

Constructions of 4-Manifolds

Ronald Fintushel Michigan State University May 24, 2008

Joint work with Ron Stern

<ロト <四ト <注入 <注下 <注下 <

Things which are seen are temporal, but the things which are not seen are eternal. B. Stewart and P.G. Tait

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4-Manifold basic facts Invariants

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{j} rk(H^{j}(M;\mathbb{Z}))$
- ▶ Intersection form: $H_2(X; \mathbb{Z}) \otimes H_2(X; \mathbb{Z}) \rightarrow \mathbb{Z};$ $\alpha \cdot \beta = (PD(\alpha) \cup PD(\beta))[X]$

is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X) = Signature of intersection form= $b^+ - b^-$

Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd

- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic \leftarrow they have the same *e*, sign, and type.

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{j} rk(H^{j}(M;\mathbb{Z}))$
- ▶ Intersection form: $H_2(X; \mathbb{Z}) \otimes H_2(X; \mathbb{Z}) \rightarrow \mathbb{Z};$ $\alpha \cdot \beta = (PD(\alpha) \cup PD(\beta))[X]$

is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X) = Signature of intersection form= $b^+ - b^-$

Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd

- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic \leftarrow they have the same *e*, sign, and type.

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{i} rk(H^{j}(M;\mathbb{Z}))$
- ▶ Intersection form: $H_2(X; \mathbb{Z}) \otimes H_2(X; \mathbb{Z}) \rightarrow \mathbb{Z};$ $\alpha \cdot \beta = (PD(\alpha) \cup PD(\beta))[X]$

is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X) = Signature of intersection form = $b^+ - b^-$

Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd

- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic \leftarrow they have the same *e*, sign, and type.

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{j} rk(H^{j}(M;\mathbb{Z}))$
- ▶ Intersection form: $H_2(X; \mathbb{Z}) \otimes H_2(X; \mathbb{Z}) \rightarrow \mathbb{Z};$ $\alpha \cdot \beta = (PD(\alpha) \cup PD(\beta))[X]$

is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X) = Signature of intersection form= $b^+ - b^-$

Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd

- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic \leftarrow they have the same *e*, sign, and type.

(日) (同) (三) (三) (三) (○) (○)

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{i} rk(H^{j}(M;\mathbb{Z}))$
- ▶ Intersection form: $H_2(X; \mathbb{Z}) \otimes H_2(X; \mathbb{Z}) \to \mathbb{Z}$; $\alpha \cdot \beta = (PD(\alpha) \cup PD(\beta))[X]$ is an integral, symmetric, unimodular, bilinear form. Signature of X = sign(X) = Signature of intersection form $= b^+ - b^-$
 - Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd
- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic they have the same *e*, sign, and type.

(日) (同) (三) (三) (三) (○) (○)

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{i} rk(H^{j}(M;\mathbb{Z}))$
- Intersection form: H₂(X; Z) ⊗ H₂(X; Z) → Z; α · β = (PD(α) ∪ PD(β))[X] is an integral, symmetric, unimodular, bilinear form. Signature of X = sign(X) = Signature of intersection form = b⁺ − b[−]

Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd

- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- ► (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic ⇔ they have the same *e*, sign, and type.

(日) (同) (三) (三) (三) (○) (○)

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{\mathsf{characteristic elements of } H_2(X;\mathbb{Z})\} \to \mathbb{Z}$

- SW(k) \neq 0 for only finitely many k: called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

$2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

asic classes = smooth analogue of the canonical class of a complex surface

・ロット (雪) (日) (日) (日)

- SW_X(κ) = ±1, κ = c_1 (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{\mathsf{characteristic elements of } H_2(X;\mathbb{Z})\} \to \mathbb{Z}$

SW(k) \neq 0 for only finitely many k: called *basic* classes.

For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

asic classes = smooth analogue of the canonical class of a complex surface

- SW_X(κ) = ±1, $\kappa = c_1$ (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{\mathsf{characteristic elements of } H_2(X;\mathbb{Z})\} \to \mathbb{Z}$

SW(k) \neq 0 for only finitely many k: called *basic* classes.

For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

asic classes = smooth analogue of the canonical class of a complex surface

- SW_X(κ) = ±1, $\kappa = c_1$ (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{\mathsf{characteristic elements of } H_2(X;\mathbb{Z})\} o \mathbb{Z}$

SW(k) \neq 0 for only finitely many k: called *basic* classes.

For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

asic classes = smooth analogue of the canonical class of a complex surface

- SW_X(κ) = ±1, $\kappa = c_1$ (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{ \mathsf{characteristic elements of } H_2(X;\mathbb{Z}) \} \to \mathbb{Z}$

SW(k) \neq 0 for only finitely many k: called *basic* classes.

For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

Sasic classes = smooth analogue of the canonical class of a complex surface

6

- SW_X(κ) = ±1, κ = c_1 (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{ \mathsf{characteristic elements of } H_2(X;\mathbb{Z}) \} \to \mathbb{Z}$

- SW(k) \neq 0 for only finitely many k: called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

Sasic classes = smooth analogue of the canonical class of a complex surface

6

- SW_X(κ) = ±1, κ = c_1 (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{ \mathsf{characteristic elements of } H_2(X;\mathbb{Z}) \} \to \mathbb{Z}$

- SW(k) \neq 0 for only finitely many k: called *basic* classes.
- ► For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

Basic classes = smooth analogue of the canonical class of a complex surface

ଚ୍ଚ

- SW_X(κ) = ±1, κ = c_1 (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{ \mathsf{characteristic elements of } H_2(X;\mathbb{Z}) \} \to \mathbb{Z}$

- SW(k) \neq 0 for only finitely many k: called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

 ${\sf Basic \ classes} = {\sf smooth \ analogue \ of \ the \ canonical \ class \ of \ a \ complex \ surface}$

ଚ୍ଚ

- SW_X(κ) = ±1, $\kappa = c_1$ (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{ \mathsf{characteristic elements of } H_2(X;\mathbb{Z}) \} \to \mathbb{Z}$

- SW(k) \neq 0 for only finitely many k: called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

Basic classes = smooth analogue of the canonical class of a complex surface

ଚ୍ଚ

- SW_X(κ) = ±1, κ = c_1 (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

Wild Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

Goal of this lecture — Discuss techniques used to study this conjecture

Seiberg-Witten Invariants

 $\mathsf{SW}_X : \{ \mathsf{characteristic elements of } H_2(X;\mathbb{Z}) \} \to \mathbb{Z}$

- SW(k) \neq 0 for only finitely many k: called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

