of uncountable transcendence degree over L. Let va, ..., Yp—r
be elements of K|[[y]] that are algebraically independent over L. We define

T :=L(v2y---,Yn—r) N K[[y]] and E := Q(T) = L(v2, .-, Yn—r)-

The diagram below shows the prime ideals P and P; and the containments

between the relevant rings.
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R =Ky, Z]|
P=({fi9})R

D= Klly, Z1]] [22](z) Q(K[lyl) = Kllyll [1/y] = K((»))

Py = ({fj,91})D /

E = Q(T) = L(’Y2a'-'77n—r)

Q(V)
v
Kly]

Let P, := PN S[[Z1]][Z2](z). Since fi,..., fr,91,...,9s € S[[Z1]][Z2](z), we
have P,R = P. Since P C (z1,...,2,)R = (Z)R, there is a prime ideal P in L[[Z]]
that is minimal over P,L[[Z]]. Since L[[Z]] is flat over S[[Z]], PNS[[Z]] = P.S[[Z]].
Note that L[[X]] = L[[Z]] is the (f1,..., fr)-adic (and the (Z3)-adic) completion of
L[[Z1]][Z2](z)- In particular,

Ll[Z\)][Z2]/(frs- - 1) = LllZa]1 [ 220}/ (fFrs -5 fr)

and this also holds with the field L replaced by its extension field E.
Since L[[Z]]/P is a homomorphic image of L[[Z]]/(f1,...,fr), it follows that
L[[Z]]/P is integral (and finite) over L[[Z1]]. This yields the commutative diagram:

E[[Z))]—E|[Z1]][[Z.])| PE[[Z]]
(2.3.0) 0 0
Ll[Z)]—  L[[Z]][[Z])/ P
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with injective integral (finite) horizontal maps. Recall that E is the subfield of
K((y)) obtained by adjoining vo,... ,Vn— to the field L. Thus the vertical maps
of (2.3.0) are faithfully flat.

Let q := (22 — Y2215+ - - Zn—r — Tn—r2z1)E[[Z1]] € Spec(E[[Z1]]) and let W be a
minimal prime of the ideal (P, q)E[[Z]]. Since

fla"'afr‘)zQ — Y2215y Rn—r — Yn—rZl

is a regular sequence in T[[Z]] the prime ideal W := WOT[[Z]] has height n—1. Let
Q be a minimal prime of WK ((y))[[Z]] and let Q := QN R. Then W = QNT[[Z]],
P C@Q C ZR = XR, and pictorially we have:

R:= Klly, Z]]

P={fja})RCQCR \/

D := K|y, Z1]] [Z2](z)
P =({fj,9:})D C D

Py = ({fj,91}) € S[[Z1]] [Z2) ()

Notice that q is a prime ideal of height n — r — 1. Also, since K ((y))[[Z]] is flat
over K[[y,Z]] = R, we have ht Q = n — 1 and dim(R/Q) = 2. We clearly have
P, CW N S[[Z1]][Z2](z)-

2.3.1 Claim. qnN L[[Z]] = (0).

To show this we argue as in [7]: Suppose that

h=> Hpn € qnLlz,..., 2],
meN
where H,, € L[z1,...,2,—,] is a homogeneous polynomial of degree m:

_ 11 in—'r
H,, = E C(H)Z1 -+ Zner s

[(&)|=m
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where (i) := (i1,...,in—p) € N*77, |(§)| :== i1 + - + in—, and ¢y € L. Consider
the F-algebra homomorphism = : E[[Z;1]] — E][z1]] defined by 7(z1) = 21 and
m(z;) = ;21 for 2 <i <mn —r. Then kerm = q, and for each m € N:
w(Hn) =7 S et ) = S e
[(&)|=m (@) [=m

and

w(h)= > w(Hm) =Y D ciyys 2"

meN meN |(3)|=m
Since h € q, m(h) = 0. Since 7(h) is a power series in E|[z;]], each of its coeflicients
is zero, that is, for each m € N,
Z C(i)'y;z . .'7:'[‘_7" =0.
1(8)|=m
Since the «; are algebraically independent over L, each c(;) = 0. Therefore h = 0,
and so q N L[[Z1]] = (0). This proves Claim 2.3.1.

Using the commutativity of the displayed diagram (2.3.0) and that the horizonal
maps of this diagram are integral extensions, we deduce that (WOE[[ZI]]) =q, and
qNL[[Z1]] = (0) implies WﬂL[[Zl]] = (0). We conclude that QNS[[Z]] = PNS[[Z]]
and therefore QN Ry = PN Ry. O

We record the following corollary.

