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Things which are seen are temporal,
but the things which are not seen are eternal.
B. Stewart and P.G. Tait
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Invariants

Euler characteristic: e(X) = E?ZO(—l)jrk(Hj(M; 7))

» Intersection form: Ha(X;Z) ® Ha(X;Z) — Z;

a- 3= (PD(a) U PD(3))[X]

is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X) = Signature of intersection form
=bt — b~

Type: Even if o - « even for all «; otherwise Odd

(Freedman, 1980) The intersection form classifies simply
connected topological 4-manifolds: There is one
homeomorphism type if the form is even; there are two if odd
— exactly one of which has X x S! smoothable.

(Donaldson, 1982) Two simply connected smooth 4-manifolds
are homeomorphic <= they have the same e, sign, and type.
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Smooth structures

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct
smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every n-manifold has only finitely many distinct smooth
n-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this
conjecture

Seiberg-Witten Invariants
SWx : {characteristic elements of Hy(X;Z)} — Z

» SW(k) # 0 for only finitely many k: called basic classes.
» For each surface ¥ C X with g(X¥) >0and £-X >0

2g(X)—2>% T+ |-k

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

Basic classes = smooth analogue of the canonical class of a complex surface
» SWx(k) = %1, k = c1(symplectic manifold with b™ > 1) [Taubes].
P View SW invariant as element of Z(H2(X)), SWx = > SWx (k) tx
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Oriented minimal (m; = 0) 4-manifolds with SW # 0

Geography
¢ = 3sign +2e
c=9x X = % = %

All lattice points have oo smooth structures
except possibly near c =9y andon x =1
For n > 4 TOP n-manifolds have

finitely many smooth structures

c=8x
sign =0

9x ? sign>0 sign < 0

c=2x—6
surfaces of general type
2x — 6 < c < 9x
Symplectic with
one SW basic class
x—3<c<2x—-6

c=x—3
CP?
$? x s? symplectic with
CPZ#k CP? (x — ¢ — 2) SW basic classes
1< k<9 0<c<(x—3)

Elliptic Surfaces E(n) c<07?
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» One way to try to prove the conjecture — Find a "dial” to change
the smooth structure at will.
» This dial: Surgery on nullhomologous tori

T: any self-intersection 0 torus C X, Tubular nbd Nt = T2 x D?.

Surgery on T: X~\N7 U, T2 x D%, ¢:9(T? x D?) — (X~ Nr)
o(pt x OD?) = surgery curve
Result determined by o.[pt x 9D?] € H1(O(X~N71)) = Z3
Choose basis {a, 3,[0D?]} for Hi(ONT) where {a, 3} are pushoffs
of a basis for H1(T).
@[t x OD?] = par+ g3 + r[0D?]
Write X~ N7 U, T2 x D2 = X1(p,q,r)
This operation does not change e(X) or sign(X)

Note: X7(0,0,1) = X
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The Morgan, Mrowka, Szabo Formula

Describes how surgery on a torus changes the Seiberg-Witten
invariant

T: torus in X with self-intersection =0 Nbd = St x S1 x D2
Do (p, g, r) - surgery to get X1(p, q,r)

Roughly
SWxr(p.ar) = PSWxr(1,00) T GSWxr(0,1,0) T SWxr(0,0,1)

Example: S'x g—Dehn surgery on circle C in 3-manifold Y

Corresponds to (0, g, p)-surgery on the torus
T=S'xCcCX=S5'xY toget X

SWx = pSWx + qgSWx,
where Xp = X7(0,1,0)
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First Application: Knot Surgery

K: Knot in S3, T: square 0 essential torus in X
Xk = X~ N7 U St x (S3< Nk)

Note: S x (S3~Nk) has the homology of T2 x D?.

Facts about knot surgery

If X and X~ T both simply connected; so is Xk
(So Xk homeo to X)

» If K is fibered and X and T both symplectic; so is Xk.

> SWXK =SWyx - AK(l’2)

Conclusions

If X, X~ T, simply connected and SWx # 0, then there is an
infinite family of distinct manifolds all homeomorphic to X.

X, T symplectic, K fibered = Xy symplectic. So there is an
infinite family of distinct symplectic manifolds homeo X.

eg X=K3, SWx=1, SWXK = AK(tz)
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Knot surgery and nullhomologous tori

Knot surgery on torus T in 4-manifold X with knot K:

0

— 1 —
W s 21O, K%)
b/ ;1

A = S! x X = nullhomologous torus — Used to change crossings

» Weakness of construction: Need T to be homologically essential
» Open conjecture: If x(X)(= w) > 1, then X contains a
homologically essential minimal genus torus T with trivial

normal bundle (in the complement of all the basic classes)

» If X homeomorphic to CP? blown up at 8 or fewer points, then X
contains no such torus - so what can we do there?
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Second Application: Some Smooth Structures on E(1)

E(1) = CP?2#9CP?
Elliptic surface F: fiber (torus of square 0) Nf = St x S' x D?
F=S'xf, A=S'x)\

A: Nullhomologous torus in E(1)
Whitehead double of fiber

s lies in a section
What is the result of surgery
on A?