 $2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot k|$

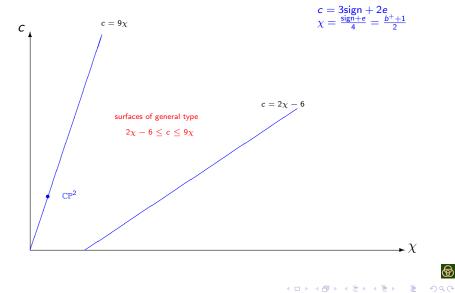
for every basic class k. (Adjunction Inequality[Kronheimer-Mrowka])

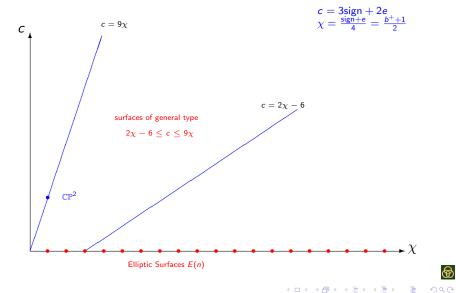
Basic classes = smooth analogue of the canonical class of a complex surface

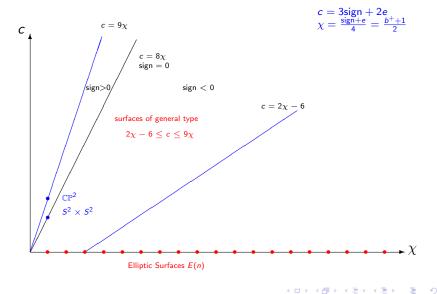
- ▶ SW_X(κ) = ±1, κ = c_1 (symplectic manifold with $b^+ > 1$) [Taubes].
- ▶ View SW invariant as element of $\mathbb{Z}(H_2(X))$, $SW_X = \sum SW_X(k) t_k$

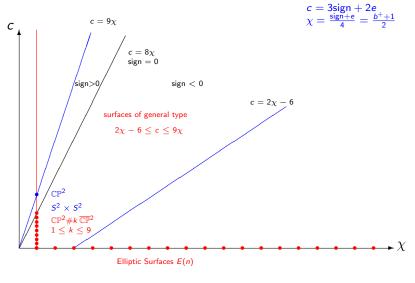
$$c = 3\text{sign} + 2e$$
$$\chi = \frac{\text{sign} + e}{4} = \frac{b^+ + 1}{2}$$

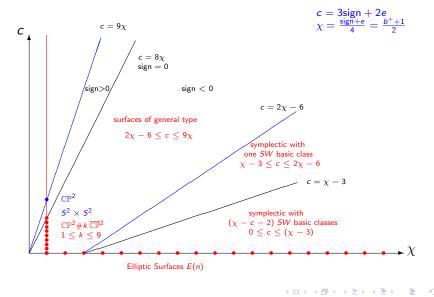
С

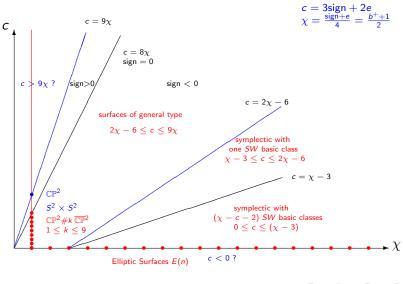




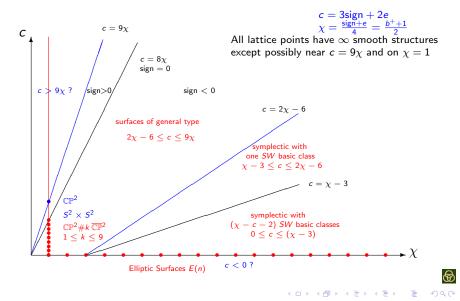


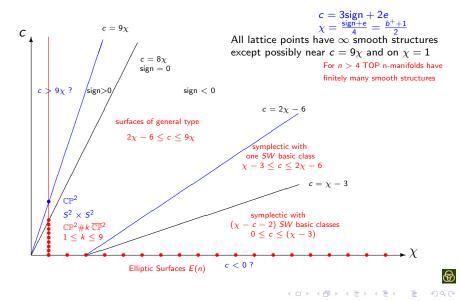






◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの





One way to try to prove the conjecture — Find a "dial" to change the smooth structure at will.

This dial: Surgery on nullhomologous tori

T: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*: $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \smallsetminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \text{surgery curve}$

Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$

Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

 $\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$ Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

 One way to try to prove the conjecture — Find a "dial" to change the smooth structure at will.

This dial: Surgery on nullhomologous tori

T: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on $T: X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2, \quad \varphi: \partial(T^2 \times D^2) \to \partial(X \smallsetminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \text{surgery curve}$

Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$

Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

 $\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$ Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori

T: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on $T: X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2, \quad \varphi : \partial(T^2 \times D^2) \to \partial(X \smallsetminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \text{surgery curve}$

Result determined by $\varphi_*[pt imes \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$

Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

 $\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$ Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori
 - *T*: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*: $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \smallsetminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \mathsf{surgery curve}$

Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \smallsetminus N_T)) = \mathbb{Z}^3$

Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

 $\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$ Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori

T: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*: $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \smallsetminus N_T)$ $\varphi(pt \times \partial D^2) = \text{surgery curve}$

Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$ Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushe

of a basis for $H_1(I)$

 $\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$ Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori

T: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*: $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \smallsetminus N_T)$ $\varphi(\mathsf{pt} \times \partial D^2) = \mathsf{surgery curve}$

Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$ Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

> $\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$ Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p,q,r)$

> > This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori
 - *T*: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.
 - Surgery on *T*: $X \setminus N_T \cup_{\varphi} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \mathsf{surgery curve}$
 - Result determined by $\varphi_*[pt imes \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$
 - Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

 $\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$ Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori
 - *T*: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*:
$$X \setminus N_T \cup_{\varphi} T^2 \times D^2$$
, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$
 $\varphi(\mathsf{p}t \times \partial D^2) = \mathsf{surgery curve}$

Result determined by $\varphi_*[pt imes \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$

Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

$$\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$$

Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori
 - *T*: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*:
$$X \setminus N_T \cup_{\varphi} T^2 \times D^2$$
, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$
 $\varphi(\mathsf{p}t \times \partial D^2) = \mathsf{surgery curve}$

Result determined by $\varphi_*[pt imes \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$

Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

$$\varphi_*[\mathsf{p}t \times \partial D^2] = \mathbf{p}\alpha + \mathbf{q}\beta + \mathbf{r}[\partial D^2]$$

Write $X \setminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p,q,r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori
 - *T*: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*:
$$X \setminus N_T \cup_{\varphi} T^2 \times D^2$$
, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$
 $\varphi(\mathsf{p}t \times \partial D^2) = \mathsf{surgery curve}$