2.4 Corollary. Let K be a field and let R = K[y, X]], where X = {z1,...,z,}
and y are independent variables over K. Assume P € Spec R is such that:
(i) P C (z1,...,2,)R and
(i) dim(R/P) > 2.
Then there is a prime ideal Q) € Spec R so that
(1) PCcQC(z1,...,z4)R,
(2) dim(R/Q) =2, and
(3) PN K[yl [X]] = Q@ N Kyl [X]]-
In particular, PN K|[x1,...,z,]] = QN K[[z1,...,2,]].
Proof. With notation as in Theorem 2.3, let V' = Kly] ).

3. Weierstrass implications for the ring B = K[[X]][Y]x y)-

As before K denotes a field, n and m are positive integers, and X = {z1,...,2,}
and Y = {y1,...,Ym} denote sets of variables over K. Let B := K[[X]][Y]xy) =
K[[z1, - 2n]] W1, s Yml(@r...onn...pnn)- The completion of B is B = K[[X,Y]].
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3.1 Theorem. With the notation as above, every ideal Q of B = K[[X,Y]] mawi-
mal with the property that @ N B = (0) is a prime ideal of height n +m — 2.

Proof. Suppose first that @ is such an ideal. Then clearly @ is prime. Matsumura
shows in [7, Theorem 3] that the dimension of the generic formal fiber of B is at

most n 4+ m — 2. Therefore ht Q@ < n +m — 2.

Now suppose P € Specﬁ is an arbitrary prime ideal of height r < n 4+ m — 2
with P N B = (0). We construct a prime Q € Specﬁ with P C @, @ N B = (0),
and ht Q = n 4+ m — 2. This will show that all prime ideals maximal in the generic

fiber have height n + m — 2.

For the construction of () we consider first the case where P Z X B. Then there
exists a prime element f € P that contains a term 6 := yil - yim  where the i;’s
are nonnegative integers and at least one of the i; is positive. Notice that m > 2
for otherwise with y = y; we have f € P contains a term y’. By Weierstrass it
follows that f = ge, where g € K[[X]][y] is a nonzero monic polynomial in y and €
is a unit of B. But g € P and g € B implies PN B # (0), a contradiction to our
assumption that P N B = (0).

For convenience we now assume that the last exponent i, appearing in 6 above
is positive. We apply a change of variables: y,, — t,, := yn, and, for 1 < £ < m, let
Yo — to := yp + t,¢, where the e, are chosen so that f, expressed in the variables
t1,...,tm, contains a term t4 , for some positive integer ¢g. This change of variables
induces an automorphism of B. By Weierstrass f = gi1h, where h is a unit in B
and g1 € K[[X,t1,...,tm-1]] [tm] is monic in ¢,,. Set P, = PNK[[X,t1,...,tm—1]]-
If , C XKI[[X,t1,...,tm—1]], we stop the procedure and take s = m — 1 in what
follows. If P € XK]|[X,t1,...,tm—1]], then there exists a prime element f e P
that contains a term ¢;71 - - - t,,_1/m~1, where the ji’s are nonnegative integers and
at least one of the ji is positive. We then repeat the procedure using the prime
ideal P;. That is, we replace t1,...t,,_1 with a change of variables so that a prime
element of P, contains a term monic in some one of the new variables. After
a suitable finite iteration of changes of variables, we obtain an automorphism of
B that restricts to an automorphism of B and maps y1,...,Ym > 2Z1,---,2Zm-
Moreover, there exist a positive integer s < m — 1 and elements g1,...9m_s € P

such that
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g1 € K[[X,21,..., 2m—-1]] [zm] is monic in z,,
92 € K[[X,21,...,2m—2]] [#m—1] 1s monic in z,,_1, etc
Im—s € K[[X,21,...,2s]] [2s+1] is monic in zsy1,

and such that, for R, := K[[X, z1,...,2s]] and Ps := PN R, we have P; C XR;.

As in the proof of Proposition 2.2 we replace the regular sequence gi,....gm_s
by a regular sequence fi,..., frn_s So that:
f1 € Rg[zs41,- -, 2m) is monic in z,,
f2 € Rs|zs41,- -y 2m—1] 1s monic in z,_1, etc
fm—s € Rs[zs41] is monic in zgyq.

and (g1,....gm—s)B = (f1,--+, fm—s)B.

