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Abstract. Let K be a field, m and n positive integers, and X = {x1, . . . , xn},
and Y = {y1, . . . , ym} sets of independent variables over K. Let A be the localized

polynomial ring K[X](X). We prove that every prime ideal P in Â = K[[X]] that

is maximal with respect to P ∩ A = (0) has height n − 1. We consider the mixed

power series/polynomial rings B := K[[X]] [Y ](X,Y ) and C := K[Y ](Y )[[X]]. For

each prime ideal P of B̂ = Ĉ that is maximal with respect to either P ∩ B = (0) or

P ∩C = (0), we prove that P has height n+m− 2. We also prove each prime ideal

P of K[[X, Y ]] that is maximal with respect to P ∩K[[X]] = (0) is of height either

m or n+m− 2.

1. Introduction and Background.

Let (R,m) be a Noetherian local integral domain and let R̂ denote the m-adic

completion of R. The generic formal fiber ring of R is the localization (R \ (0))−1R̂

of R̂. The formal fibers of R are the fibers of the morphism Spec R̂→ SpecR; for a

prime ideal P of R, the formal fiber over P is Spec( (RP /PRP )⊗R R̂ ). The formal

fibers encode important information about the structure of R. For example, the

local ring R is excellent provided it is universally catenary and has geometrically

regular formal fibers [2, (7.8.3), page 214].

Let R ↪→ S be an injective homomorphism of commutative rings. If R is an inte-

gral domain, the generic fiber ring of the map R ↪→ S is the localization (R\(0))−1S

of S. In this article we study generic fiber rings for “mixed” polynomial and power

series rings over a field. More precisely, for K a field, m and n positive integers,

and X = {x1, . . . , xn} and Y = {y1, . . . , ym} sets of variables over K, we consider

the local rings A := K[X](X), B := K[[X]] [Y ](X,Y ) and C := K[Y ](Y )[[X]], as well

as their completions Â = K[[X]] and B̂ = Ĉ = K[[X,Y ]]. Notice that there is a

canonical inclusion map B ↪→ C.
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We have the following local embeddings.

A := K[X](X) ↪→ Â := K[[X]], Â ↪→ B̂ = Ĉ = K[[X,Y ]] and

B := K[[X]] [Y ](X,Y ) ↪→ C := K[Y ](Y )[[X]] ↪→ B̂ = Ĉ = K[[X]] [[Y ]].

Matsumura proves in [7] that the generic formal fiber ring of A has dimension

n − 1 = dimA − 1, and the generic formal fiber rings of B and C have dimension

n+m− 2 = dimB − 2 = dimC − 2. However he does not address the question of

whether all maximal ideals of the generic formal fiber rings for A, B and C have

the same height. If the field K is countable, it follows from [3, Prop. 4.10, page 36]

that all maximal ideals of the generic formal fiber ring of A have the same height.

In answer to a question raised by Matsumura in [7], Rotthaus in [10] establishes

the following result. Let n be a positive integer. Then there exist excellent regular

local rings R such that dimR = n and such that the generic formal fiber ring of

R has dimension t, where the value of t may be taken to be any integer between 0

and dimR− 1. It is also shown in [10, Corollary 3.2] that there exists an excellent

regular local domain having the property that its generic formal fiber ring contains

maximal ideals of different heights.

Let T̂ be a complete Noetherian local ring and let C be a finite set of incomparable

prime ideals of T̂ . Charters and Loepp in [1] (see also [6, Theorem 17]) determine

necessary and sufficient conditions for T̂ to be the completion of a Noetherian

local domain T such that the generic formal fiber of T has as maximal elements

precisely the prime ideals in C. If T̂ is of characteristic zero, Charters and Loepp

give necessary and sufficient conditions to obtain such a domain T that is excellent.

The finite set C may be chosen to contain prime ideals of different heights. This

provides many examples where the generic formal fiber ring contains maximal ideals

of different heights.

Our main results may be summarized as follows.

1.1 Theorem. With the above notation, we prove that all maximal ideals of the

generic formal fiber rings of A, B and C have the same height. In particular, we

prove:

(1) If P is a prime ideal of Â maximal with respect to P ∩ A = (0), then

ht(P ) = n− 1.
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(2) If P is a prime ideal of B̂ maximal with respect to P ∩ B = (0), then

ht(P ) = n+m− 2.

(3) If P is a prime ideal of Ĉ maximal with respect to P ∩ C = (0), then

ht(P ) = n+m− 2.

(4) In addition, there are at most two possible values for the height of a maximal

ideal of the generic fiber ring (Â \ (0))−1Ĉ of the inclusion map Â ↪→ Ĉ.

(a) If n ≥ 2 and P is a prime ideal of Ĉ maximal with respect to

P ∩ Â = (0), then either htP = n+m− 2 or htP = m.

(b) If n = 1, then all maximal ideals of the generic fiber ring

(Â \ (0))−1Ĉ have height m.

We were motivated to consider generic fiber rings for the embeddings displayed

above because of questions related to [4] and [5] and ultimately because of the

following question posed by Melvin Hochster.

1.2 Question. Let R be a complete local domain. Can one describe or somehow

classify the local maps of R to a complete local domain S such that U−1S is a field,

where U = R \ (0), i.e., such that the generic fiber of R ↪→ S is trivial?

Hochster remarks that if, for example, R is equal characteristic zero, one obtains

such extensions by starting with

(1.2.1) R = K[[x1, ..., xn]] ↪→ T = L[[x1, ..., xn, y1, ..., ym]]→ T/P = S,

where K is a subfield of L, the xi, yj are formal indeterminates, and P is a prime

ideal of T maximal with respect to being disjoint from the image of R \ {0}. Of

course, such prime ideals P correspond to the maximal ideals of the generic fiber

(R \ (0))−1T .

In Theorem 7.2, we answer Question 1.2 in the special case where the extension

arises from the embedding in (1.2.1) with the field L = K. We prove in this case

that the dimension of the extension ring S must be either 2 or n.

In [5] we study extensions of integral domains R
ϕ
↪→ S such that, for every

nonzero Q ∈ SpecS, we have Q ∩ R 6= (0). Such extensions are called trivial

generic fiber extensions or TGF extensions in [5]. One obtains such an extension

by considering a composition R ↪→ T → T/P = S, where T is an extension ring

of R and P ∈ SpecT is maximal with respect to P ∩ R = (0). Thus the generic

fiber ring and so also Theorem 1.1 give information regarding TGF extensions in

the case where the smaller ring is a mixed polynomial/power series ring.
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In addition, Theorem 1.1 is useful in the study of (1.2.1), because the map in

(1.2.1) factors through:

R = K[[x1, . . . , xn]] ↪→ K[[x1, . . . , xn]] [y1, . . . , ym] ↪→ T = L[[x1, . . . , xn, y1, . . . , yn]].

Section 2 contains implications of Weierstrass’ Preparation Theorem to the prime

ideals of power series rings. We first prove a technical proposition regarding a

change of variables that provides a “nice” generating set for a given prime ideal P

of a power series ring; then in Theorem 2.3 we prove that, in certain circumstances,

a larger prime ideal can be found with the same contraction as P to a certain

subring. In Sections 3 and 4, we prove parts 2 and 3 of Theorem 1.1 stated above.

In Section 5 we use a result of Valabrega for the two-dimensional case. We then

apply this result in Section 6 to prove part 1 of Theorem 1.1, and in Section 7 we

prove part 4.

2. Variations on a theme of Weierstrass.

In this section, we apply the Weierstrass Preparation Theorem [12, Theorem 5,

page 139, and Corollary 1, page 145] to examine the structure of a given prime

ideal P in the power series ring Â = K[[X]], where X = {x1, . . . , xn} is a set of

n variables over the field K. Here A = K[X](X) is the localized polynomial ring

in these variables. Our procedure is to make a change of variables that yields a

regular sequence in P of a nice form.