Result determined by $\varphi_*[pt imes \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$

Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

$$\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$$

Write $X \setminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori
 - *T*: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*:
$$X \setminus N_T \cup_{\varphi} T^2 \times D^2$$
, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$
 $\varphi(\mathsf{p}t \times \partial D^2) = \mathsf{surgery curve}$

Result determined by $\varphi_*[pt imes \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$

Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

$$\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$$

Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

- One way to try to prove the conjecture Find a "dial" to change the smooth structure at will.
- This dial: Surgery on nullhomologous tori
 - *T*: any self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*:
$$X \setminus N_T \cup_{\varphi} T^2 \times D^2$$
, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$
 $\varphi(\mathsf{p}t \times \partial D^2) = \mathsf{surgery curve}$

Result determined by $\varphi_*[pt imes \partial D^2] \in H_1(\partial(X \setminus N_T)) = \mathbb{Z}^3$

Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$.

$$\varphi_*[\mathsf{p}t \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$$

Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$

This operation does not change e(X) or sign(X)

Note: $X_T(0, 0, 1) = X$

The Morgan, Mrowka, Szabo Formula

Describes how surgery on a torus changes the Seiberg-Witten invariant

T: torus in X with self-intersection = 0 Nbd = $S^1 \times S^1 \times D^2$ Do (p, q, r) - surgery to get $X_T(p, q, r)$

Roughly $\mathcal{SW}_{X_{\mathcal{T}}(p,q,r)} = p \, \mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} + q \, \mathcal{SW}_{X_{\mathcal{T}}(0,1,0)} + r \, \mathcal{SW}_{X_{\mathcal{T}}(0,0,1)}$

Example: $S^1 \times \frac{p}{q}$ -Dehn surgery on circle *C* in 3-manifold *Y* Corresponds to (0, q, p)-surgery on the torus $T = S^1 \times C \subset X = S^1 \times Y$ to get X' $\mathcal{SW}_{X'} = p \mathcal{SW}_X + q \mathcal{SW}_{X_0}$ where $X_0 = X_T(0, 1, 0)$

(日) (同) (三) (三) (三) (○) (○)

The Morgan, Mrowka, Szabo Formula

Describes how surgery on a torus changes the Seiberg-Witten invariant

T: torus in *X* with self-intersection = 0 Nbd = $S^1 \times S^1 \times D^2$ Do (p, q, r) - surgery to get $X_T(p, q, r)$

Roughly

 $\mathcal{SW}_{X_{\mathcal{T}}(p,q,r)} = p \, \mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} + q \, \mathcal{SW}_{X_{\mathcal{T}}(0,1,0)} + r \, \mathcal{SW}_{X_{\mathcal{T}}(0,0,1)}$

Example: $S^1 \times \frac{p}{q}$ -Dehn surgery on circle C in 3-manifold YCorresponds to (0, q, p)-surgery on the torus $T = S^1 \times C \subset X = S^1 \times Y$ to get X' $SW_{X'} = pSW_X + qSW_{X_0}$ where $X_0 = X_T(0, 1, 0)$

(日) (同) (三) (三) (三) (○) (○)

The Morgan, Mrowka, Szabo Formula

Describes how surgery on a torus changes the Seiberg-Witten invariant

T: torus in *X* with self-intersection = 0 Nbd = $S^1 \times S^1 \times D^2$ Do (p, q, r) - surgery to get $X_T(p, q, r)$

Roughly

 $\mathcal{SW}_{X_{\mathcal{T}}(p,q,r)} = p \, \mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} + q \, \mathcal{SW}_{X_{\mathcal{T}}(0,1,0)} + r \, \mathcal{SW}_{X_{\mathcal{T}}(0,0,1)}$

ଚ୍ଚ

(日) (同) (三) (三) (三) (○) (○)

Example: $S^1 \times \frac{p}{q}$ -Dehn surgery on circle *C* in 3-manifold *Y* Corresponds to (0, q, p)-surgery on the torus $T = S^1 \times C \subset X = S^1 \times Y$ to get *X'* $SW_{X'} = p SW_X + q SW_{X_0}$ where $X_0 = X_T(0, 1, 0)$

K: Knot in S^3 , T: square 0 essential torus in X

 $X_{\mathcal{K}} = X \smallsetminus N_{\mathcal{T}} \cup S^1 \times (S^3 \smallsetminus N_{\mathcal{K}})$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

If X and X \ T both simply connected; so is X_K (So X_K homeo to X)

• If K is fibered and X and T both symplectic; so is X_K .

$$\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$$

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ► X, T symplectic, K fibered ⇒ X_K symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

K: Knot in S^3 , T: square 0 essential torus in X $X_K = X \smallsetminus N_T \cup S^1 \times (S^3 \smallsetminus N_K)$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

If X and X \ T both simply connected; so is X_K (So X_K homeo to X)

▶ If K is fibered and X and T both symplectic; so is X_K .

$$\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$$

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ► X, T symplectic, K fibered ⇒ X_K symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

 $K: \text{ Knot in } S^3, T: \text{ square 0 essential torus in } X$ $X_K = X \smallsetminus N_T \cup S^1 \times (S^3 \smallsetminus N_K)$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

If X and X \ T both simply connected; so is X_K (So X_K homeo to X)

• If K is fibered and X and T both symplectic; so is X_K .

$$\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$$

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ▶ X, T symplectic, K fibered $\Rightarrow X_K$ symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

 $K: \text{ Knot in } S^3, T: \text{ square 0 essential torus in } X$ $X_K = X \smallsetminus N_T \cup S^1 \times (S^3 \smallsetminus N_K)$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

If X and X \ T both simply connected; so is X_K (So X_K homeo to X)

• If K is fibered and X and T both symplectic; so is X_K .

$$\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$$

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ▶ X, T symplectic, K fibered $\Rightarrow X_K$ symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

K: Knot in S^3 , T: square 0 essential torus in X

 $X_{\mathcal{K}} = X \smallsetminus \mathcal{N}_{\mathcal{T}} \cup S^1 \times (S^3 \smallsetminus \mathcal{N}_{\mathcal{K}})$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

- ► If X and X \ T both simply connected; so is X_K (So X_K homeo to X)
- If K is fibered and X and T both symplectic; so is X_K.
 SW_{X_K} = SW_X · Δ_K(t²)

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ► X, T symplectic, K fibered ⇒ X_K symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

K: Knot in S^3 , T: square 0 essential torus in X

 $\bullet \qquad \qquad X_{K} = X \smallsetminus N_{T} \cup S^{1} \times (S^{3} \smallsetminus N_{K})$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

- ► If X and X \ T both simply connected; so is X_K (So X_K homeo to X)
- If K is fibered and X and T both symplectic; so is X_K .
- $\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ► X, T symplectic, K fibered ⇒ X_K symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

ල

K: Knot in S^3 , T: square 0 essential torus in X

 $\bullet \qquad \qquad X_{\mathcal{K}} = X \smallsetminus N_{\mathcal{T}} \cup S^1 \times (S^3 \smallsetminus N_{\mathcal{K}})$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

- ► If X and X \ T both simply connected; so is X_K (So X_K homeo to X)
- If K is fibered and X and T both symplectic; so is X_K .