Let G := K[[X,z1,...,2s)] [2s41s--- s 2m] = Rs[2s4+1,--- ,2m]. By Proposition
2.2, P is extended from G. Let q := PN G and extend fi,..., fm_s to a gen-
erating system of q, say, q = (f1,..., fm—s,1,...,ht)G. For integers k, £ with
1<k<m-—sand 1l </ <t, express the fr and hy in G as power series in
B = K[[z1]][[z2; - - - , 2m]] [X]] with coefficients in K[[z]]:

— i im d in — 4 - n
fr = E ARi)(j)2s -+ 2y ... x9r and  hy = E beiy(j) 25 -+ 2yt o T

where ay()(;), beiyg) € Kllz1]], (4) = (i2,... ,im) and (j) = (j1,... ,Jn). The set
A = {an(i)(j), bei)(j) } is countable. We define V' := K(z1,A) N K[[z1]]. Then V is
a discrete valuation domain with completion K[[z1]] and K ((z1)) has uncountable
transcendence degree over Q(V). Let Vy := V[[X, 2o,...,25]] C Rs. Notice that
R, = f/;, the completion of Vi. Also fi,..., fmn—s € Vs[zs+1,--- ,2m] € G and
(f1,--+, fm—s)G N Rs = (0). Furthermore the extension

‘/s = V[[X,ZQ,... ,ZSH — ‘/;[Zs+1,... azm]/(flw-' ’fm—s)

is finite. Set Py := PNV,. Then Py C XR, NV, = X V.
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Consider the commutative diagram:

Ry = K[[X,z1,...,25]]—Rs[[zs41, - -, 2m)]/ (f1, - s frn—s)
(3.1.1) 0 0
Vs :=V[[X,22,...,2s]] — Vs[zs41,- -y 2m]/(f1, -+ frn—s) -

The horizontal maps are injective and finite and the vertical maps are completions.

The prime ideal q := PRg[[zs41,- -, 2m]]/(f1,- -, fm—s) lies over Ps in R,. By
assumption Py C (X)Rs and by Theorem 2.3 there is a prime ideal Qs of R;
such that Ps C Qs C (X)Rs, Qs NVs = PsNV, = Py, and dim(R,/Qs) = 2.
There is a prime ideal Q in Ry[[2s11,---,2m]]/(fi,---, fm_s) lying over Q, with
q € Q by the “going-up theorem” [8, Theorem 9.4]. Let @ be the preimage in
B=K][[X,z,...,2n]] of Q. We show the rings and ideals of Theorem 3.1 below.

B=K[X,Y]|=K[X,z1,... ,2m]] = Rs[[2s11, - - - » 2m]]
(4,Qs)BCQ

G := Rs[zs41, -+ » 2m]
q=PNG
a= {fi,h})G

f1¢Rs = K[[X,Zl,... ,ZSH
Ps ng CRS
P,:=PNR; C XR;

Ve :=VI[[X, 2,... 2 V = K[[z]]
Py:=PNV;

V= K(z1,A) N K[[z1]]

Then () has height n +s -2+ m — s = n + m — 2. Moreover, from diagram
(3.1.1), it follows that @ and P have the same contraction to Vi[zs11,. .., 2m]. This
implies that @ N B = (0) and completes the proof in the case where P € X B.

In the case where P C Xﬁ, let hy,... ,hs € B be a finite set of generators of
P, and as above, let by ;) € K[[z1]] be the coefficients of the hy’s. Consider the
countable set A = {by(;)(;)} and the valuation domain V' := K(z1,A) N K[[21]]. Set
Py:=PNV][X, z,...,2n]]. By Theorem 2.3, there exists a prime ideal Q of B =
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K[[X,z1,...,2m]| of height n+m—2 such that P C @ and QNV[[X, z9,...,2n]] =
PNVI]X,z2,...,2m]] = Po. Therefore @ N B = (0). This completes the proof of
Theorem 3.1. [

4. Weierstrass implications for the ring C = K[Y|y)[[X]].

As before K denotes a field, n and m are positive integers, and X = {z1,...,2,}
and Y = {y1,...,ym} denote sets of variables over K. Consider the ring C' =
Ky, Ymlyryym) (@15 Tn]] = K[Y](y)[[X]]. Then the completion of C' is
C = K[|y, X]).

4.1 Theorem. With notation as above, let Q) € Specé be mazximal with the prop-
erty that QN C = (0). Then ht Q@ =n +m — 2.

Proof. Let B = K[[X]][Y](x,y) C C. If P € SpecC = Spec B and PN C = (0),
then PN B = (0), so ht P <n+m — 2 by Theorem 3.1. Consider a nonzero prime
P € SpecC with PNC = (0) and ht P =r < n+m—2. If P C XC then Theorem
2.3 implies the existence of Q) € Speca with ht @ = n + m — 2 such that P C @
and @ NC = (0).

Assume that P is not contained in XC and consider the ideal J := (P, X )6
Since C is complete in the X C-adic topology, [9, Lemma 2] implies that if J is
primary for the maximal ideal of 6, then P is extended from C. Since we are
assuming P N C = (0), J is not primary for the maximal ideal of C and we have
htJ =n+s <n+m, where 0 < s <m. Let W € Spec@ be a minimal prime
of J such that ht W = n+s. Let Wy = W N K[[Y]. Then W = (Wy, X)C
and W is a prime ideal of K[[Y]] with ht W, = s. By Proposition 2.2 applied to
K|[[Y]] and the prime ideal Wy € Spec K[[Y]], there exists a change of variables

Y — Z with y1 — 2z1,...,Ym — 2zm and elements fi,...,fs € Wy so that with
Zy ={z1,... ,Zm—s}, we have

f1 € K[[Z1]] [Zm—s+1, - - - Zm)] is monic in z,,

fo € K[[Z1]] [#2m—s+1,- - 2Zm—1] 1s monic in z,,_1, etc

fs € K[[Z1]] [#m—s+1] is monic in 2z, _s41.