X(1/n) = Stx (%—surgery on \) homeo
to E(1)

SWX(l/,,) = SWE(1) + nSWx,
=0+n(t™1—1t)

== 717 - surgeries on A give infinite family of distinct manifolds

homeomorphic to E(1)
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A Surgery Duality

T: self-intersection 0 torus C X, Tubular nbd Ny = T2 x D?
Basis {«, 8, [0D?]} for H1(ONT) {a, B}: pushoffs of basis for Hi(T)
Compare two situations:

(a) T primitive, pushoff curve 5 C Nt essential in X\ T
Do S x p/1 - surgery on T (i.e. (0,1,p)-surgery)
= Tp/1 nullhomologous in X7(p/1).

Let 3" = surgery curve on ON7,, C X7(p/1) which gives
back X

' bounds in X7(p/1)\N7,, = X\ Nr.

(b) T nullhomologous, 3 bounds in X~ Nt
S x 0/1 (i.e. nullhomologous) surgery on T gives (a).

(a) — (b) reduces by by 1 and increases H by a hyperbolic pair.

(b) — (a) does the opposite.
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» Difficult to find useful nullhomologous tori as in applications above

Recall: SWXT(p/l) =SWx + pSWx,(0/1)
IDEA: First construct X7(0/1) so that SWx, (o/1) # 0 and then
surger to reduce bj.

» Procedure to insure the existence of effective nullhomologous tori
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» Difficult to find useful nullhomologous tori as in applications above

Recall: SWXT(p/l) =SWx + pSWXT(O/l)
IDEA: First construct X7(0/1) so that SWx, (o/1) # 0 and then
surger to reduce bj.

» Procedure to insure the existence of effective nullhomologous tori

1. Find model manifold M with same Euler number and signature as
desired manifold, but with by # 0 and with SW # 0.

2. Find b; disjoint essential tori in M containing generators of Hj.
Surger to get manifold X with H; = 0. Want result of each
surgery to have SW # 0 (except perhaps the very last).

3. X will contain a “useful” nullhomologous torus.
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Luttinger Surgery

M: symplectic manifold T: Lagrangian torus in M

Preferred framing for T: Lagrangian framing
w.r.t. which all pushoffs of T remain Lagrangian

(1/n)-surgeries w.r.t. this framing are again symplectic
(Luttinger; Auroux, Donaldson, Katzarkov)

If 8 = Lagrangian pushoff,
M+(£1) = (0,1, £1)-surgery is a symplectic mfd

— if b¥ > 1, My g(£1) has SW # 0
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Families

The SW condition

If M is symplectic and surgery tori are Lagrangian and we do
(£1)-surgeries with respect to the Lagrangian framings, each
resultant manifold will be symplectic and have SW # 0.

Simple connectivity
Easier in some cases than others

Infinite families

Above surgery process ends with

1. Hy = 0 (simply connected, if lucky) manifold X
2. Nullhomologous torus A C X
3. Loop A on A with nullhomologous pushoff and SWx, | (1/n) all

different
= Infinite family
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Model Manifolds for CP?#k CP?
Basic Pieces: Xo, X1, X2, X3X3 X5

Xo: ¥ C T2xX; representing (0,1)
Xi: ¥p C T?xT?# CP? representing (2,1) — 2e
Xo: Yo C T?xT?# 2CP? representing (1,1) — e; — &
X3: Lo C S?xT2# 3 CP? representing (1,3) — 2e; — e — &3
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G (X) = (X") + (X)) +8(g — 1); x(X) = x(X") +x(X") + (g — 1)

X, #5,Xs is a model for CP?#(r + s + 1) CP?
Except Xo#5,Xo = X2 X X2 is a model for 52 x §2

All have enough Lagrangian tori to kill Hy (717?)

First successful implementation of this strategy for CP2# 3CP? (i.e. show surgery on
model manifold results in m; = 0) obtained by Baldridge-Kirk and Akhmedov-Park
First full implementation (i.e. infinite families) for CP?# 3CP?: Fintushel-Park-Stern
using the 2-fold symmetric product Y = Sym?(¥3) as model.



Model Manifolds for CP?#k CP?
Basic Pieces: Xo, X1, X2, X3X3 X5

Xo: ¥ C T2xX; representing (0,1)
Xi: ¥p C T?xT?# CP? representing (2,1) — 2e
Xo: Yo C T?xT?# 2CP? representing (1,1) — e; — &
X3: Lo C S?xT2# 3 CP? representing (1,3) — 2e; — e — &3
Xy Lo C S?xT?# 4 CP? representing (1,2) —e; — e — 3 — ¢4
For a symplectic 4-manifold, X, x(X) = %(e + sign)(X); c2(X) = (3sign + 2 e)(X)

(Fiber Sums) If X', X" are symplectic with symplectic submanifolds ¥’, X' of square
0 and same genus g, the fiber sum X = X'#5/_s» X" is again symplectic, and

F(X) = G (X') + (X)) +8(g — 1); x(X) = x(X) + x(X") + (¢ — 1)

X, #5,Xs is a model for CP?#(r + s + 1) CP?
Except Xo#5,Xo = X2 X X2 is a model for 52 x §2

All have enough Lagrangian tori to kill Hy (717?)