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ► X, T symplectic, K fibered ⇒ X_K symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

e.g. X = K3, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

ଚ୍ଚି

K: Knot in S^3 , T: square 0 essential torus in X

 $\bullet \qquad \qquad X_{\mathcal{K}} = X \smallsetminus N_{\mathcal{T}} \cup S^1 \times (S^3 \smallsetminus N_{\mathcal{K}})$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

- If X and X \ T both simply connected; so is X_K (So X_K homeo to X)
- If K is fibered and X and T both symplectic; so is X_K .

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_{X} \cdot \Delta_{\mathcal{K}}(t^{2})$$

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ► X, T symplectic, K fibered ⇒ X_K symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

ල

K: Knot in S^3 , T: square 0 essential torus in X

 $\bullet \qquad \qquad X_{\mathcal{K}} = X \smallsetminus N_{\mathcal{T}} \cup S^1 \times (S^3 \smallsetminus N_{\mathcal{K}})$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

- If X and X \ T both simply connected; so is X_K (So X_K homeo to X)
- If K is fibered and X and T both symplectic; so is X_K .

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ► X, T symplectic, K fibered ⇒ X_K symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

K: Knot in S^3 , T: square 0 essential torus in X

 $\bullet \qquad \qquad X_K = X \smallsetminus N_T \cup S^1 \times (S^3 \smallsetminus N_K)$

Note: $S^1 \times (S^3 \smallsetminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

- ► If X and X \ T both simply connected; so is X_K (So X_K homeo to X)
- If K is fibered and X and T both symplectic; so is X_K .

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Conclusions

- If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ► X, T symplectic, K fibered $\Rightarrow X_K$ symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

ල

K: Knot in S^3 , T: square 0 essential torus in X

 $X_{\mathcal{K}} = X \smallsetminus N_{\mathcal{T}} \cup S^1 \times (S^3 \smallsetminus N_{\mathcal{K}})$

Note: $S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts about knot surgery

- If X and $X \setminus T$ both simply connected; so is X_K (So X_K homeo to X)
- If K is fibered and X and T both symplectic; so is X_{K} .

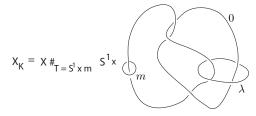
$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_{X} \cdot \Delta_{\mathcal{K}}(t^{2})$$

Conclusions

- ▶ If X, X \ T, simply connected and $SW_X \neq 0$, then there is an infinite family of distinct manifolds all homeomorphic to X.
- ▶ X. T symplectic, K fibered \Rightarrow X_K symplectic. So there is an infinite family of distinct symplectic manifolds homeo X.

e.g.
$$X = K3$$
, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

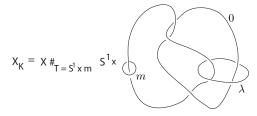
Knot surgery on torus T in 4-manifold X with knot K:



 $\Lambda = S^1 imes \lambda =$ nullhomologous torus — Used to change crossings

- Weakness of construction: Need T to be homologically essential
- Popen conjecture: If χ(X)(= e(X)+sign(X)/4) > 1, then X contains a homologically essential minimal genus torus T with trivial normal bundle (in the complement of all the basic classes)
- If X homeomorphic to CP² blown up at 8 or fewer points, then X contains no such torus so what can we do there?

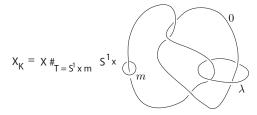
Knot surgery on torus T in 4-manifold X with knot K:



 $\Lambda = S^1 imes \lambda =$ nullhomologous torus — Used to change crossings

- Weakness of construction: Need T to be homologically essential
- Open conjecture: If χ(X)(= e(X)+sign(X)/4) > 1, then X contains a homologically essential minimal genus torus T with trivial normal bundle (in the complement of all the basic classes)
- If X homeomorphic to CP² blown up at 8 or fewer points, then X contains no such torus so what can we do there?

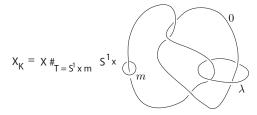
Knot surgery on torus T in 4-manifold X with knot K:



 $\Lambda = S^1 imes \lambda =$ nullhomologous torus — Used to change crossings

- Weakness of construction: Need T to be homologically essential
- ▶ Open conjecture: If \(\chi(X)\)(= \frac{e(X)+sign(X)}{4}\)) > 1\), then X contains a homologically essential minimal genus torus T with trivial normal bundle (in the complement of all the basic classes)
- If X homeomorphic to CP² blown up at 8 or fewer points, then X contains no such torus so what can we do there?

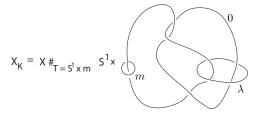
Knot surgery on torus T in 4-manifold X with knot K:



 $\Lambda = S^1 imes \lambda =$ nullhomologous torus — Used to change crossings

- Weakness of construction: Need T to be homologically essential
- ▶ Open conjecture: If \(\chi(X)\)(= \frac{e(X)+sign(X)}{4}\)) > 1\), then X contains a homologically essential minimal genus torus T with trivial normal bundle (in the complement of all the basic classes)
- If X homeomorphic to CP² blown up at 8 or fewer points, then X contains no such torus so what can we do there?

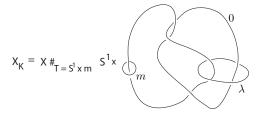
Knot surgery on torus T in 4-manifold X with knot K:



 $\Lambda = S^1 imes \lambda =$ nullhomologous torus — Used to change crossings

- Weakness of construction: Need T to be homologically essential
- ▶ Open conjecture: If \(\chi(X)\)(= \frac{e(X)+sign(X)}{4}\)) > 1\), then X contains a homologically essential minimal genus torus T with trivial normal bundle (in the complement of all the basic classes)
- If X homeomorphic to CP² blown up at 8 or fewer points, then X contains no such torus so what can we do there?