2.1 Notation. By a change of variables, we mean a finite sequence of ‘polynomial’

change of variables of the type described below, where X = {x1, . . . , xn} is a set of

n variables over the field K. For example, with ei, fi ∈ N, consider

x1 7→ x1 + xe1n = z1, x2 7→ x2 + xe2n = z2, . . . ,

xn−1 7→ xn−1 + xen−1
n = zn−1, xn 7→ xn = zn,

followed by:

z1 7→ z1 = t1, z2 7→ z2 + zf2

1 = t2, . . . ,

zn−1 7→ zn−1 + z
fn−1

1 = tn−1, xn 7→ zn + zfn1 = tn.

Thus a change of variables defines an automorphism of Â that restricts to an auto-

morphism of A.

We also consider a change of variables for subrings of A and Â. For example, if

A1 = K[x2, . . . , xn] ⊆ A and S = K[[x2, . . . , xn]] ⊆ Â, then by a change of variables
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inside A1 and S, we mean a finite sequence of automorphisms of A and Â of the

type described above on x2, . . . , xn that leave the variable x1 fixed. In this case we

obtain an automorphism of Â that restricts to an automorphism on each of S, A

and A1.

2.2 Proposition. Let Â := K[[X]] = K[[x1, . . . , xn]] and let P ∈ Spec Â with

x1 6∈ P and htP = r, where 1 ≤ r ≤ n−1. There exists a change of variables x1 7→
z1 := x1 (x1 is fixed), x2 7→ z2, . . . , xn 7→ zn and a regular sequence f1, . . . , fr ∈ P
so that, upon setting Z1 = {z1, . . . , zn−r}, Z2 = {zn−r+1, . . . , zn} and Z = Z1∪Z2,

we have

f1 ∈ K[[Z1]] [zn−r+1, . . . , zn−1] [zn] is monic as a polynomial in zn

f2 ∈ K[[Z1]] [zn−r+1, . . . , zn−2] [zn−1] is monic as a polynomial in zn−1, etc

...

fr ∈ K[[Z1]] [zn−r+1] is monic as a polynomial in zn−r+1.

In addition:

(1) P is a minimal prime of the ideal (f1, . . . , fr)Â.

(2) The (Z2)-adic completion of K[[Z1]] [Z2](Z) is identical to the (f1, . . . , fr)-

adic completion and both equal Â = K[[X]] = K[[Z]].

(3) If P1 := P ∩ K[[Z1]] [Z2](Z), then P1Â = P , that is, P is extended from

K[[Z1]] [Z2](Z).

(4) The ring extension:

K[[Z1]] ↪→ K[[Z1]] [Z2](Z)/P1
∼= K[[Z]]/P

is finite (and integral).

Proof. Since Â is a unique factorization domain, there exists a nonzero prime ele-

ment f in P . The power series f is therefore not a multiple of x1, and so f must

contain a monomial term xi22 . . . xinn with a nonzero coefficient in K. This nonzero

coefficient in K may be assumed to be 1. There exists an automorphism σ : Â→ Â

defined by the change of variables:

x1 7→ x1 x2 7→ t2 := x2+xe2n . . . xn−1 7→ tn−1 := xn−1+xen−1
n xn 7→ xn,

with e2, . . . , en−1 ∈ N chosen suitably so that f written as a power series in the

variables x1, t2, . . . , tn−1, xn contains a term anx
sn
n , where sn is a positive integer,
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and an ∈ K is nonzero. We assume that the integer sn is minimal among all

integers i such that a term axin occurs in f with a nonzero coefficient a ∈ K; we

further assume that the coefficient an = 1. By Weierstrass we have that:

f = mε,

where m ∈ K[[x1, t2, . . . , tn−1]] [xn] is a monic polynomial in xn of degree sn and

ε is a unit in Â. Since f ∈ P is a prime element, m ∈ P is also a prime element.

Using Weierstrass again, every element g ∈ P can be written as:

g = mh+ q,

where h ∈ K[[x1, t2, . . . , tn−1, xn]] = Â and q ∈ K[[x1, t2, . . . , tn−1]] [xn] is a poly-

nomial in xn of degree less than sn. Note that

K[[x1, t2, . . . , tn−1]] ↪→ K[[x1, t2, . . . , tn−1]] [xn]/(m)

is an integral (finite) extension. Thus the ring K[[x1, t2, . . . , tn−1]] [xn]/(m) is

complete. Moreover, the two ideals (x1, t2, . . . , tn−1,m) = (x1, t2, . . . , tn−1, x
sn
n )

and (x1, t2, . . . , tn−1, xn) of B0 := K[[x1, t2, . . . , tn−1]] [xn] have the same radical.

Therefore Â is the (m)-adic and the (xn)-adic completion of B0 and P is extended

from B0.

This implies the statement for r = 1, with f1 = m, zn = xn, z1 = x1, z2 =

t2, . . . , zn−1 = tn−1, Z1 = {x1, t2, . . . , tn−1} and Z2 = {zn} = {xn}. In particular,

when r = 1, P is minimal over mÂ, so P = mÂ.

For r > 1 we continue by induction on r. Let P0 := P∩K[[x1, t2, . . . , tn−1]]. Since

m /∈ K[[x1, t2, . . . , tn−1]] and P is extended from B0 := K[[x1, t2, . . . , tn−1]] [xn],

then P ∩B0 has height r and htP0 = r− 1. Since x1 /∈ P , we have x1 /∈ P0, and by

the induction hypothesis there is a change of variables t2 7→ z2, . . . , tn−1 7→ zn−1 of

K[[x1, t2, . . . , tn−1]] and elements f2, . . . , fr ∈ P0 so that:

f2 ∈ K[[x1, z2 . . . , zn−r]] [zn−r+1, . . . , zn−2] [zn−1] is monic in zn−1

f3 ∈ K[[x1, z2 . . . , zn−r]] [zn−r+1, . . . , zn−3] [zn−2] is monic in zn−2, etc

...

fr ∈ K[[x1, z2, . . . , zn−r]] [zn−r+1] is monic in zn−r+1,
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and f2, . . . , fr satisfy the assertions of Proposition 2.2 for P0.

It follows that m, f2, . . . , fr is a regular sequence of length r and that P is a

minimal prime of the ideal (m, f2, . . . , fr)Â. Set zn = xn. We now prove that m

may be replaced by a polynomial f1 ∈ K[[x1, z2, . . . , zn−r]] [zn−r+1, . . . , zn]. Write

m =

sn∑
i=0

aizn,

where the ai ∈ K[[x1, z2, . . . , zn−1]]. For each i < sn, apply Weierstrass to ai and

f2 in order to obtain:

ai = f2hi + qi,

where hi is a power series inK[[x1, z2, . . . , zn−1]] and qi ∈ K[[x1, z2, . . . , zn−2]] [zn−1]

is a polynomial in zn−1. With qsn = 1 = asn , we define

m1 =

sn∑
i=0

qiz
i
n.

Now (m1, f2, . . . , fr)Â = (m, f2, . . . , fr)Â and we may replace m by m1 which is a

polynomial in zn−1 and zn. To continue, for each i < sn, write:

qi =
∑
j,k

bijz
j
n−1 with bij ∈ K[[x1, z2, . . . , zn−2]].

For each bij , we apply Weierstrass to bij and f3 to obtain:

bij = f3hij + qij ,

where qij ∈ K[[x1, z2, . . . , zn−3]] [zn−2]. Set

m2 =
∑
i,j

qijz
j
n−1z

i
n ∈ K[[x1, z2, . . . , zn−3]] [zn−2, zn−1, zn]

with qsn0 = 1. It follows that (m2, f2, . . . , fr)Â = (m, f2, . . . , fr)Â. Continuing

this process by applying Weierstrass to the coefficients of zkn−2z
j
n−1z

i
n and f4, we

establish the existence of a polynomial f1 ∈ K[[Z1]] [zn−r+1, . . . , zn] that is monic

in zn so that (f1, f2, . . . , fr)Â = (m, f2, . . . , fr)Â. Therefore P is a minimal prime

of (f1, . . . , fr)Â.