Now 21,...,2m—s, f1,..., [s is a regular sequence in K[[Z]] = KJ[Y]]. Let T =

{tm—s+1,---,tm} be a set of additional variables and consider the map:

v : K[[Z1,T)] — Kl[z1,- -+, 2m]]
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defined by z; — z; forall 1 < i <m —s and t,,_;41 — f; forall 1 <i < s. The

embedding ¢ is finite (and free) and so is the extension to power series rings in X:

p: K[[Z0, T [[X]] — K[z, .., 2]) [X]] = C.

Since W € Spec C is of height n+-s, so is its contraction p=! (W) € Spec K[[Z1, T, X]).
Moreover p~ (W) contains (T, X)K|[[Z1, T, X]], a prime ideal of height n+s. There-
fore p=1(W) = (T, X)K|[[Z1,T, X]]. By construction, P C W which yields that
p~(P) C (T, X)K[[Z1, T, X].

To complete the proof we construct a suitable base ring related to C'. Consider

the expressions for the f;’s as power series in 29, ..., z,,, with coefficients in K[[z]]:

fi= E aj(i) 2 - 2y

where (i) := (i2,...,im),1 < j < 5,050 € K[[21]]. Also consider a finite generating
system g1, ..., g, for P and expressions for the gi, where 1 < k < ¢, as power series
inzo,...,2%m,%1,...,T, with coefficients in K{[z]]:

— 7 im .0 Lr
gk = Zbk(i)(@zf NN Sl SRR

where (i) = (i2,...,im), (£) = (f1,...,4n), and by € K[[z1]]. We take the

subset A = {a;(;), br(iye)} of K[[z1]] and consider the discrete valuation domain:
V= K(z1,A) N K[[z]].

Since V' is countably generated over K (z1), the field K((z1)) has uncountable tran-
scendence degree over Q(V') = K(z1,A). Moreover, by construction the ideal P is

extended from V{[za,...,zn,]] [[X]]. Consider the embedding:
U V][za, oy 2mes, T)] — V][22, ., 2m]];

which is the restriction of ¢ above, so that z; — 2z; for all 2 < ¢ < m — s and
tm—i+1 — fl for all + with 1 <14 <s.
Let o be the extension of ¥ to the power series rings:
o:V(za, ..oy zm—s, T [[X]] — V|22, .-, 2m]] [[X]]

with o(z;) = x; for all ¢ with 1 <1i < n.
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Notice that p defined above is the completion & of the map o, that is, the

extension of o to the completions. Consider the commutative diagram:

K[, T] [ X]] =2 K[[2)[[X]) = €

(4.1.0) T T

Vile, - 2m—s, TNIX]) —— Vllz2, .., 2] [X]]

where ¢ = p is a finite map.

Recall that p=1(W) = (T, X)K|[Z1,T, X]], and so p~*(P) C (T, X)K|[[Z1,T, X]]
by Diagram 4.1.0. By Theorem 2.3, there exists a prime ideal @)y of the ring
K|[Z,T, X]] such that p=1(P) C Qq, ht Qo = n +m — 2, and

QoNVllz,..., 2m—s, TN [[X]] = p~H(P) N V][22, ..., 2im—s, T [[X]].

By the “going-up theorem” [8, Theorem 9.4], there is a prime ideal @ € Speca
that lies over Qg and contains P. Moreover, () also has height n +m — 2. The
commutativity of diagram (4.1.0) implies that

P :=PnV]zay...,2m-s, L) [[X]] C Q1:=QNV][[22,...,2m—s, L] [[X]]
Consider the finite homomorphism:

A Vlz2, oo 2mes]] [Tz, X)) — V22, - o5 Zm—s]] [Zm—st15 - - - 2m] (2) [ X]]

(determined by t; — f; for 1 < i < m) and the commutative diagram:

Vil zmsd) [T X)) —2 Vilea, .. 2] [[X]
Vilez,. s zmesl] Tz X)) —2 Vo2 2] [t - 2l (X

Since Q@ N V|22, .-y 2m—s, L)) [[X]] = PN V][22, 2m—s,T]] [[X]] and since A

is a finite map we conclude that
Ql N V[[227 v 7Zm—s]] [zm—s—l-ly v 7Zm](Z) [[X]]
= P1 N V[[ZQ, e ,Zm]] [zm_s+1, e ’Zm](Z)[[XH

Since C C Vl[z2,..., 2m—s]] [Zm—st1,- -+, 2Zm](2)[[X]], we obtain that Q N C =
PN C = (0). This completes the proof of Theorem 4.1. [
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4.2 Remark. With B and C as in Sections 3 and 4, we have
B =K[X]|[Y]xy) = K[Y]n)[[X]]=C and B=K[X,Y]]=C.