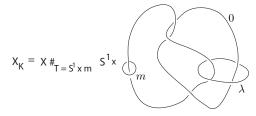
Knot surgery on torus T in 4-manifold X with knot K:



 $\Lambda={\it S}^1\times\lambda=$ nullhomologous torus — Used to change crossings

- Weakness of construction: Need T to be homologically essential
- ▶ Open conjecture: If \(\chi(X)\)(= \frac{e(X)+sign(X)}{4}\)) > 1\), then X contains a homologically essential minimal genus torus T with trivial normal bundle (in the complement of all the basic classes)
- If X homeomorphic to CP² blown up at 8 or fewer points, then X contains no such torus so what can we do there?

Knot surgery on torus T in 4-manifold X with knot K:



 $\Lambda={\it S}^1\times\lambda=$ nullhomologous torus — Used to change crossings

- Weakness of construction: Need T to be homologically essential
- ▶ Open conjecture: If \(\chi(X)\)(= \frac{e(X)+sign(X)}{4}\)) > 1\), then X contains a homologically essential minimal genus torus T with trivial normal bundle (in the complement of all the basic classes)
- If X homeomorphic to CP² blown up at 8 or fewer points, then X contains no such torus so what can we do there?

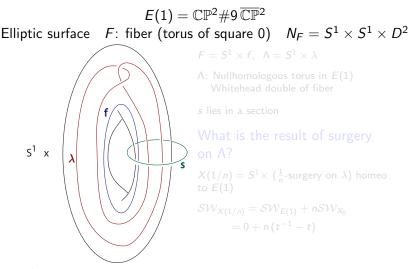
 $E(1) = \mathbb{CP}^2 \# 9 \overline{\mathbb{CP}^2}$ Elliptic surface F: fiber (torus of square 0) $N_F = S^1 \times S^1 \times D^2$

> A: Nullhomologous torus in E(1)Whitehead double of fiber

s lies in a section

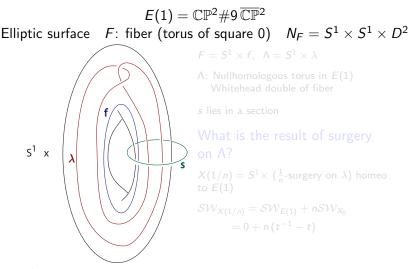
What is the result of surgery on Λ ? $X(1/n) = S^1 \times (\frac{1}{n}$ -surgery on λ) homeor to E(1) $SW_{X(1/n)} = SW_{E(1)} + nSW_{X_0}$ $= 0 + n(t^{-1} - t)$

 $\implies \frac{1}{n}$ - surgeries on Λ give infinite family of distinct manifolds homeomorphic to E(1)



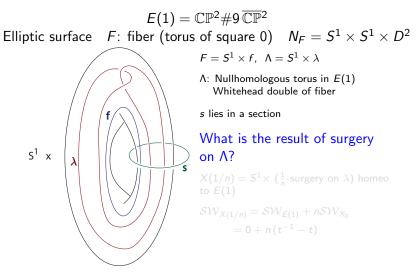
 $\implies \frac{1}{n}$ - surgeries on Λ give infinite family of distinct manifolds homeomorphic to E(1)

- 日本 - 1 日本 - 日本 - 日本



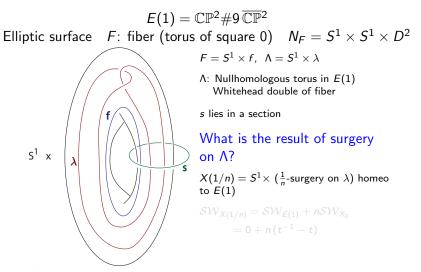
 $\implies \frac{1}{n}$ - surgeries on Λ give infinite family of distinct manifolds homeomorphic to E(1)

- 日本 - 1 日本 - 日本 - 日本



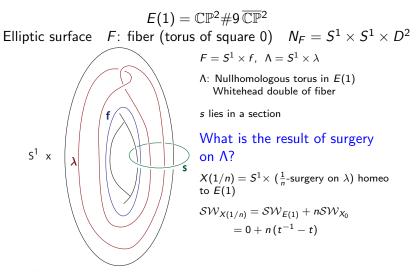
 $\implies \frac{1}{n}$ - surgeries on Λ give infinite family of distinct manifolds homeomorphic to E(1)

・ロット (雪) (日) (日) (日)



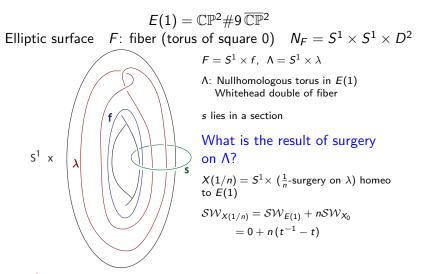
 $\implies \frac{1}{n}$ - surgeries on Λ give infinite family of distinct manifolds homeomorphic to E(1)

・ロット (雪) (日) (日) (日)



 $\implies \frac{1}{n}$ - surgeries on Λ give infinite family of distinct manifolds homeomorphic to E(1)

・ロット (雪) (日) (日) (日)



 $\implies \frac{1}{n}$ - surgeries on Λ give infinite family of distinct manifolds homeomorphic to E(1)

ල

A Surgery Duality

T: self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$ Basis { $\alpha, \beta, [\partial D^2]$ } for $H_1(\partial N_T)$ { α, β }: pushoffs of basis for $H_1(T)$

Compare two situations:

(a) T primitive, pushoff curve $\beta \subset N_T$ essential in $X \smallsetminus T$ Do $S^1 \times p/1$ - surgery on T (i.e. (0,1,p)-surgery) $\Rightarrow T_{p/1}$ nullhomologous in $X_T(p/1)$.

(Its meridian is $\beta + p\mu_T \sim \beta \not\sim 0$ in $X \smallsetminus N_T$.)

Let eta'= surgery curve on $\partial N_{\mathcal{T}_{p/1}}\subset X_{\mathcal{T}}(p/1)$ which gives back X

eta' bounds in $X_T(
ho/1) \smallsetminus N_{T_{
ho/1}} = X \smallsetminus N_T$.

- (b) T nullhomologous, β bounds in X \ N_T S¹ × 0/1 (*i.e.* nullhomologous) surgery on T gives (a).
- (a) → (b) reduces b₁ by 1 and increases H₂ by a hyperbolic pair.
 (b) → (a) does the opposite.

A Surgery Duality

T: self-intersection 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$ Basis { $\alpha, \beta, [\partial D^2]$ } for $H_1(\partial N_T)$ { α, β }: pushoffs of basis for $H_1(T)$

Compare two situations:

(a) *T* primitive, pushoff curve $\beta \subset N_T$ essential in $X \smallsetminus T$ Do $S^1 \times p/1$ - surgery on *T* (i.e. (0,1,p)-surgery) $\Rightarrow T_{p/1}$ nullhomologous in $X_T(p/1)$.