The extension

K[[Z1]] −→ K[[Z1]] [Z2]/(f1, . . . , fr)
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is integral and finite. Thus the ring K[[Z1]] [Z2]/(f1, . . . , fr) is complete. This im-

plies Â = K[[x1, z2, . . . , zn]] is the (f1, . . . , fr)-adic (and the (Z2)-adic) completion

of K[[Z1]] [Z2](Z) and that P is extended from K[[Z1]] [Z2](Z). This completes the

proof of Proposition 2.2. �

The following theorem is the technical heart of the paper.

2.3 Theorem. Let K be a field and let y and X = {x1, . . . , xn} be variables over

K. Assume that V is a discrete valuation domain with completion V̂ = K[[y]]

and that K[y] ⊆ V ⊆ K[[y]]. Also assume that the field K((y)) = K[[y]] [1/y] has

uncountable transcendence degree over the quotient field Q(V ) of V . Set R0 :=

V [[X]] and R = R̂0 = K[[y,X]]. Let P ∈ SpecR be such that:

(i) P ⊆ (X)R (so y /∈ P ), and

(ii) dim(R/P ) > 2.

Then there is a prime ideal Q ∈ SpecR such that

(1) P ⊂ Q ⊂ XR,
(2) dim(R/Q) = 2, and

(3) P ∩R0 = Q ∩R0.

In particular, P ∩K[[X]] = Q ∩K[[X]].

Proof. Assume that P has height r. Since dim(R/P ) > 2, we have 0 ≤ r < n− 1.

If r > 0, then there exist a transformation x1 7→ z1, . . . , xn 7→ zn and elements

f1, . . . , fr ∈ P , by Proposition 2.2, so that the variable y is fixed, and

f1 ∈ K[[y, z1, . . . , zn−r]] [zn−r+1, . . . , zn] is monic in zn,

f2 ∈ K[[y, z1, . . . , zn−r]] [zn−r+1, . . . , zn−1] is monic in zn−1 etc,

...

fr ∈ K[[y, z1, . . . , zn−r]] [zn−r+1] is monic in zn−r+1,

and the assertions of Proposition 2.2 are satisfied. In particular, P is a minimal

prime of (f1, . . . , fr)R. Let Z1 = {z1, . . . , zn−r} and Z2 = {zn−r+1, . . . , zn−1, zn}.
By Proposition 2.2, if D := K[[y, Z1]] [Z2](Z) and P1 := P ∩D, then P1R = P .

The following diagram shows these rings and ideals.
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R = K[[y,X]] = K[[y, Z1, Z2]]

(X)R

D = K[[y, Z1]] [Z2](Z)

P = P1R

P1 = P ∩D

Note that f1, . . . , fr ∈ P1. Let g1, . . . , gs ∈ P1 be other generators such that

P1 = (f1, . . . , fr, g1, . . . , gs)D. Then P = P1R = (f1, . . . , fr, g1, . . . , gs)R. For each

(i) := (i1, . . . , in) ∈ Nn and j, k with 1 ≤ j ≤ r, 1 ≤ k ≤ s, let aj,(i), bk,(i) denote

the coefficients in K[[y]] of the fj , gk, so that

fj =
∑

(i)∈Nn
aj,(i)z

i1
1 . . . zinn , gk =

∑
(i)∈Nn

bk,(i)z
i1
1 . . . zinn ∈ K[[y]] [[Z]].

Define

∆ :=

{ {aj,(i), bk,(i)} ⊆ K[[y]], for r > 0

∅, for r = 0.

A key observation here is that in either case the set ∆ is countable.

To continue the proof, we consider S := Q(V (∆)) ∩K[[y]], a discrete valuation

domain, and its field of quotients L := Q(V (∆)). Since ∆ is a countable set, the

field K((y)) is (still) of uncountable transcendence degree over L. Let γ2, . . . , γn−r

be elements of K[[y]] that are algebraically independent over L. We define

T := L(γ2, . . . , γn−r) ∩K[[y]] and E := Q(T ) = L(γ2, . . . , γn−r).

The diagram below shows the prime ideals P and P1 and the containments

between the relevant rings.
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R = K[[y, Z]]

P = ({fj , gk})R

D := K[[y, Z1]] [Z2](Z)

P1 = ({fj , gk})D
Q(K[[y]]) = K[[y]] [1/y] = K((y))

K[[y]]
E := Q(T ) = L(γ2, . . . , γn−r)

T := L(γ2, . . . , γn−r) ∩K[[y]]

S := Q(V (∆)) ∩K[[y]]

L := Q(S) = Q(V (∆))

V

Q(V )

K[y]

Let P2 := P ∩ S[[Z1]] [Z2](Z). Since f1, . . . , fr, g1, . . . , gs ∈ S[[Z1]] [Z2](Z), we

have P2R = P . Since P ⊆ (x1, . . . , xn)R = (Z)R, there is a prime ideal P̃ in L[[Z]]

that is minimal over P2L[[Z]]. Since L[[Z]] is flat over S[[Z]], P̃ ∩S[[Z]] = P2S[[Z]].

Note that L[[X]] = L[[Z]] is the (f1, . . . , fr)-adic (and the (Z2)-adic) completion of

L[[Z1]][Z2](Z). In particular,

L[[Z1]] [Z2]/(f1, . . . , fr) = L[[Z1]] [[Z2]]/(f1, . . . , fr)

and this also holds with the field L replaced by its extension field E.

Since L[[Z]]/P̃ is a homomorphic image of L[[Z]]/(f1, . . . , fr), it follows that

L[[Z]]/P̃ is integral (and finite) over L[[Z1]]. This yields the commutative diagram:

(2.3.0)

E[[Z1]]−→E[[Z1]] [[Z2]]/P̃E[[Z]]

↑ ↑

L[[Z1]]−→ L[[Z1]] [[Z2]]/P̃
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with injective integral (finite) horizontal maps. Recall that E is the subfield of

K((y)) obtained by adjoining γ2, . . . , γn−r to the field L. Thus the vertical maps

of (2.3.0) are faithfully flat.

Let q := (z2 − γ2z1, . . . , zn−r − γn−rz1)E[[Z1]] ∈ Spec(E[[Z1]]) and let W̃ be a

minimal prime of the ideal (P̃ ,q)E[[Z]]. Since

f1, . . . , fr, z2 − γ2z1, . . . , zn−r − γn−rz1

is a regular sequence in T [[Z]] the prime ideal W := W̃ ∩T [[Z]] has height n−1. Let

Q̃ be a minimal prime of W̃K((y))[[Z]] and let Q := Q̃∩R. Then W = Q∩T [[Z]],

P ⊂ Q ⊂ ZR = XR, and pictorially we have:

(W̃ ) ⊆ Q̃ ⊂ K((y))[[Z]]

R := K[[y, Z]]

P = ({fj , gk})R ⊆ Q ⊂ R

D := K[[y, Z1]] [Z2](Z)

P1 = ({fj , gk})D ⊂ D

(P̃ ,q) ⊆ W̃ ⊂ E[[Z]]

(P2) ⊆ P̃ ⊂ L[[Z]]

P2 = ({fj , gk}) ⊂ S[[Z1]] [Z2](Z)

W ⊂ T [[Z]]

S[[Z]]
L[[Z1]] [Z2](Z)

q ⊂ E[[Z1]]

L[[Z1]]

Notice that q is a prime ideal of height n− r − 1. Also, since K((y))[[Z]] is flat

over K[[y, Z]] = R, we have htQ = n − 1 and dim(R/Q) = 2. We clearly have

P2 ⊆W ∩ S[[Z1]] [Z2](Z).

