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Things which are seen are temporal,
but the things which are not seen are eternal.

B. Stewart and P.G. Tait



4-Manifold basic facts
Invariants

I Euler characteristic: e(X ) =
∑4

i=0(−1)j rk(H j(M; Z))

I Intersection form: H2(X ; Z)⊗ H2(X ; Z)→ Z;
α · β = (PD(α) ∪ PD(β))[X ]
is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X ) = Signature of intersection form
= b+ − b−

Type: Even if α · α even for all α; otherwise Odd

I (Freedman, 1980) The intersection form classifies simply
connected topological 4-manifolds: There is one
homeomorphism type if the form is even; there are two if odd
— exactly one of which has X × S1 smoothable.

I (Donaldson, 1982) Two simply connected smooth 4-manifolds
are homeomorphic ⇐⇒ they have the same e, sign, and type.
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Smooth structures

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct
smooth 4-manifolds which are homeomorphic to it.
In contrast, for n > 4, every n-manifold has only finitely many distinct smooth
n-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this
conjecture

Seiberg-Witten Invariants
SWX : {characteristic elements of H2(X ; Z)} → Z

I SW(k) 6= 0 for only finitely many k: called basic classes.

I For each surface Σ ⊂ X with g(Σ) > 0 and Σ · Σ ≥ 0

2g(Σ)− 2 ≥ Σ · Σ + |Σ · k|

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

Basic classes = smooth analogue of the canonical class of a complex surface

I SWX (κ) = ±1, κ = c1(symplectic manifold with b+ > 1) [Taubes].

I View SW invariant as element of Z(H2(X )), SWX =
P

SWX (k) tk
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Oriented minimal (π1 = 0) 4-manifolds with SW 6= 0

Geography

c = 3sign + 2e
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Elliptic Surfaces E(n)
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c = 8χ

sign>0 sign < 0
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c = χ− 3

symplectic with
one SW basic class
χ− 3 ≤ c ≤ 2χ− 6

symplectic with
(χ− c − 2) SW basic classes

0 ≤ c ≤ (χ− 3)

c < 0 ?

c > 9χ ?

All lattice points have ∞ smooth structures
except possibly near c = 9χ and on χ = 1

For n > 4 TOP n-manifolds have

finitely many smooth structures

CP2•

CP2#k CP2

1 ≤ k ≤ 9

••
••
••
••
•• S2 × S2
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Nullhomologous Tori

I One way to try to prove the conjecture — Find a “dial” to change
the smooth structure at will.

I This dial: Surgery on nullhomologous tori

T : any self-intersection 0 torus ⊂ X , Tubular nbd NT
∼= T 2×D2.

Surgery on T : XrNT ∪ϕ T 2 ×D2, ϕ : ∂(T 2 ×D2)→ ∂(XrNT )

ϕ(pt × ∂D2) = surgery curve

Result determined by ϕ∗[pt × ∂D2] ∈ H1(∂(X rNT )) = Z3

Choose basis {α, β, [∂D2]} for H1(∂NT ) where {α, β} are pushoffs
of a basis for H1(T ).

ϕ∗[pt × ∂D2] = pα + qβ + r [∂D2]

Write X rNT ∪ϕ T 2 × D2 = XT (p, q, r)

This operation does not change e(X ) or sign(X )

Note: XT (0, 0, 1) = X
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The Morgan, Mrowka, Szabo Formula

Describes how surgery on a torus changes the Seiberg-Witten
invariant

T : torus in X with self-intersection = 0 Nbd = S1 × S1 × D2

Do (p, q, r) - surgery to get XT (p, q, r)

Roughly
SWXT (p,q,r) = p SWXT (1,0,0) + q SWXT (0,1,0) + r SWXT (0,0,1)

Example: S1× p
q -Dehn surgery on circle C in 3-manifold Y

Corresponds to (0, q, p)-surgery on the torus
T = S1 × C ⊂ X = S1 × Y to get X ′

SWX ′ = p SWX + q SWX0

where X0 = XT (0, 1, 0)
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First Application: Knot Surgery

K : Knot in S3, T : square 0 essential torus in X

I XK = X rNT ∪ S1 × (S3rNK )

Note: S1 × (S3rNK ) has the homology of T 2 × D2.

Facts about knot surgery

I If X and X rT both simply connected; so is XK

(So XK homeo to X )

I If K is fibered and X and T both symplectic; so is XK .

I SWXK
= SWX ·∆K (t2)

Conclusions

I If X , X rT , simply connected and SWX 6= 0, then there is an
infinite family of distinct manifolds all homeomorphic to X .