First successful implementation of this strategy for CP2# 3CP? (i.e. show surgery on

model manifold results in m; = 0) obtained by Baldridge-Kirk and Akhmedov-Park

First full implementation (i.e. infinite families) for CP?# 3CP?: Fintushel-Park-Stern

using the 2-fold symmetric product Y = Sym?(¥3) as model.

Ahkmedov-Park have paper to implement strategy for CP2#2 CP? (i.e. show surgery
on model manifold results in 7 = 0)
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Basic Pieces: X3

X3 = 52 X T2#3@2, C12(X3) = -3, X(X3) =0

In §% x T2 there is an embedded torus T’ representing 2 T?2.
Consider configuration T/ + T2 4+ S2 which has 3 double points.
Blowup one double point on T’ and smooth the other two double
points. Then blow up at two more points on the result.

Get X: genus 2, square 0 homologous to 372+ S? —2F; — E> — E;.



Model Manifolds

Basic Pieces: X3

X3 = 52 X T2#3@2, C12(X3) = -3, X(X3) =0

In §% x T2 there is an embedded torus T’ representing 2 T?2.
Consider configuration T/ + T2 4+ S2 which has 3 double points.
Blowup one double point on T’ and smooth the other two double
points. Then blow up at two more points on the result.

Get X: genus 2, square 0 homologous to 372+ S? —2F; — E> — E;.
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Model Manifolds

Basic Pieces: X,

X4 = 52 X T2#4@2, C12(X4) = —4, X(X4) =0

In S2 x T2 consider configuration with 2 disjoint copies of T2 and
one S2. Smooth the double points and then blow up at 4 points to
get ¥ homologous to 2T? + S?> — E; — E, — E3 — E.

> has genus 2 and square 0.

-I-2 T2




Example: Fake CP?# 3CP?'s

Model Manifold:
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= (5ym2(22)#CP2)#22(T2 X 22) = 5ym2(Z3)
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Example: Fake CP?# 3CP?'s

Model Manifold:

XQ#ZZXO = ((T4#CP2)#CP2)#22(T2 X 22)

= (Symz(zz)#(CP2)#zz(T2 X 22) = 5ym2(Z3)

Has the same e and sign as CPP?# 3CP?.

Has T = H1(Z3) (SO b1 == 6)

Is symplectic and has disjoint Lagrangian tori carrying basis
for Hl.

Six surgeries give a simply connected symplectic X whose
canonical class pairs positively with the symplectic form.

Not diffeomorphic to CP?# 3CP? since each symplectic form
on CP?# 3CIP? pairs negatively with its canonical class.
(Li-Liu)

Get infinite family of distinct manifolds all homeomorphic to
CP?4# 3CP? (joint with Ron Stern and Doug Park)

Examples first obtained by Baldridge-Kirk and
Akhmedov-Park.
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Example: Fake Projective Planes

Complex fake projective plane is a complex surface X with
H.(X; Q) = H.(CP?; Q) but not diffeo to CP2.

Completely classified by Prasad and Yeung via ball quotients.

Finitely many, each has nontrivial Hy(X;Z)
First example due to Mumford.

No known geometric construction not using ball quotients.
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Example: Smooth Fake Projective Planes

Start with elliptic fibration on E(1) with 4 /3 fibers.

I3 < 3 nodal fibers with parallel vanishing cycles A

Do knot surgery on E(1) with K = trefoil knot
section becomes torus of self-intersection —1 (Pseudosection)

Red curve isotopic to green and blue curves

Meridian to knot bounds vanishing disk in
E(1) ~ Nr

Get disjoint disks of self-intersection —1

Use to surger pseudosection to sphere of square —3
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Smooth Fake Projective Planes

In E(1)k can arrange

N~ /7 /7 N\

Follow idea of Keum: Collapse three (—2)—(—2) to ¢(L(3,—-2))

Take 3-fold branched cover — get homotopy E(1)
(nonsingular) :Y

Y contains three copies of (—3)—(—2)—(—2).

Take 7-fold branched cover — get X: rational homology CIP?
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Families of Smooth Fake Projective Planes

In E(1)k also have 0
NS
O N QD

\\_//A

Constructions above can be shown to be disjoint from S! x A

p/g-surgeries give Q-homology E(1)'s with different
SWh-invariants

Construction gives Q-homology CP?'s. SW = ?
They have Z/7-actions with different orbit spaces.

Are they irreducible?