2.3.1 Claim. q ∩ L[[Z1]] = (0).

To show this we argue as in [7]: Suppose that

h =
∑
m∈N

Hm ∈ q ∩ L[[z1, . . . , zn−r]],

where Hm ∈ L[z1, . . . , zn−r] is a homogeneous polynomial of degree m:

Hm =
∑
|(i)|=m

c(i)z
i1
1 . . . z

in−r
n−r ,
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where (i) := (i1, . . . , in−r) ∈ Nn−r, |(i)| := i1 + · · · + in−r and c(i) ∈ L. Consider

the E-algebra homomorphism π : E[[Z1]] → E[[z1]] defined by π(z1) = z1 and

π(zi) = γiz1 for 2 ≤ i ≤ n− r. Then kerπ = q, and for each m ∈ N:

π(Hm) = π(
∑
|(i)|=m

c(i)z
i1
1 . . . z

in−r
n−r ) =

∑
|(i)|=m

c(i)γ
i2
2 . . . γ

in−r
n−r z

m
1

and

π(h) =
∑
m∈N

π(Hm) =
∑
m∈N

∑
|(i)|=m

c(i)γ
i2
2 . . . γ

in−r
n−r z

m
1 .

Since h ∈ q, π(h) = 0. Since π(h) is a power series in E[[z1]], each of its coefficients

is zero, that is, for each m ∈ N,∑
|(i)|=m

c(i)γ
i2
2 . . . γ

in−r
n−r = 0.

Since the γi are algebraically independent over L, each c(i) = 0. Therefore h = 0,

and so q ∩ L[[Z1]] = (0). This proves Claim 2.3.1.

Using the commutativity of the displayed diagram (2.3.0) and that the horizonal

maps of this diagram are integral extensions, we deduce that (W̃ ∩E[[Z1]]) = q, and

q∩L[[Z1]] = (0) implies W̃ ∩L[[Z1]] = (0). We conclude that Q∩S[[Z]] = P ∩S[[Z]]

and therefore Q ∩R0 = P ∩R0. �

We record the following corollary.

2.4 Corollary. Let K be a field and let R = K[[y,X]], where X = {x1, . . . , xn}
and y are independent variables over K. Assume P ∈ SpecR is such that:

(i) P ⊆ (x1, . . . , xn)R and

(ii) dim(R/P ) > 2.

Then there is a prime ideal Q ∈ SpecR so that

(1) P ⊂ Q ⊂ (x1, . . . , xn)R,

(2) dim(R/Q) = 2, and

(3) P ∩K[y](y)[[X]] = Q ∩K[y](y)[[X]].

In particular, P ∩K[[x1, . . . , xn]] = Q ∩K[[x1, . . . , xn]].

Proof. With notation as in Theorem 2.3, let V = K[y](y).

3. Weierstrass implications for the ring B = K[[X]] [Y ](X,Y ).

As before K denotes a field, n and m are positive integers, and X = {x1, . . . , xn}
and Y = {y1, . . . , ym} denote sets of variables over K. Let B := K[[X]] [Y ](X,Y ) =

K[[x1, . . . , xn]] [y1, . . . , ym](x1,...,xn,y1,...,ym). The completion of B is B̂ = K[[X,Y ]].
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3.1 Theorem. With the notation as above, every ideal Q of B̂ = K[[X,Y ]] maxi-

mal with the property that Q ∩B = (0) is a prime ideal of height n+m− 2.

Proof. Suppose first that Q is such an ideal. Then clearly Q is prime. Matsumura

shows in [7, Theorem 3] that the dimension of the generic formal fiber of B is at

most n+m− 2. Therefore htQ ≤ n+m− 2.

Now suppose P ∈ Spec B̂ is an arbitrary prime ideal of height r < n + m − 2

with P ∩ B = (0). We construct a prime Q ∈ Spec B̂ with P ⊂ Q, Q ∩ B = (0),

and htQ = n+m− 2. This will show that all prime ideals maximal in the generic

fiber have height n+m− 2.

For the construction of Q we consider first the case where P 6⊆ XB̂. Then there

exists a prime element f ∈ P that contains a term θ := yi11 · · · yimm , where the ij ’s

are nonnegative integers and at least one of the ij is positive. Notice that m ≥ 2

for otherwise with y = y1 we have f ∈ P contains a term yi. By Weierstrass it

follows that f = gε, where g ∈ K[[X]] [y] is a nonzero monic polynomial in y and ε

is a unit of B̂. But g ∈ P and g ∈ B implies P ∩ B 6= (0), a contradiction to our

assumption that P ∩B = (0).

For convenience we now assume that the last exponent im appearing in θ above

is positive. We apply a change of variables: ym → tm := ym and, for 1 ≤ ` < m, let

y` → t` := y` + tm
e` , where the e` are chosen so that f , expressed in the variables

t1, . . . , tm, contains a term tqm, for some positive integer q. This change of variables

induces an automorphism of B. By Weierstrass f = g1h, where h is a unit in B̂

and g1 ∈ K[[X, t1, . . . , tm−1]] [tm] is monic in tm. Set P1 = P ∩K[[X, t1, . . . , tm−1]].

If P1 ⊆ XK[[X, t1, . . . , tm−1]], we stop the procedure and take s = m− 1 in what

follows. If P1 6⊆ XK[[X, t1, . . . , tm−1]], then there exists a prime element f̃ ∈ P1

that contains a term t1
j1 · · · tm−1

jm−1 , where the jk’s are nonnegative integers and

at least one of the jk is positive. We then repeat the procedure using the prime

ideal P1. That is, we replace t1, . . . tm−1 with a change of variables so that a prime

element of P1 contains a term monic in some one of the new variables. After

a suitable finite iteration of changes of variables, we obtain an automorphism of

B̂ that restricts to an automorphism of B and maps y1, . . . , ym 7→ z1, . . . , zm.

Moreover, there exist a positive integer s ≤ m − 1 and elements g1, . . . gm−s ∈ P
such that
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g1 ∈ K[[X, z1, . . . , zm−1]] [zm] is monic in zm

g2 ∈ K[[X, z1, . . . , zm−2]] [zm−1] is monic in zm−1, etc

...

gm−s ∈ K[[X, z1, . . . , zs]] [zs+1] is monic in zs+1,

and such that, for Rs := K[[X, z1, . . . , zs]] and Ps := P ∩Rs, we have Ps ⊆ XRs.
As in the proof of Proposition 2.2 we replace the regular sequence g1, . . . .gm−s

by a regular sequence f1, . . . , fm−s so that:

f1 ∈ Rs[zs+1, . . . , zm] is monic in zm

f2 ∈ Rs[zs+1, . . . , zm−1] is monic in zm−1, etc

...

fm−s ∈ Rs[zs+1] is monic in zs+1.

and (g1, . . . .gm−s)B̂ = (f1, . . . , fm−s)B̂.

Let G := K[[X, z1, . . . , zs]] [zs+1, . . . , zm] = Rs[zs+1, . . . , zm]. By Proposition

2.2, P is extended from G. Let q := P ∩ G and extend f1, . . . , fm−s to a gen-

erating system of q, say, q = (f1, . . . , fm−s, h1, . . . , ht)G. For integers k, ` with

1 ≤ k ≤ m − s and 1 ≤ ` ≤ t, express the fk and h` in G as power series in

B̂ = K[[z1]][[z2, . . . , zm]] [[X]] with coefficients in K[[z1]]:

fk =
∑

ak(i)(j)z
i2
2 . . . zimm xj11 . . . xjnn and h` =

∑
b`(i)(j)z

i2
2 . . . zimm xj11 . . . xjnn ,

where ak(i)(j), b`(i)(j) ∈ K[[z1]], (i) = (i2, . . . , im) and (j) = (j1, . . . , jn). The set

∆ = {ak(i)(j), b`(i)(j)} is countable. We define V := K(z1,∆) ∩K[[z1]]. Then V is

a discrete valuation domain with completion K[[z1]] and K((z1)) has uncountable

transcendence degree over Q(V ). Let Vs := V [[X, z2, . . . , zs]] ⊆ Rs. Notice that

Rs = V̂s, the completion of Vs. Also f1, . . . , fm−s ∈ Vs[zs+1, . . . , zm] ⊆ G and

(f1, . . . , fm−s)G ∩Rs = (0). Furthermore the extension

Vs := V [[X, z2, . . . , zs]] ↪→ Vs[zs+1, . . . , zm]/(f1, . . . , fm−s)

is finite. Set P0 := P ∩ Vs. Then P0 ⊆ XRs ∩ Vs = XVs.
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Consider the commutative diagram:

(3.1.1)

Rs := K[[X, z1, . . . , zs]]−→Rs[[zs+1, . . . , zm]]/(f1, . . . , fm−s)

↑ ↑

Vs := V [[X, z2, . . . , zs]]−→Vs[zs+1, . . . , zm]/(f1, . . . , fm−s) .