I X , T symplectic, K fibered ⇒ XK symplectic. So there is an
infinite family of distinct symplectic manifolds homeo X .

e.g. X = K3, SWX = 1, SWXK
= ∆K (t2)
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Knot surgery and nullhomologous tori

Knot surgery on torus T in 4-manifold X with knot K :

0

λ
m

XK
= S1x      X #

T = S  x m1

Λ = S1 × λ = nullhomologous torus — Used to change crossings

I Weakness of construction: Need T to be homologically essential

I Open conjecture: If χ(X )(= e(X )+sign(X )
4 ) > 1, then X contains a

homologically essential minimal genus torus T with trivial
normal bundle (in the complement of all the basic classes)

I If X homeomorphic to CP2 blown up at 8 or fewer points, then X
contains no such torus - so what can we do there?
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Second Application: Some Smooth Structures on E (1)

E (1) = CP2#9 CP2

Elliptic surface F : fiber (torus of square 0) NF = S1 × S1 × D2

F = S1 × f , Λ = S1 × λ

Λ: Nullhomologous torus in E(1)
Whitehead double of fiber

s lies in a section

What is the result of surgery
on Λ?

X (1/n) = S1× ( 1
n

-surgery on λ) homeo
to E(1)

SWX (1/n) = SWE(1) + nSWX0

= 0 + n (t−1 − t)

=⇒ 1
n - surgeries on Λ give infinite family of distinct manifolds

homeomorphic to E (1)
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A Surgery Duality

T : self-intersection 0 torus ⊂ X , Tubular nbd NT
∼= T 2 × D2

Basis {α, β, [∂D2]} for H1(∂NT ) {α, β}: pushoffs of basis for H1(T )

Compare two situations:

(a) T primitive, pushoff curve β ⊂ NT essential in X rT
Do S1 × p/1 - surgery on T (i.e. (0,1,p)-surgery)
⇒ Tp/1 nullhomologous in XT (p/1).

(Its meridian is β + pµT ∼ β 6∼ 0 in X rNT .)

Let β′ = surgery curve on ∂NTp/1
⊂ XT (p/1) which gives

back X

β′ bounds in XT (p/1)rNTp/1
= X rNT .

(b) T nullhomologous, β bounds in X rNT

S1 × 0/1 (i.e. nullhomologous) surgery on T gives (a).

(a) −→ (b) reduces b1 by 1 and increases H2 by a hyperbolic pair.

(b) −→ (a) does the opposite.
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Reverse Engineering

I Difficult to find useful nullhomologous tori as in applications above

Recall: SWXT (p/1)
= SWX + p SWXT (0/1)

IDEA: First construct XT (0/1) so that SWXT (0/1) 6= 0 and then
surger to reduce b1.

I Procedure to insure the existence of effective nullhomologous tori

1. Find model manifold M with same Euler number and signature as
desired manifold, but with b1 6= 0 and with SW 6= 0.

2. Find b1 disjoint essential tori in M containing generators of H1.
Surger to get manifold X with H1 = 0. Want result of each
surgery to have SW 6= 0 (except perhaps the very last).

3. X will contain a “useful” nullhomologous torus.
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Luttinger Surgery

M: symplectic manifold T : Lagrangian torus in M

Preferred framing for T : Lagrangian framing
w.r.t. which all pushoffs of T remain Lagrangian

(1/n)-surgeries w.r.t. this framing are again symplectic
(Luttinger; Auroux, Donaldson, Katzarkov)

If β = Lagrangian pushoff,
MT (±1) = (0, 1,±1)-surgery is a symplectic mfd

=⇒ if b+ > 1, MT ,β(±1) has SW 6= 0
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Families

I The SW condition
If M is symplectic and surgery tori are Lagrangian and we do
(±1)-surgeries with respect to the Lagrangian framings, each
resultant manifold will be symplectic and have SW 6= 0.

I Simple connectivity
Easier in some cases than others

I Infinite families

Above surgery process ends with

1. H1 = 0 (simply connected, if lucky) manifold X

2. Nullhomologous torus Λ ⊂ X

3. Loop λ on Λ with nullhomologous pushoff and SWXΛ,λ(1/n) all
different

=⇒ Infinite family
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Model Manifolds for CP2#k CP2

Basic Pieces: X0, X1, X2, X3X4X5

X0: Σ2 ⊂ T 2×Σ2 representing (0, 1)

X1: Σ2 ⊂ T 2×T 2# CP2 representing (2, 1)− 2e

X2: Σ2 ⊂ T 2×T 2# 2 CP2 representing (1, 1)− e1 − e2

X3: Σ2 ⊂ S2×T 2# 3 CP2 representing (1, 3)− 2e1 − e2 − e3

X4: Σ2 ⊂ S2×T 2# 4 CP2 representing (1, 2)− e1 − e2 − e3 − e4

I For a symplectic 4-manifold, X , χ(X ) = 1
4

(e + sign)(X ); c2
1 (X ) = (3 sign + 2 e)(X )