(Its meridian is $\beta + \rho \mu_T \sim \beta \not\sim 0$ in $X \smallsetminus N_T$.)

Let eta'= surgery curve on $\partial N_{\mathcal{T}_{p/1}}\subset X_{\mathcal{T}}(p/1)$ which gives back X

eta' bounds in $X_{\mathcal{T}}(
ho/1)\!\smallsetminus\!N_{\mathcal{T}_{p/1}}=X\!\smallsetminus\!N_{\mathcal{T}}.$

- (b) T nullhomologous, β bounds in $X \smallsetminus N_T$ $S^1 \times 0/1$ (*i.e.* nullhomologous) surgery on T gives (a).
- (a) → (b) reduces b₁ by 1 and increases H₂ by a hyperbolic pair.
 (b) → (a) does the opposite.

A Surgery Duality

 $T: \text{ self-intersection 0 torus } \subset X, \text{ Tubular nbd } N_T \cong T^2 \times D^2$ Basis { $\alpha, \beta, [\partial D^2]$ } for $H_1(\partial N_T)$ { α, β }: pushoffs of basis for $H_1(T)$

Compare two situations:

(a) *T* primitive, pushoff curve $\beta \subset N_T$ essential in $X \setminus T$ Do $S^1 \times p/1$ - surgery on *T* (i.e. (0,1,p)-surgery) $\Rightarrow T_{p/1}$ nullhomologous in $X_T(p/1)$.

(Its meridian is $\beta + p\mu_T \sim \beta \not\sim 0$ in $X \smallsetminus N_T$.)

Let $\beta' =$ surgery curve on $\partial N_{\mathcal{T}_{p/1}} \subset X_{\mathcal{T}}(p/1)$ which gives back X

 β' bounds in $X_T(p/1) \smallsetminus N_{T_{p/1}} = X \smallsetminus N_T$.

(b) T nullhomologous, β bounds in $X \smallsetminus N_T$ $S^1 \times 0/1$ (*i.e.* nullhomologous) surgery on T gives (a).

(a) → (b) reduces b₁ by 1 and increases H₂ by a hyperbolic pair.
 (b) → (a) does the opposite.

A Surgery Duality

 $\begin{array}{l} T: \mbox{ self-intersection 0 torus } \subset X, \mbox{ Tubular nbd } N_{\mathcal{T}} \cong T^2 \times D^2 \\ \mbox{ Basis } \{\alpha, \beta, [\partial D^2]\} \mbox{ for } H_1(\partial N_{\mathcal{T}}) \ \{\alpha, \beta\}: \mbox{ pushoffs of basis for } H_1(\mathcal{T}) \end{array}$

Compare two situations:

(a) *T* primitive, pushoff curve $\beta \subset N_T$ essential in $X \setminus T$ Do $S^1 \times p/1$ - surgery on *T* (i.e. (0,1,p)-surgery) $\Rightarrow T_{p/1}$ nullhomologous in $X_T(p/1)$.

(Its meridian is $\beta + p\mu_T \sim \beta \not\sim 0$ in $X \smallsetminus N_T$.)

Let $\beta' =$ surgery curve on $\partial N_{\mathcal{T}_{p/1}} \subset X_{\mathcal{T}}(p/1)$ which gives back X

 β' bounds in $X_T(p/1) \smallsetminus N_{T_{p/1}} = X \smallsetminus N_T$.

(b) *T* nullhomologous, β bounds in $X \setminus N_T$ $S^1 \times 0/1$ (*i.e.* nullhomologous) surgery on *T* gives (a).

(a) → (b) reduces b₁ by 1 and increases H₂ by a hyperbolic pair.
 (b) → (a) does the opposite.

A Surgery Duality

Compare two situations:

(a) *T* primitive, pushoff curve $\beta \subset N_T$ essential in $X \setminus T$ Do $S^1 \times p/1$ - surgery on *T* (i.e. (0,1,p)-surgery) $\Rightarrow T_{p/1}$ nullhomologous in $X_T(p/1)$.

(Its meridian is $\beta + p\mu_T \sim \beta \not\sim 0$ in $X \smallsetminus N_T$.)

Let $\beta' =$ surgery curve on $\partial N_{\mathcal{T}_{p/1}} \subset X_{\mathcal{T}}(p/1)$ which gives back X

 β' bounds in $X_T(p/1) \smallsetminus N_{T_{p/1}} = X \smallsetminus N_T$.

(b) T nullhomologous, β bounds in $X \setminus N_T$ $S^1 \times 0/1$ (*i.e.* nullhomologous) surgery on T gives (a).

(a) \longrightarrow (b) reduces b_1 by 1 and increases H_2 by a hyperbolic pair.

A Surgery Duality

Compare two situations:

(a) *T* primitive, pushoff curve $\beta \subset N_T$ essential in $X \setminus T$ Do $S^1 \times p/1$ - surgery on *T* (i.e. (0,1,p)-surgery) $\Rightarrow T_{p/1}$ nullhomologous in $X_T(p/1)$.

(Its meridian is $\beta + p\mu_T \sim \beta \not\sim 0$ in $X \smallsetminus N_T$.)

Let $\beta' =$ surgery curve on $\partial N_{\mathcal{T}_{p/1}} \subset X_{\mathcal{T}}(p/1)$ which gives back X

 β' bounds in $X_T(p/1) \smallsetminus N_{T_{p/1}} = X \smallsetminus N_T$.

(b) *T* nullhomologous, β bounds in $X \setminus N_T$ $S^1 \times 0/1$ (*i.e.* nullhomologous) surgery on *T* gives (a).

(a) \longrightarrow (b) reduces b_1 by 1 and increases H_2 by a hyperbolic pair. (b) \longrightarrow (a) does the opposite.

Reverse Engineering

Difficult to find useful nullhomologous tori as in applications above

Recall: $SW_{X_{T(p/1)}} = SW_X + pSW_{X_T(0/1)}$ IDEA: First construct $X_T(0/1)$ so that $SW_{X_T(0/1)} \neq 0$ and then surger to reduce b_1 .

Procedure to insure the existence of effective nullhomologous tori

1. Find model manifold M with same Euler number and signature as desired manifold, but with $b_1 \neq 0$ and with $SW \neq 0$.

2. Find b_1 disjoint essential tori in M containing generators of H_1 . Surger to get manifold X with $H_1 = 0$. Want result of each surgery to have $SW \neq 0$ (except perhaps the very last).