The horizontal maps are injective and finite and the vertical maps are completions.

The prime ideal q̄ := PRs[[zs+1, . . . , zm]]/(f1, . . . , fm−s) lies over Ps in Rs. By

assumption Ps ⊆ (X)Rs and by Theorem 2.3 there is a prime ideal Qs of Rs

such that Ps ⊆ Qs ⊆ (X)Rs, Qs ∩ Vs = Ps ∩ Vs = P0, and dim(Rs/Qs) = 2.

There is a prime ideal Q̄ in Rs[[zs+1, . . . , zm]]/(f1, . . . , fm−s) lying over Qs with

q̄ ⊆ Q̄ by the “going-up theorem” [8, Theorem 9.4]. Let Q be the preimage in

B̂ = K[[X, z1, . . . , zm]] of Q̄. We show the rings and ideals of Theorem 3.1 below.

B̂ = K[[X,Y ]] = K[[X, z1, . . . , zm]] = Rs[[zs+1, . . . , zm]]

(q, Qs)B̂ ⊆ Q
P * XB̂

G := Rs[zs+1, . . . , zm]

q := P ∩G
q = ({fi, hj})G

fi /∈ Rs := K[[X, z1, . . . , zs]]

Ps ⊆ Qs ⊂ Rs
Ps := P ∩Rs ⊆ XRs

V̂ = K[[z1]]Vs := V [[X, z2, . . . , zs]]

P0 := P ∩ Vs

V := K(z1,∆) ∩K[[z1]]

Then Q has height n + s − 2 + m − s = n + m − 2. Moreover, from diagram

(3.1.1), it follows that Q and P have the same contraction to Vs[zs+1, . . . , zm]. This

implies that Q ∩B = (0) and completes the proof in the case where P 6⊆ XB̂.

In the case where P ⊆ XB̂, let h1, . . . , ht ∈ B̂ be a finite set of generators of

P , and as above, let b`(i)(j) ∈ K[[z1]] be the coefficients of the h`’s. Consider the

countable set ∆ = {b`(i)(j)} and the valuation domain V := K(z1,∆)∩K[[z1]]. Set

P0 := P ∩ V [[X, z2, . . . , zm]]. By Theorem 2.3, there exists a prime ideal Q of B̂ =
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K[[X, z1, . . . , zm]] of height n+m−2 such that P ⊂ Q and Q∩V [[X, z2, . . . , zm]] =

P ∩ V [[X, z2, . . . , zm]] = P0. Therefore Q ∩ B = (0). This completes the proof of

Theorem 3.1. �

4. Weierstrass implications for the ring C = K[Y ](Y )[[X]].

As before K denotes a field, n and m are positive integers, and X = {x1, . . . , xn}
and Y = {y1, . . . , ym} denote sets of variables over K. Consider the ring C =

K[y1, . . . , ym](y1,...,ym)[[x1, . . . , xn]] = K[Y ](Y )[[X]]. Then the completion of C is

Ĉ = K[[Y,X]].

4.1 Theorem. With notation as above, let Q ∈ Spec Ĉ be maximal with the prop-

erty that Q ∩ C = (0). Then htQ = n+m− 2.

Proof. Let B = K[[X]] [Y ](X,Y ) ⊂ C. If P ∈ Spec Ĉ = Spec B̂ and P ∩ C = (0),

then P ∩B = (0), so htP ≤ n+m− 2 by Theorem 3.1. Consider a nonzero prime

P ∈ Spec Ĉ with P ∩C = (0) and htP = r < n+m− 2. If P ⊆ XĈ then Theorem

2.3 implies the existence of Q ∈ Spec Ĉ with htQ = n + m − 2 such that P ⊂ Q

and Q ∩ C = (0).

Assume that P is not contained in XĈ and consider the ideal J := (P,X)Ĉ.

Since C is complete in the XC-adic topology, [9, Lemma 2] implies that if J is

primary for the maximal ideal of Ĉ, then P is extended from C. Since we are

assuming P ∩ C = (0), J is not primary for the maximal ideal of Ĉ and we have

htJ = n + s < n + m, where 0 < s < m. Let W ∈ Spec Ĉ be a minimal prime

of J such that htW = n + s. Let W0 = W ∩ K[[Y ]]. Then W = (W0,X)Ĉ

and W0 is a prime ideal of K[[Y ]] with htW0 = s. By Proposition 2.2 applied to

K[[Y ]] and the prime ideal W0 ∈ SpecK[[Y ]], there exists a change of variables

Y 7→ Z with y1 7→ z1, . . . , ym 7→ zm and elements f1, . . . , fs ∈ W0 so that with

Z1 = {z1, . . . , zm−s}, we have

f1 ∈ K[[Z1]] [zm−s+1, . . . , zm] is monic in zm

f2 ∈ K[[Z1]] [zm−s+1, . . . , zm−1] is monic in zm−1, etc

...

fs ∈ K[[Z1]] [zm−s+1] is monic in zm−s+1.

Now z1, . . . , zm−s, f1, . . . , fs is a regular sequence in K[[Z]] = K[[Y ]]. Let T =

{tm−s+1, . . . , tm} be a set of additional variables and consider the map:

ϕ : K[[Z1, T ]] −→ K[[z1, . . . , zm]]
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defined by zi 7→ zi for all 1 ≤ i ≤ m − s and tm−i+1 7→ fi for all 1 ≤ i ≤ s. The

embedding ϕ is finite (and free) and so is the extension to power series rings in X:

ρ : K[[Z1, T ]] [[X]] −→ K[[z1, . . . , zm]] [[X]] = Ĉ.

SinceW ∈ Spec Ĉ is of height n+s, so is its contraction ρ−1(W ) ∈ SpecK[[Z1, T,X]].

Moreover ρ−1(W ) contains (T,X)K[[Z1, T,X]], a prime ideal of height n+s. There-

fore ρ−1(W ) = (T,X)K[[Z1, T,X]]. By construction, P ⊆ W which yields that

ρ−1(P ) ⊆ (T,X)K[[Z1, T,X]].

To complete the proof we construct a suitable base ring related to C. Consider

the expressions for the fi’s as power series in z2, . . . , zm with coefficients in K[[z1]]:

fj =
∑

aj(i)z
i2
2 . . . zimm ,

where (i) := (i2, . . . , im), 1 ≤ j ≤ s, aj(i) ∈ K[[z1]]. Also consider a finite generating

system g1, . . . , gq for P and expressions for the gk, where 1 ≤ k ≤ q, as power series

in z2, . . . , zm, x1, . . . , xn with coefficients in K[[z1]]:

gk =
∑

bk(i)(`)z
i2
2 . . . zimm x`11 . . . x`nn ,

where (i) := (i2, . . . , im), (`) := (`1, . . . , `n), and bk(i)(`) ∈ K[[z1]]. We take the

subset ∆ = {aj(i), bk(i)(`)} of K[[z1]] and consider the discrete valuation domain:

V := K(z1,∆) ∩K[[z1]].