Thus for P € Spec K[[X,Y]], if PN C = (0), then PN B = (0). By Theorems
3.1 and 4.1, each prime of K[[X, Y]] maximal in the generic formal fiber of B or C
has height n +m — 2. Therefore each P € Spec K[[X, Y]] maximal with respect to
PNC = (0) is also maximal with respect to PN B = (0). However, if n+m > 3, the
generic fiber of B — C' is nonzero [4], so there exist primes of K[[X,Y]] maximal

in the generic formal fiber of B that are not in the generic formal fiber of C.

5. Subrings of the power series ring K][z,]].
In this section we establish properties of certain subrings of the power series
ring K[[z,t]] that will be useful in considering the generic formal fiber of localized

polynomial rings over the field K.

5.1. Notation. Let K be a field and let z and ¢ be independent variables over K.

Consider countably many power series:
o0
ai(2) = Y ai;z’ € K[[]]
j=0

with coefficients a;;, € K. Let s be a positive integer and let wy,...,ws € K[[z,1]]

be power series in z and ¢, say:
o0 o0
w; = Zﬁijtja where B@’j (Z) = Z bijkzk S K[[ZH and bijk € K,
j=0 k=0

for each ¢ with 1 <1i < s. Consider the subfield K (z,{«;},{8;;}) of K((2)) and the

discrete rank-one valuation domain

V= K(z,{a;},{Bi;}) N K[[2]].

The completion of V is V = KJ[[z]]. Assume that wy,...,w, are algebraically
independent over Q(V')(t) and that the elements w,41,...,w, are algebraic over
the field Q(V')(t, {w;}]_;). Notice that the set {a;} U {8;;} is countable, and that

also the set of coefficients of the a; and f3;;

A= {a;;t U{biji}
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is a countable subset of the field K. Let K, denote the prime subfield of K and
let F' denote the algebraic closure in K of the field Ko(A). The field F' is count-
able and the power series o;(z) and ;;(z) are in F[[z]]. Consider the subfield
F(z,{a;},{0i;}) of F((z)) and the discrete rank-one valuation domain

Vo := F(z,{e:}, {Bi;}) 0 F[[]].

The completion of Vp is Vo = F[[z]]. Since Q(Vo)(t) € Q(V)(t), the elements
wi,...,w, are algebraically independent over the field Q(Vp)(t).

Consider the subfield Ey := Q(Vp)(t,w1,... ,w,) of Q(Vp[[t]]) and the subfield
E :=9(V)(t,wi,...,w,) of Q(V][[t]]). A result of Valabrega [11] implies that the

integral domains:

are two-dimensional regular local rings with completions Dy = F|[[z,t]] and D =

K|[z,]], respectively. Moreover, Q(Dy) = Ejy is a countable field.

5.2 Proposition. Let Dy be as defined in (5.1). Then there exists a power series
v € zF[[2]] such that the prime ideal (t —v)F|[z,t]] N Do = (0), i.e., (t —v)F[[2,1]]

is in the generic formal fiber of Dy.

Proof. Since Dy is countable there are only countably many prime ideals in Dy and
since Dy is Noetherian there are only countably many prime ideals in Dy = F [[2,]]
that lie over a nonzero prime of Dy. There are uncountably many primes in F'[[z, t]],
which are generated by elements of the form ¢ — o for some o € zF'[[z]]. Thus there

must exist an element v € zF[[z]] with (¢t —~)F[[z,t]] N Dy = (0). O

For w; = w;(t) = 272, Bi;t? as in (5.1) and vy an element of 2K [[]], let wi(7)

denote the following power series in K[[z]]:

wi(v) =Y By’ € K[[]].

j=0
5.3 Proposition. Let D be as defined in (5.1.1). For an element v € zK|[[2]] the
following conditions are equivalent:

(i) (t=7)K[z1t]ND=(0),.
(ii) The elements v,wi(7),...,wr(y) are algebraically independent over Q(V').
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Proof. (i) = (ii): Assume by way of contradiction that the set {v,w1(7),...,w,(7)}
is algebraically dependent over Q(V) and let d() € V' be finitely many elements
such that

Z dywi (MM . wp ()Pt =0
(k)

is a nontrivial equation of algebraic dependence for 7, w1 (), ... ,w,(y), where each

(k) =(k1...,kr,krt1) is an (r 4 1)-tuple of nonnegative integers. It follows that