3. X will contain a "useful" nullhomologous torus.

Reverse Engineering

Difficult to find useful nullhomologous tori as in applications above

Recall: $SW_{X_{T(p/1)}} = SW_X + pSW_{X_T(0/1)}$ IDEA: First construct $X_T(0/1)$ so that $SW_{X_T(0/1)} \neq 0$ and then surger to reduce b_1 .

- Procedure to insure the existence of effective nullhomologous tori
- 1. Find model manifold M with same Euler number and signature as desired manifold, but with $b_1 \neq 0$ and with $SW \neq 0$.
- 2. Find b_1 disjoint essential tori in M containing generators of H_1 . Surger to get manifold X with $H_1 = 0$. Want result of each surgery to have $SW \neq 0$ (except perhaps the very last).
- 3. X will contain a "useful" nullhomologous torus.

M: symplectic manifold T: Lagrangian torus in M

Preferred framing for T: Lagrangian framing w.r.t. which all pushoffs of T remain Lagrangian

(1/n)-surgeries w.r.t. this framing are again symplectic (Luttinger; Auroux, Donaldson, Katzarkov)

If eta= Lagrangian pushoff, $M_T(\pm 1)=(0,1,\pm 1) ext{-surgery}$ is a symplectic mfd

 \Longrightarrow if $b^+>1, \hspace{0.2cm} M_{T,eta}(\pm 1)$ has $\mathcal{SW}
eq 0$

M: symplectic manifold T: Lagrangian torus in M Preferred framing for T: Lagrangian framing w.r.t. which all pushoffs of T remain Lagrangian

(1/n)-surgeries w.r.t. this framing are again symplectic (Luttinger; Auroux, Donaldson, Katzarkov)

If eta= Lagrangian pushoff, $M_{T}(\pm 1)=(0,1,\pm 1)$ -surgery is a symplectic mfd

 \Longrightarrow if $b^+>1, \hspace{0.2cm} M_{T,eta}(\pm 1)$ has $\mathcal{SW}
eq 0$

M: symplectic manifold T: Lagrangian torus in M

Preferred framing for T: Lagrangian framing w.r.t. which all pushoffs of T remain Lagrangian

(1/n)-surgeries w.r.t. this framing are again symplectic (Luttinger; Auroux, Donaldson, Katzarkov)

If β = Lagrangian pushoff, $M_T(\pm 1) = (0, 1, \pm 1)$ -surgery is a symplectic mfd \implies if $b^+ > 1$, $M_{T,\beta}(\pm 1)$ has $SW \neq 0$

M: symplectic manifold T: Lagrangian torus in M

Preferred framing for T: Lagrangian framing w.r.t. which all pushoffs of T remain Lagrangian

(1/n)-surgeries w.r.t. this framing are again symplectic (Luttinger; Auroux, Donaldson, Katzarkov)

If $\beta=$ Lagrangian pushoff, $M_{T}(\pm 1)=(0,1,\pm 1)\text{-surgery is a symplectic mfd}$

 \implies if $b^+ > 1$, $M_{T,eta}(\pm 1)$ has $\mathcal{SW}
eq 0$

(日) (同) (三) (三) (三) (○) (○)

M: symplectic manifold T: Lagrangian torus in M

Preferred framing for T: Lagrangian framing w.r.t. which all pushoffs of T remain Lagrangian

(1/n)-surgeries w.r.t. this framing are again symplectic (Luttinger; Auroux, Donaldson, Katzarkov)

If $eta = {\sf Lagrangian}$ pushoff, $M_{\mathcal{T}}(\pm 1) = (0,1,\pm 1) ext{-surgery}$ is a symplectic mfd

 \implies if $b^+>1, \ M_{\mathcal{T},\beta}(\pm 1)$ has $\mathcal{SW}
eq 0$

(日) (同) (三) (三) (三) (○) (○)

▶ The SW condition

If M is symplectic and surgery tori are Lagrangian and we do (± 1) -surgeries with respect to the Lagrangian framings, each resultant manifold will be symplectic and have $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

Above surgery process ends with

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff and $\mathcal{SW}_{X_{\Lambda,\lambda}(1/n)}$ all different

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

▶ The SW condition

If M is symplectic and surgery tori are Lagrangian and we do (± 1) -surgeries with respect to the Lagrangian framings, each resultant manifold will be symplectic and have $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

Above surgery process ends with

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff and $\mathcal{SW}_{X_{\Lambda,\lambda}(1/n)}$ all different

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The \mathcal{SW} condition

If M is symplectic and surgery tori are Lagrangian and we do (± 1) -surgeries with respect to the Lagrangian framings, each resultant manifold will be symplectic and have $SW \neq 0$.

Simple connectivity Easier in some cases than others

► Infinite families

Above surgery process ends with

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff and $\mathcal{SW}_{X_{\Lambda,\lambda}(1/n)}$ all different

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The \mathcal{SW} condition

If M is symplectic and surgery tori are Lagrangian and we do (± 1) -surgeries with respect to the Lagrangian framings, each resultant manifold will be symplectic and have $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

Above surgery process ends with

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff and $\mathcal{SW}_{X_{\Lambda,\lambda}(1/n)}$ all different

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

• The \mathcal{SW} condition

If M is symplectic and surgery tori are Lagrangian and we do (± 1) -surgeries with respect to the Lagrangian framings, each resultant manifold will be symplectic and have $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

Above surgery process ends with

1. $H_1 = 0$ (simply connected, if lucky) manifold X

- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff and $\mathcal{SW}_{X_{\Lambda,\lambda}(1/n)}$ all different

(日) (同) (三) (三) (三) (○) (○)

• The \mathcal{SW} condition

If M is symplectic and surgery tori are Lagrangian and we do (± 1) -surgeries with respect to the Lagrangian framings, each resultant manifold will be symplectic and have $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

Above surgery process ends with

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff and $\mathcal{SW}_{X_{\Lambda,\lambda}(1/n)}$ all different

(日) (同) (三) (三) (三) (○) (○)

• The \mathcal{SW} condition

If M is symplectic and surgery tori are Lagrangian and we do (± 1) -surgeries with respect to the Lagrangian framings, each resultant manifold will be symplectic and have $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

Above surgery process ends with

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff and $\mathcal{SW}_{X_{\Lambda,\lambda}(1/n)}$ all different

(日) (同) (三) (三) (三) (○) (○)

• The \mathcal{SW} condition

If M is symplectic and surgery tori are Lagrangian and we do (± 1) -surgeries with respect to the Lagrangian framings, each resultant manifold will be symplectic and have $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

Above surgery process ends with

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff and $\mathcal{SW}_{X_{\Lambda,\lambda}(1/n)}$ all different

(日) (同) (三) (三) (三) (○) (○)