Since V is countably generated over K(z1), the field K((z1)) has uncountable tran-

scendence degree over Q(V ) = K(z1,∆). Moreover, by construction the ideal P is

extended from V [[z2, . . . , zm]] [[X]]. Consider the embedding:

ψ : V [[z2, . . . , zm−s, T ]] −→ V [[z2, . . . , zm]],

which is the restriction of ϕ above, so that zi 7→ zi for all 2 ≤ i ≤ m − s and

tm−i+1 7→ fi for all i with 1 ≤ i ≤ s.
Let σ be the extension of ψ to the power series rings:

σ : V [[z2, . . . , zm−s, T ]] [[X]] −→ V [[z2, . . . , zm]] [[X]]

with σ(xi) = xi for all i with 1 ≤ i ≤ n.
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Notice that ρ defined above is the completion σ̂ of the map σ, that is, the

extension of σ to the completions. Consider the commutative diagram:

(4.1.0)

K[[Z1, T ]] [[X]]
σ̂=ρ−−−−→ K[[Z]] [[X]] = Ĉx x

V [[z2, . . . , zm−s, T ]] [[X]]
σ−−−−→ V [[z2, . . . , zm]] [[X]]

where σ̂ = ρ is a finite map.

Recall that ρ−1(W ) = (T,X)K[[Z1, T,X]], and so ρ−1(P ) ⊆ (T,X)K[[Z1, T,X]]

by Diagram 4.1.0. By Theorem 2.3, there exists a prime ideal Q0 of the ring

K[[Z1, T,X]] such that ρ−1(P ) ⊆ Q0, htQ0 = n+m− 2, and

Q0 ∩ V [[z2, . . . , zm−s, T ]] [[X]] = ρ−1(P ) ∩ V [[z2, . . . , zm−s, T ]] [[X]].

By the “going-up theorem” [8, Theorem 9.4], there is a prime ideal Q ∈ Spec Ĉ

that lies over Q0 and contains P . Moreover, Q also has height n + m − 2. The

commutativity of diagram (4.1.0) implies that

P1 := P ∩ V [[z2, . . . , zm−s, T ]] [[X]] ⊆ Q1 := Q ∩ V [[z2, . . . , zm−s, T ]] [[X]].

Consider the finite homomorphism:

λ : V [[z2, . . . , zm−s]] [T ](Z1,T )[[X]] −→ V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]]

(determined by ti 7→ fi for 1 ≤ i ≤ m) and the commutative diagram:

V [[z2, . . . , zm−s]] [[T ]] [[X]]
σ−−−−→ V [[z2, . . . , zm]] [[X]]x x

V [[z2, . . . , zm−s]] [T ](Z1,T )[[X]]
λ−−−−→ V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]].

Since Q ∩ V [[z2, . . . , zm−s, T ]] [[X]] = P ∩ V [[z2, . . . , zm−s, T ]] [[X]] and since λ

is a finite map we conclude that

Q1 ∩ V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]]

= P1 ∩ V [[z2, . . . , zm]] [zm−s+1, . . . , zm](Z)[[X]].

Since C ⊆ V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]], we obtain that Q ∩ C =

P ∩ C = (0). This completes the proof of Theorem 4.1. �
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4.2 Remark. With B and C as in Sections 3 and 4, we have

B = K[[X]] [Y ](X,Y ) ↪→ K[Y ](Y )[[X]] = C and B̂ = K[[X,Y ]] = Ĉ.

Thus for P ∈ SpecK[[X,Y ]], if P ∩ C = (0), then P ∩ B = (0). By Theorems

3.1 and 4.1, each prime of K[[X,Y ]] maximal in the generic formal fiber of B or C

has height n+m− 2. Therefore each P ∈ SpecK[[X,Y ]] maximal with respect to

P ∩C = (0) is also maximal with respect to P ∩B = (0). However, if n+m ≥ 3, the

generic fiber of B ↪→ C is nonzero [4], so there exist primes of K[[X,Y ]] maximal

in the generic formal fiber of B that are not in the generic formal fiber of C.

5. Subrings of the power series ring K[[z, t]].

In this section we establish properties of certain subrings of the power series

ring K[[z, t]] that will be useful in considering the generic formal fiber of localized

polynomial rings over the field K.

5.1. Notation. Let K be a field and let z and t be independent variables over K.

Consider countably many power series:

αi(z) =
∞∑
j=0

aijz
j ∈ K[[z]]

with coefficients aik ∈ K. Let s be a positive integer and let ω1, . . . , ωs ∈ K[[z, t]]

be power series in z and t, say:

ωi =
∞∑
j=0

βijt
j , where βij(z) =

∞∑
k=0

bijkz
k ∈ K[[z]] and bijk ∈ K,

for each i with 1 ≤ i ≤ s. Consider the subfield K(z, {αi}, {βij}) of K((z)) and the

discrete rank-one valuation domain

V := K(z, {αi}, {βij}) ∩K[[z]].

The completion of V is V̂ = K[[z]]. Assume that ω1, . . . , ωr are algebraically

independent over Q(V )(t) and that the elements ωr+1, . . . , ωs are algebraic over

the field Q(V )(t, {ωi}ri=1). Notice that the set {αi} ∪ {βij} is countable, and that

also the set of coefficients of the αi and βij

∆ := {aij} ∪ {bijk}
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is a countable subset of the field K. Let K0 denote the prime subfield of K and

let F denote the algebraic closure in K of the field K0(∆). The field F is count-

able and the power series αi(z) and βij(z) are in F [[z]]. Consider the subfield

F (z, {αi}, {βij}) of F ((z)) and the discrete rank-one valuation domain

V0 := F (z, {αi}, {βij}) ∩ F [[z]].

The completion of V0 is V̂0 = F [[z]]. Since Q(V0)(t) ⊆ Q(V )(t), the elements

ω1, . . . , ωr are algebraically independent over the field Q(V0)(t).

Consider the subfield E0 := Q(V0)(t, ω1, . . . , ωr) of Q(V0[[t]]) and the subfield

E := Q(V )(t, ω1, . . . , ωr) of Q(V [[t]]). A result of Valabrega [11] implies that the

integral domains:

(5.1.1) D0 := E0 ∩ V0[[t]] and D := E ∩ V [[t]]

are two-dimensional regular local rings with completions D̂0 = F [[z, t]] and D̂ =

K[[z, t]], respectively. Moreover, Q(D0) = E0 is a countable field.

5.2 Proposition. Let D0 be as defined in (5.1). Then there exists a power series

γ ∈ zF [[z]] such that the prime ideal (t− γ)F [[z, t]] ∩D0 = (0), i.e., (t− γ)F [[z, t]]

is in the generic formal fiber of D0.

Proof. Since D0 is countable there are only countably many prime ideals in D0 and

since D0 is Noetherian there are only countably many prime ideals in D̂0 = F [[z, t]]

that lie over a nonzero prime of D0. There are uncountably many primes in F [[z, t]],

which are generated by elements of the form t−σ for some σ ∈ zF [[z]]. Thus there

must exist an element γ ∈ zF [[z]] with (t− γ)F [[z, t]] ∩D0 = (0). �

For ωi = ωi(t) =
∑∞
j=0 βijt

j as in (5.1) and γ an element of zK[[z]], let ωi(γ)

denote the following power series in K[[z]]:

ωi(γ) :=
∞∑
j=0

βijγ
j ∈ K[[z]].

5.3 Proposition. Let D be as defined in (5.1.1). For an element γ ∈ zK[[z]] the

following conditions are equivalent:

(i) (t− γ)K[[z, t]] ∩D = (0).

(ii) The elements γ, ω1(γ), . . . , ωr(γ) are algebraically independent over Q(V ).
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Proof. (i)⇒ (ii): Assume by way of contradiction that the set {γ, ω1(γ), . . . , ωr(γ)}
is algebraically dependent over Q(V ) and let d(k) ∈ V be finitely many elements

such that ∑
(k)

d(k)ω1(γ)
k1 . . . ωr(γ)

krγkr+1 = 0

is a nontrivial equation of algebraic dependence for γ, ω1(γ), . . . , ωr(γ), where each

(k) = (k1 . . . , kr, kr+1) is an (r + 1)-tuple of nonnegative integers. It follows that∑
(k)

d(k)ω
k1
1 . . . ωkrr t

kr+1 ∈ (t− γ)K[[z, t]] ∩D = (0).

Since ω1, . . . , ωr are algebraically independent over Q(V )(t), we have d(k) = 0 for

all (k), a contradiction. This completes the proof that (i)⇒ (ii).