D dgywyt .. whrthre € (¢ — ) K[z, N D = (0).
(k)
Since wy, ... ,w, are algebraically independent over Q(V)(t), we have dy = 0 for
all (k), a contradiction. This completes the proof that () = (it).
(ii) = (i): If (t —v)K][[z,t]] N D # (0), then there exists a nonzero element

=Y dgwit . wirthe e (= K|z ] NV w, . w,).
(k)

But this implies that

() =Y dgywr (0w ()P =0,
*)

Since v,w1(7),.-.,wr(y) are algebraically independent over Q(V), it follows that

all the coefficients d;) = 0, a contradiction to the assumption that 7 is nonzero. [

Let v € zF[[2]] be as in Proposition 5.2 with (¢t — v)F[[z,t]] N Dy = (0). Then:

5.4 Proposition. With notation as above, we also have (t —y)K][[z,t]] N D = (0),
that is, (t — v)K]|[z,t]] is in the generic formal fiber of D.

Proof. Let {t;}icr be a transcendence basis of K over F and let L := F({t; }icr)-
Then K is algebraic over L. Let {o,},{08;;} C F|[[z]] be as in (5.1) and define

Vi = L(z,{o;},{Bi;}) N L[[z]] and Dy = QVi)(t,wi,...,w,)N L[[z,1]].

Then V; is a discrete rank-one valuation domain with completion L[[z]] and D,
is a two-dimensional regular local domain with completion D; = L[[z,¢]]. Note
that Q(V) and Q(D) are algebraic over Q(Vi) and Q(D;), respectively. Since
(t—y)K]|[z,t]|NL[[z,t]] = (t—=)L[[2,t]], it suffices to prove that (t—~)L][[z,t]|N D1 =
(0). By Proposition 5.3, it suffices to show that v, w; (), . ..,w,(7) are algebraically

independent over Q(V;). The commutative diagram
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{t; }algebraically ind.

Fl2]] L{[=]]

I I

Q(Vo) transcendence basis {t;} Q(Vl)
implies that the set {v,wi(7),...,w.(y)} U {t;} is algebraically independent over

Q(Vp). Therefore {vy,wi(7y),...,w.(7)} is algebraically independent over Q(V;),

which completes the proof of Proposition 5.4. [

5.5 Remark. We remark that with w,;1,...,ws algebraic over Q(V)(w1,...,w,)

as in (5.1), if we define
D := Q(V)(t,wy,...,ws) N V][],

then again by Valabrega [11], D is a two-dimensional regular local domain with
completion K[[z,]]. Moreover, Q(D) is algebraic over Q(D) and (¢ — v)K][[z,t]] N
D = (0) implies that (t —~)K[[z,¢]] N D = (0).

6. Weierstrass implications for the localized polynomial ring 4 = K[X]x).

Let n be a positive integer, let X = {z1,...,x,} be aset of n variables over a field
K,and let A:= K[z1,...,%](2,,....2,) = K[X](x) denote the localized polynomial
ring in these n variables over K. Then the completion of A is A = K[[X]].

6.1 Theorem. For the localized polynomial ring A = K[X|x) defined above, if Q
is an ideal of A mazimal with respect to QN A = (0), then Q is a prime ideal of
height n — 1.

Proof. Again it is clear that ) as described in the statement is a prime ideal. Also
the assertion holds for n = 1. Thus we assume n > 2. By Proposition 5.4, there
exists a nonzero prime p in K[[z1,x2]] such that p N K[z1,%2](z, 2,) = (0). It
follows that pA N A = (0). Thus the generic formal fiber of A is nonzero.

Let P € Spec A be a nonzero prime ideal with PN A = (0) and ht P = r < n—1.
We construct @ € Spec}l\ of height n — 1 with P C @ and @ N A = (0). By

Proposition 2.2, there exists a change of variables z; — z,...,2, — 2z, and
polynomials

fi e Klz1,. - 2Zn—r]] [Zn—rt1,- -, 2n] monic in z,

fo e Kl[z1,.-,2n—r]] [Zn—r+41,- -, 2n—1] monic in z,_1, etc

fr€ K21, 2n—r]] [Zn—r+1] monic in z,_,11,
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so that P is a minimal prime of (f1, ..., f,)A and P is extended from
R:=Klz1,. ., Zn—r|| [Zn—rt1s- - Zn]-

Let Py := PN R and extend fi,..., f, to a system of generators of Py, say:

PO - (flu"'afr7gl7"'7gs)R'

Using an argument similar to that in the proof of Theorem 2.3, write
fi= ) awa-.ar and ge= ) by ...z,
(i)eNn—1 ()eNn—1

where a; (5), by, i) € K[[21]]. Let
Vo 1= K (21, a;,(i), bk (iy) N K [[21]]-

Then Vj is a discrete rank-one valuation domain with completion K[[z;]], and
K((z1)) has uncountable transcendence degree over the field of fractions Q(V})
of Vo. Let vs3,...,7—r € K|[[2z1]] be algebraically independent over Q(V;) and
define

q:= (23 — Y322, 24 — V422, Zn-r — In—r22)K[[21,. .., Zn_r]].