I (Fiber Sums) If X ′, X ′′ are symplectic with symplectic submanifolds Σ′, Σ′′ of square
0 and same genus g , the fiber sum X = X ′#Σ′=Σ′′X ′′ is again symplectic, and

c2
1 (X ) = c2

1 (X ′) + c2
1 (X ′′) + 8(g − 1); χ(X ) = χ(X ′) + χ(X ′′) + (g − 1)

Xr #Σ2Xs is a model for CP2#(r + s + 1) CP2

Except X0#Σ2
X0 = Σ2 × Σ2 is a model for S2 × S2

All have enough Lagrangian tori to kill H1 (π1?)

• First successful implementation of this strategy for CP2# 3CP2 (i.e. show surgery on

model manifold results in π1 = 0) obtained by Baldridge-Kirk and Akhmedov-Park

• First full implementation (i.e. infinite families) for CP2# 3CP2: Fintushel-Park-Stern

using the 2-fold symmetric product Y = Sym2(Σ3) as model.

• Ahkmedov-Park have paper to implement strategy for CP2#2 CP2 (i.e. show surgery
on model manifold results in π1 = 0)
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model manifold results in π1 = 0) obtained by Baldridge-Kirk and Akhmedov-Park
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Model Manifolds
Basic Pieces: X3

X3 = S2 × T 2#3 CP2, c2
1 (X3) = −3, χ(X3) = 0

In S2 × T 2 there is an embedded torus T ′ representing 2T 2.
Consider configuration T ′ + T 2 + S2 which has 3 double points.
Blowup one double point on T ′ and smooth the other two double
points. Then blow up at two more points on the result.
Get Σ: genus 2, square 0 homologous to 3T 2 + S2−2E1−E2−E3.
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Model Manifolds
Basic Pieces: X4

X4 = S2 × T 2#4 CP2, c2
1 (X4) = −4, χ(X4) = 0

In S2 × T 2 consider configuration with 2 disjoint copies of T 2 and
one S2. Smooth the double points and then blow up at 4 points to
get Σ homologous to 2T 2 + S2 − E1 − E2 − E3 − E4.
Σ has genus 2 and square 0.
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Example: Fake CP2# 3CP2’s

Model Manifold:
X2#Σ2X0 = ((T 4#CP2)#CP2)#Σ2(T 2 × Σ2)
= (Sym2(Σ2)#CP2)#Σ2(T 2 × Σ2) ∼= Sym2(Σ3)

Has the same e and sign as CP2# 3CP2.

Has π1 = H1(Σ3) (so b1 = 6)

Is symplectic and has disjoint Lagrangian tori carrying basis
for H1.

• Six surgeries give a simply connected symplectic X whose
canonical class pairs positively with the symplectic form.

• Not diffeomorphic to CP2# 3CP2 since each symplectic form
on CP2# 3CP2 pairs negatively with its canonical class.
(Li-Liu)

• Get infinite family of distinct manifolds all homeomorphic to
CP2# 3CP2 (joint with Ron Stern and Doug Park)

• Examples first obtained by Baldridge-Kirk and
Akhmedov-Park.
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Example: Fake Projective Planes

Complex fake projective plane is a complex surface X with
H∗(X ; Q) = H∗(CP2; Q) but not diffeo to CP2.

Completely classified by Prasad and Yeung via ball quotients.

Finitely many, each has nontrivial H1(X ; Z)
First example due to Mumford.

No known geometric construction not using ball quotients.
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Example: Smooth Fake Projective Planes

Start with elliptic fibration on E (1) with 4 I3 fibers.

I3 ↔ 3 nodal fibers with parallel vanishing cycles

Do knot surgery on E (1) with K = trefoil knot
section becomes torus of self-intersection −1 (Pseudosection)

Red curve isotopic to green and blue curves

Meridian to knot bounds vanishing disk in
E(1) r NF

Get disjoint disks of self-intersection −1

Use to surger pseudosection to sphere of square −3
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Smooth Fake Projective Planes

In E (1)K can arrange

Follow idea of Keum: Collapse three (−2)−(−2) to c(L(3,−2))

Take 3-fold branched cover — get homotopy E (1)
(nonsingular) :Y

Y contains three copies of (−3)−(−2)−(−2).

Take 7-fold branched cover — get X : rational homology CP2
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Families of Smooth Fake Projective Planes

In E (1)K also have
0

λ
m

S1x

Constructions above can be shown to be disjoint from S1 × λ

p/q-surgeries give Q-homology E (1)’s with different
SW-invariants

Construction gives Q-homology CP2’s. SW = ?

They have Z/7-actions with different orbit spaces.

Are they irreducible?
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