(ii) ⇒ (i): If (t− γ)K[[z, t]] ∩D 6= (0), then there exists a nonzero element

τ =
∑
(k)

d(k)ω
k1
1 . . . ωkrr t

kr+1 ∈ (t− γ)K[[z, t]] ∩ V [t, ω1, . . . , ωr].

But this implies that

τ(γ) =
∑
(k)

d(k)ω1(γ)
k1 . . . ωr(γ)

krγkr+1 = 0.

Since γ, ω1(γ), . . . , ωr(γ) are algebraically independent over Q(V ), it follows that

all the coefficients d(k) = 0, a contradiction to the assumption that τ is nonzero. �

Let γ ∈ zF [[z]] be as in Proposition 5.2 with (t− γ)F [[z, t]] ∩D0 = (0). Then:

5.4 Proposition. With notation as above, we also have (t− γ)K[[z, t]]∩D = (0),

that is, (t− γ)K[[z, t]] is in the generic formal fiber of D.

Proof. Let {ti}i∈I be a transcendence basis of K over F and let L := F ({ti}i∈I).
Then K is algebraic over L. Let {αi}, {βij} ⊂ F [[z]] be as in (5.1) and define

V1 = L(z, {αi}, {βij}) ∩ L[[z]] and D1 = Q(V1)(t, ω1, . . . , ωr) ∩ L[[z, t]].

Then V1 is a discrete rank-one valuation domain with completion L[[z]] and D1

is a two-dimensional regular local domain with completion D̂1 = L[[z, t]]. Note

that Q(V ) and Q(D) are algebraic over Q(V1) and Q(D1), respectively. Since

(t−γ)K[[z, t]]∩L[[z, t]] = (t−γ)L[[z, t]], it suffices to prove that (t−γ)L[[z, t]]∩D1 =

(0). By Proposition 5.3, it suffices to show that γ, ω1(γ), . . . , ωr(γ) are algebraically

independent over Q(V1). The commutative diagram
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F [[z]]
{ti}algebraically ind.−−−−−−−−−−−−−→ L[[z]]x x

Q(V0)
transcendence basis {ti}−−−−−−−−−−−−−−−→ Q(V1)

implies that the set {γ, ω1(γ), . . . , ωr(γ)} ∪ {ti} is algebraically independent over

Q(V0). Therefore {γ, ω1(γ), . . . , ωr(γ)} is algebraically independent over Q(V1),

which completes the proof of Proposition 5.4. �

5.5 Remark. We remark that with ωr+1, . . . , ωs algebraic over Q(V )(ω1, . . . , ωr)

as in (5.1), if we define

D̃ := Q(V )(t, ω1, . . . , ωs) ∩ V [[t]],

then again by Valabrega [11], D̃ is a two-dimensional regular local domain with

completion K[[z, t]]. Moreover, Q(D̃) is algebraic over Q(D) and (t− γ)K[[z, t]] ∩
D = (0) implies that (t− γ)K[[z, t]] ∩ D̃ = (0).

6. Weierstrass implications for the localized polynomial ring A = K[X](X).

Let n be a positive integer, let X = {x1, . . . , xn} be a set of n variables over a field

K, and let A := K[x1, . . . , xn](x1,...,xn) = K[X](X) denote the localized polynomial

ring in these n variables over K. Then the completion of A is Â = K[[X]].

6.1 Theorem. For the localized polynomial ring A = K[X](X) defined above, if Q

is an ideal of Â maximal with respect to Q ∩ A = (0), then Q is a prime ideal of

height n− 1.

Proof. Again it is clear that Q as described in the statement is a prime ideal. Also

the assertion holds for n = 1. Thus we assume n ≥ 2. By Proposition 5.4, there

exists a nonzero prime p in K[[x1, x2]] such that p ∩ K[x1, x2](x1,x2) = (0). It

follows that pÂ ∩A = (0). Thus the generic formal fiber of A is nonzero.

Let P ∈ Spec Â be a nonzero prime ideal with P ∩A = (0) and htP = r < n−1.

We construct Q ∈ Spec Â of height n − 1 with P ⊆ Q and Q ∩ A = (0). By

Proposition 2.2, there exists a change of variables x1 7→ z1, . . . , xn 7→ zn and

polynomials

f1 ∈ K[[z1, . . . , zn−r]] [zn−r+1, . . . , zn] monic in zn

f2 ∈ K[[z1, . . . , zn−r]] [zn−r+1, . . . , zn−1] monic in zn−1, etc

...

fr ∈ K[[z1, . . . , zn−r]] [zn−r+1] monic in zn−r+1,
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so that P is a minimal prime of (f1, . . . , fr)Â and P is extended from

R := K[[z1, . . . , zn−r]] [zn−r+1, . . . , zn].

Let P0 := P ∩R and extend f1, . . . , fr to a system of generators of P0, say:

P0 = (f1, . . . , fr, g1, . . . , gs)R.

Using an argument similar to that in the proof of Theorem 2.3, write

fj =
∑

(i)∈Nn−1

aj,(i)z
i2
2 . . . zinn and gk =

∑
(i)∈Nn−1

bk,(i)z
i2
2 . . . zinn ,

where aj,(i), bk,(i) ∈ K[[z1]]. Let

V0 := K(z1, aj,(i), bk,(i)) ∩K[[z1]].

Then V0 is a discrete rank-one valuation domain with completion K[[z1]], and

K((z1)) has uncountable transcendence degree over the field of fractions Q(V0)

of V0. Let γ3, . . . , γn−r ∈ K[[z1]] be algebraically independent over Q(V0) and

define

q := (z3 − γ3z2, z4 − γ4z2, . . . , zn−r − γn−rz2)K[[z1, . . . , zn−r]].

We see that q ∩ V0[[z2, . . . , zn−r]] = (0) by an argument similar to that in [7] and

in Claim 2.3.1. Let R1 := V0[[z2, . . . , zn−r]] [zn−r+1, . . . , zn], let P1 := P ∩R1 and

consider the commutative diagram:

K[[z1, . . . , zn−r]]−→R/P0

↑ ↑

V0[[z2, . . . , zn−r]]−→R1/P1

The horizontal maps are injective finite integral extensions. Let W be a minimal

prime of (q, P )Â. Then htW = n− 2 and q ∩ V0[[z2, . . . , zn−r]] = (0) implies that

W ∩ R1 = P1. We have found a prime ideal W ∈ Spec Â such that htW = n − 2,

W ∩A = (0) and P ⊆W . Since f1, . . . , fr ∈W and since Â = K[[z1, . . . , zn]] is the

(f1, . . . , fr)-adic completion of K[[z1, . . . , zn−r]] [zn−r+1, . . . , zn], the prime ideal W

is extended from K[[z1, . . . , zn−r]] [zn−r+1, . . . , zn].

We claim that W is actually extended from K[[z1, z2]] [z3, . . . , zn]. To see this

let g ∈W ∩K[[z1, . . . , zn−r]] [zn−r+1, . . . , zn] and write:

g =
∑
(i)

a(i)z
in−r+1

n−r+1 . . . z
in
n ∈ K[[z1, . . . , zn−r]] [zn−r+1, . . . , zn],
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where the sum is over all (i) = (in−r, . . . , in) and a(i) ∈ K[[z1, . . . , zn−r]]. For all

a(i) by Weierstrass we can write

a(i) = (zn−r − γn−rz2)h(i) + q(i),

where h(i) ∈ K[[z1, . . . zn−r]] and q(i) ∈ K[[z1, . . . , zn−r−1]]. If n− r > 3, we write

q(i) = (zn−r−1 − γn−r−1z2)h
′
(i) + q′(i),

where h′(i) ∈ K[[z1, . . . zn−r−1]] and q′(i) ∈ K[[z1, . . . , zn−r−2]]. In this way we

replace a generating set for W in K[[z1, . . . , zn−r]] [zn−r+1, . . . , zn] by a generating

set for W in K[[z1, z2]] [z3, . . . , zn].