We see that q N Vp[[22,... ,2n—r]] = (0) by an argument similar to that in [7] and
in Claim 2.3.1. Let Ry := Vo[22, -+, 2n—r]] [Zn—rt1s--- »2n), let P, := PN R; and

consider the commutative diagram:

Klz1,...,2n—r|]]— R/ Py

T T
Vollz2y - -y 2n—r]]—R1/P1

The horizontal maps are injective finite integral extensions. Let W be a minimal
prime of (q, P)A. Then ht W = n — 2 and qN Vp|[22,- . . , 2n_r]] = (0) implies that
W N Ry = P;. We have found a prime ideal W € Spec;l\ such that ht W =n — 2,
WNA=(0)and P CW. Since fi,...,f, € W and since A = K[[z1,.. ., 2,]] is the
(f1,--., fr)-adic completion of K[[z1,...,2n—r]] [Zn—r+1;-- -, 2n], the prime ideal W
is extended from K{[z1,..., Zn—r]] [Zn—rt1s-- -, Zn]-

We claim that W is actually extended from K{[z1, 22]] [23,...,2n]. To see this
let g € WNK|[[z1,. - 2n—r]] [Zn—r+1,-- -, 2n] and write:

9= a@z itz € Kllz, - Zner]) Bnerids - 2l
(i)
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where the sum is over all (i) = (in—r,...,i,) and a;) € K[[z1,...,2,—,]]. For all

a(;) by Weierstrass we can write
Ay = (Zn—r - 'Yn—rZZ)h(i) + (i)

where h;y € K{[z1,... 2n—]] and q) € K[[z1,...,2n—r-1]]. If n — 1 > 3, we write

q(i) = (Zn—r—1 = Yn-r—122)h(s) + Qs

where hi;) € K[[z1,... 2n—r—1]] and ¢(;y € K[[z1,...,2p—r—2]]. In this way we
replace a generating set for W in K|[[z1,..., 2n—r]] [Zn—r+1,-- -, 2n] Dy a generating
set for W in K{[z1, z2]] [23, - - -, 2]
In particular, we can replace the elements fi,..., f. by elements:

hi € K[[z1,22]] [23,- - -, 2n] monic in z,

he € K|[z1,22]] [23, - -y Zn—1] monic in z,_1, etc

h. € K|[z1,22]][23 .-+, Zn—rt1] monicin z, 41
and set hy11 = 23—7322,...,hp_2 = 2Zn_r—"Yn_r22, and then extend to a generating
set hi,... ,hpqs_o for

Wo =W N K|[z1, 22]] [#3, - - - ; Zn]
such that WoA = W. Consider the coefficients in K[[z1]] of the h:
h/] = Z Cj(i)zéz .o Z;L:ln
()

with ¢;;) € K[[21]]. The set {c;(;)} is countable. Define

V= 9(Vo)({cjy}) N K[[z1]]

Then V is a rank-one discrete valuation domain that is countably generated over

K[z1](z,) and W is extended from V[[25]] [23,... , 2n].
We may also write each h; as a polynomial in zs,...,z2, with coefficients in
Vllz]):

h = Zw(i)z:’f gl
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with wgy € V([z2]] € K[[21,22]]. By the result of Valabraga [11], the integral

domain

D = Q(V)(z2,{we) }) N K|[z1, 22]]

is a two-dimensional regular local domain with completion D =K [[#1, 22]]. Let
Wi :=WnNDlzs,...,z,]. Then WIA\ = W. We have shown in Section 5 that there
exists a prime element g € K{[z1, 22]] with ¢K[[z1,22]] N D = (0). Consider the
finite extension

D—)D[Zg,... ,Zn]/Wl.

Let Q € Specg be a minimal prime of (g, W)E Since ht W =n —2 and ¢ € W,
ht Q@ = n — 1. Moreover, P C W implies P C ). We claim that

QN Dlzs,...,z,) =W; and therefore QN A= (0).

To see this consider the commutative diagram:

K[z, z2]]— Kllz1,...,2a)]/W

T T

D — Dlzs,...,2z,)/ W1,
which has injective finite horizontal maps. Since ¢K[[z1,22]] N D = (0), it follows
that @ N Dlzs,... ,z,] = Wi. This completes the proof of Theorem 6.1. [J

7. Generic fibers of power series ring extensions.
In this section we apply the Weierstrass machinery from Section 2 to the generic

fiber rings of power series extensions.

7.1 Theorem. Letn > 2 be an integer and let y,x1,... ,x, be variables over the
field K. Let X ={z1,... ,x,}. Consider the formal power series ring Ry = K|[[X]]
and the extension Ry — Ry[[y]] = R. Let U = Ry \ (0). For P € Spec R such that
PNU =0 we have:

(1) If P € XR, then dim R/P = n and P is mazimal in the generic fiber U1 R.
(2) If P C XR, then there exists Q € Spec R such that P C @, dim R/Q = 2

and @ is mazimal in the generic fiber U R.

If n > 2 for each prime ideal Q mazimal in the generic fiber U"'R, we have

n and Ry — R/Q is finite, or

dimR/Q:{ 2 and Q C XR.
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Proof. Let P € Spec R be such that PNU = () or equivalently PN R; = (0). Then
R; embeds in R/P. If dim(R/P) < 1, then the maximal ideal of R; generates an
ideal primary for the maximal ideal of R/P. By [8, Theorem 8.4] R/P is finite over
R1, and so dim Ry = dim(R/P), a contradiction. Thus dim(R/P) > 2.

If P ¢ XR, then there exists a prime element f € P that contains a term y*® for
some positive integer s. By Weierstrass, it follows that f = ge, where g € K[[X]] [y]
is a nonzero monic polynomial in y and € is a unit of R. We have fR=gR C P is
a prime ideal and R; < R/gR is a finite integral extension. Since P N R; = (0),
we must have gR = P.

If P C XRand dim(R/P) > 2, then Theorem 2.3 implies there exists ) € Spec R
such that dim(R/Q) =2, P C Q@ C XRand PN R; = (0) = QN Ry, and so P
is not maximal in the generic fiber. Thus ) € Spec R maximal in the generic
fiber of Ry < R implies that the dimension of dim(R/Q) is 2, or equivalently that
ht@Q=n—-1. 0O

7.2 Theorem. Let n and m be positive integers, and let X = {x1,... ,z,} and
Y = {y1,...,ym} be sets of independent variables over the field K. Consider
the formal power series rings Ry = K[[X]] and R = K[[X,Y]] and the extension
Ry — Ry[[Y]] =R. Let U = Ry \ (0). Let Q € Spec R be mazimal with respect to
QNU=0. Ifn=1, then dim R/Q =1 and Ry — R/Q is finite.

If n > 2, there are two possibilities

(1) Ry — R/Q is finite, in which case dim R/Q = dim Ry = n, or
(2) dim R/Q = 2.

Proof. First assume n = 1, and let x = z;. Since ) is maximal with respect to
QNU = ), for each P € SpecR with Q@ C P we have P N U is nonempty and
therefore x € P. It follows that dim R/Q = 1, for otherwise,

Q:ﬂ{P!PESpecRandQQP}’

which implies z € Q. By [8, Theorem 8.4, R; — R/Q is finite.

It remains to consider the case where n > 2. We proceed by induction on m.
Theorem 7.1 yields the assertion for m = 1. Suppose Q € Spec R is maximal with
respect to QNU = (. As in the proof of Theorem 7.1, we have dim R/Q > 2. If Q C
(X,y1,- -+ ,Ym—1)R, then by Theorem 2.3 with Ry = K [ym](y, ) [[X,¥1, -+ s Ym—1]],
there exists Q' € Spec R with Q C @', dimR/Q’ = 2, and QN Ry = Q' N Ry. Since
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Ri C Ry, we have Q' NU = (). Since @ is maximal with respect to Q NU = ), we
have Q@ = @', so dim R/Q = 2.

Otherwise, if Q@  (X,y1,... ,Ym—1)R, then there exists a prime element f € Q
that contains a term y;, for some positive integer s. Let Ro = K[[X,y1,... ,Ym—1]]-
By Weierstrass, it follows that f = ge, where ¢ € Ra[y,] is a nonzero monic
polynomial in y,, and € is a unit of R. We have fR = gR C (@ is a prime ideal and
Ry — R/gR is a finite integral extension. Thus Ry/(Q N R2) — R/Q is an integral
extension. It follows that @ N Rs is maximal in Rs with respect to being disjoint
from U. By induction dim Ry/(Q N R2) is either n or 2. Since R/(Q is integral over
Ry /(Q N Rs), dim R/Q is either n or 2. [

7.3 Remark. In the notation of Theorem 1.1, Theorem 7.2 proves the second part
of the theorem, since dim R =n +m. Thusif n =1, ht Q = m. If n > 2, the two
cases are (i) ht Q = m and (ii) ht Q@ = n+m —2, as in (a) and (b) of Theorem 1.1.

Using the TGF terminology discussed in the introduction, we have the following

corollary to Theorem 7.2.

7.4 Corollary. With the notation of Theorem 7.2, assume P € Spec R is such that
Ry — R/P =: S is a TGF extension. Then dimS = dim Ry = n or dim S = 2.
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