In particular, we can replace the elements f1, . . . , fr by elements:

h1 ∈ K[[z1, z2]] [z3, . . . , zn] monic in zn

h2 ∈ K[[z1, z2]] [z3, . . . , zn−1] monic in zn−1, etc

...

hr ∈ K[[z1, z2]] [z3 . . . , zn−r+1] monic in zn−r+1

and set hr+1 = z3−γ3z2, . . . , hn−2 = zn−r−γn−rz2, and then extend to a generating

set h1, . . . , hn+s−2 for

W0 = W ∩K[[z1, z2]] [z3, . . . , zn]

such that W0Â = W . Consider the coefficients in K[[z1]] of the hj :

hj =
∑
(i)

cj(i)z
i2
2 . . . zinn

with cj(i) ∈ K[[z1]]. The set {cj(i)} is countable. Define

V := Q(V0)({cj(i)}) ∩K[[z1]]

Then V is a rank-one discrete valuation domain that is countably generated over

K[z1](z1) and W is extended from V [[z2]] [z3, . . . , zn].

We may also write each hi as a polynomial in z3, . . . , zn with coefficients in

V [[z2]]:

h =
∑

ω(i)z
i3
3 . . . zinn
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with ω(i) ∈ V [[z2]] ⊆ K[[z1, z2]]. By the result of Valabraga [11], the integral

domain

D := Q(V )(z2, {ω(i)}) ∩K[[z1, z2]]

is a two-dimensional regular local domain with completion D̂ = K[[z1, z2]]. Let

W1 := W ∩D[z3, . . . , zn]. Then W1Â = W . We have shown in Section 5 that there

exists a prime element q ∈ K[[z1, z2]] with qK[[z1, z2]] ∩ D = (0). Consider the

finite extension

D −→ D[z3, . . . , zn]/W1.

Let Q ∈ Spec Â be a minimal prime of (q,W )Â. Since htW = n − 2 and q 6∈ W ,

htQ = n− 1. Moreover, P ⊆W implies P ⊆ Q. We claim that

Q ∩D[z3, . . . , zn] = W1 and therefore Q ∩A = (0).

To see this consider the commutative diagram:

K[[z1, z2]]−→ K[[z1, . . . , zn]]/W

↑ ↑

D −→ D[z3, . . . , zn]/W1 ,

which has injective finite horizontal maps. Since qK[[z1, z2]] ∩D = (0), it follows

that Q ∩D[z3, . . . , zn] = W1. This completes the proof of Theorem 6.1. �

7. Generic fibers of power series ring extensions.

In this section we apply the Weierstrass machinery from Section 2 to the generic

fiber rings of power series extensions.

7.1 Theorem. Let n ≥ 2 be an integer and let y, x1, . . . , xn be variables over the

field K. Let X = {x1, . . . , xn}. Consider the formal power series ring R1 = K[[X]]

and the extension R1 ↪→ R1[[y]] = R. Let U = R1 \ (0). For P ∈ SpecR such that

P ∩ U = ∅ we have:

(1) If P 6⊆ XR, then dimR/P = n and P is maximal in the generic fiber U−1R.

(2) If P ⊆ XR, then there exists Q ∈ SpecR such that P ⊆ Q, dimR/Q = 2

and Q is maximal in the generic fiber U−1R.

If n > 2 for each prime ideal Q maximal in the generic fiber U−1R, we have

dimR/Q =

{
n and R1 ↪→ R/Q is finite, or

2 and Q ⊂ XR.
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Proof. Let P ∈ SpecR be such that P ∩U = ∅ or equivalently P ∩R1 = (0). Then

R1 embeds in R/P . If dim(R/P ) ≤ 1, then the maximal ideal of R1 generates an

ideal primary for the maximal ideal of R/P . By [8, Theorem 8.4] R/P is finite over

R1, and so dimR1 = dim(R/P ), a contradiction. Thus dim(R/P ) ≥ 2.

If P 6⊆ XR, then there exists a prime element f ∈ P that contains a term ys for

some positive integer s. By Weierstrass, it follows that f = gε, where g ∈ K[[X]] [y]

is a nonzero monic polynomial in y and ε is a unit of R. We have fR = gR ⊆ P is

a prime ideal and R1 ↪→ R/gR is a finite integral extension. Since P ∩ R1 = (0),

we must have gR = P .

If P ⊆ XR and dim(R/P ) > 2, then Theorem 2.3 implies there exists Q ∈ SpecR

such that dim(R/Q) = 2, P ⊂ Q ⊂ XR and P ∩ R1 = (0) = Q ∩ R1, and so P

is not maximal in the generic fiber. Thus Q ∈ SpecR maximal in the generic

fiber of R1 ↪→ R implies that the dimension of dim(R/Q) is 2, or equivalently that

htQ = n− 1. �

7.2 Theorem. Let n and m be positive integers, and let X = {x1, . . . , xn} and

Y = {y1, . . . , ym} be sets of independent variables over the field K. Consider

the formal power series rings R1 = K[[X]] and R = K[[X,Y ]] and the extension

R1 ↪→ R1[[Y ]] = R. Let U = R1 \ (0). Let Q ∈ SpecR be maximal with respect to

Q ∩ U = ∅. If n = 1, then dimR/Q = 1 and R1 ↪→ R/Q is finite.

If n ≥ 2, there are two possibilities

(1) R1 ↪→ R/Q is finite, in which case dimR/Q = dimR1 = n, or

(2) dimR/Q = 2.

Proof. First assume n = 1, and let x = x1. Since Q is maximal with respect to

Q ∩ U = ∅, for each P ∈ SpecR with Q ( P we have P ∩ U is nonempty and

therefore x ∈ P . It follows that dimR/Q = 1, for otherwise,

Q =
⋂
{P | P ∈ SpecR and Q ( P },

which implies x ∈ Q. By [8, Theorem 8.4], R1 ↪→ R/Q is finite.

It remains to consider the case where n ≥ 2. We proceed by induction on m.

Theorem 7.1 yields the assertion for m = 1. Suppose Q ∈ SpecR is maximal with

respect to Q∩U = ∅. As in the proof of Theorem 7.1, we have dimR/Q ≥ 2. If Q ⊆
(X, y1, . . . , ym−1)R, then by Theorem 2.3 with R0 = K[ym](ym)[[X, y1, . . . , ym−1]],

there exists Q′ ∈ SpecR with Q ⊆ Q′, dimR/Q′ = 2, and Q∩R0 = Q′ ∩R0. Since
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R1 ⊆ R0, we have Q′ ∩ U = ∅. Since Q is maximal with respect to Q ∩ U = ∅, we

have Q = Q′, so dimR/Q = 2.

Otherwise, if Q 6⊆ (X, y1, . . . , ym−1)R, then there exists a prime element f ∈ Q
that contains a term ysm for some positive integer s. Let R2 = K[[X, y1, . . . , ym−1]].

By Weierstrass, it follows that f = gε, where g ∈ R2[ym] is a nonzero monic

polynomial in ym and ε is a unit of R. We have fR = gR ⊆ Q is a prime ideal and

R2 ↪→ R/gR is a finite integral extension. Thus R2/(Q∩R2) ↪→ R/Q is an integral

extension. It follows that Q ∩ R2 is maximal in R2 with respect to being disjoint

from U . By induction dimR2/(Q∩R2) is either n or 2. Since R/Q is integral over

R2/(Q ∩R2), dimR/Q is either n or 2. �

7.3 Remark. In the notation of Theorem 1.1, Theorem 7.2 proves the second part

of the theorem, since dimR = n +m. Thus if n = 1, htQ = m. If n ≥ 2, the two

cases are (i) htQ = m and (ii) htQ = n+m− 2, as in (a) and (b) of Theorem 1.1.

Using the TGF terminology discussed in the introduction, we have the following

corollary to Theorem 7.2.

7.4 Corollary. With the notation of Theorem 7.2, assume P ∈ SpecR is such that

R1 ↪→ R/P =: S is a TGF extension. Then dimS = dimR1 = n or dimS = 2.
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