Model Manifolds for $\mathbb{CP}^2 \# k \overline{\mathbb{CP}}^2$

Basic Pieces: $X_0, X_1, X_2, X_3X_4X_5$

 $\begin{array}{l} X_0: \ \Sigma_2 \subset T^2 \times \Sigma_2 \ \text{representing } (0,1) \\ X_1: \ \Sigma_2 \subset T^2 \times T^2 \# \ \overline{\mathbb{CP}}^2 \ \text{representing } (2,1) - 2e \\ X_2: \ \Sigma_2 \subset T^2 \times T^2 \# 2 \ \overline{\mathbb{CP}}^2 \ \text{representing } (1,1) - e_1 - e_2 \\ X_3: \ \Sigma_2 \subset S^2 \times T^2 \# 3 \ \overline{\mathbb{CP}}^2 \ \text{representing } (1,3) - 2e_1 - e_2 - e_3 \\ X_4: \ \Sigma_2 \subset S^2 \times T^2 \# 4 \ \overline{\mathbb{CP}}^2 \ \text{representing } (1,2) - e_1 - e_2 - e_3 - e_4 \end{array}$

For a symplectic 4-manifold, X, χ(X) = ¼(e + sign)(X); c₁²(X) = (3 sign + 2 e)(X)
 (Fiber Sums) If X', X" are symplectic with symplectic submanifolds Σ', Σ" of square 0 and same genus g, the fiber sum X = X'#_{Σ'=Σ''}X" is again symplectic, and c₁²(X) = c₁²(X') + c₁²(X") + 8(g - 1); χ(X) = χ(X') + χ(X") + (g - 1)

 $X_r #_{\Sigma_2} X_s$ is a model for $\mathbb{CP}^2 # (r + s + 1) \overline{\mathbb{CP}^2}$ Except $X_0 #_{\Sigma_2} X_0 = \Sigma_2 \times \Sigma_2$ is a model for $S^2 \times S^2$

- First successful implementation of this strategy for CP² # 3CP² (i.e. show surgery on model manifold results in π₁ = 0) obtained by Baldridge-Kirk and Akhmedov-Park
- First full implementation (i.e. infinite families) for CP²# 3CP²: Fintushel-Park-Stern using the 2-fold symmetric product Y = Sym²(Σ₃) as model.
- Ahkmedov-Park have paper to implement strategy for $\mathbb{CP}^2 \# 2 \mathbb{CP}^2$ (i.e. show surgery on model manifold results in $\pi_1 = 0$)

$\begin{array}{c} \mbox{Model Manifolds for } \mathbb{CP}^2 \# k \ \overline{\mathbb{CP}}^2 \\ \mbox{Basic Pieces: } X_0, X_1, X_2, X_3 X_4 X_5 \\ X_0: \ \Sigma_2 \subset T^2 \times \Sigma_2 \ \mbox{representing (0,1)} \\ X_1: \ \Sigma_2 \subset T^2 \times T^2 \# \ \overline{\mathbb{CP}}^2 \ \mbox{representing (2,1)} - 2e \\ X_2: \ \Sigma_2 \subset T^2 \times T^2 \# 2 \ \overline{\mathbb{CP}}^2 \ \mbox{representing (1,1)} - e_1 - e_2 \\ X_3: \ \Sigma_2 \subset S^2 \times T^2 \# 3 \ \overline{\mathbb{CP}}^2 \ \mbox{representing (1,3)} - 2e_1 - e_2 - e_3 \\ X_4: \ \Sigma_2 \subset S^2 \times T^2 \# 4 \ \overline{\mathbb{CP}}^2 \ \mbox{representing (1,2)} - e_1 - e_2 - e_3 - e_4 \end{array}$

For a symplectic 4-manifold, X, χ(X) = ¼(e + sign)(X); c₁²(X) = (3 sign + 2 e)(X)
 (Fiber Sums) If X', X" are symplectic with symplectic submanifolds Σ', Σ" of square 0 and same genus g, the fiber sum X = X'#_{Σ'=Σ''}X" is again symplectic, and c₁²(X) = c₁²(X') + c₁²(X") + 8(g - 1); χ(X) = χ(X') + χ(X") + (g - 1)

 $X_r \#_{\Sigma_2} X_s$ is a model for $\mathbb{CP}^2 \# (r + s + 1) \overline{\mathbb{CP}^2}$ Except $X_0 \#_{\Sigma_2} X_0 = \Sigma_2 \times \Sigma_2$ is a model for $S^2 \times S^2$

- First successful implementation of this strategy for CP² # 3CP² (i.e. show surgery on model manifold results in π₁ = 0) obtained by Baldridge-Kirk and Akhmedov-Park
- First full implementation (i.e. infinite families) for CP²# 3CP²: Fintushel-Park-Stern using the 2-fold symmetric product Y = Sym²(Σ₃) as model.
- Ahkmedov-Park have paper to implement strategy for CP²#2 CP² (i.e. show surgery on model manifold results in π₁ = 0)

$\begin{array}{c} \mbox{Model Manifolds for } \mathbb{CP}^2 \# k \ \overline{\mathbb{CP}}^2 \\ \mbox{Basic Pieces: } X_0, X_1, X_2, X_3 X_4 X_5 \\ X_0: \ \Sigma_2 \subset T^2 \times \Sigma_2 \ \mbox{representing (0,1)} \\ X_1: \ \Sigma_2 \subset T^2 \times T^2 \# \ \overline{\mathbb{CP}}^2 \ \mbox{representing (2,1)} - 2e \\ X_2: \ \Sigma_2 \subset T^2 \times T^2 \# 2 \ \overline{\mathbb{CP}}^2 \ \mbox{representing (1,1)} - e_1 - e_2 \\ X_3: \ \Sigma_2 \subset S^2 \times T^2 \# 3 \ \overline{\mathbb{CP}}^2 \ \mbox{representing (1,3)} - 2e_1 - e_2 - e_3 \\ X_4: \ \Sigma_2 \subset S^2 \times T^2 \# 4 \ \overline{\mathbb{CP}}^2 \ \mbox{representing (1,2)} - e_1 - e_2 - e_3 - e_4 \end{array}$

For a symplectic 4-manifold, X, χ(X) = ¼(e + sign)(X); c₁²(X) = (3 sign + 2 e)(X)
 (Fiber Sums) If X', X" are symplectic with symplectic submanifolds Σ', Σ" of square 0 and same genus g, the fiber sum X = X'#_{Σ'=Σ''}X" is again symplectic, and c₁²(X) = c₁²(X') + c₁²(X") + 8(g - 1); χ(X) = χ(X') + χ(X") + (g - 1)

 $\begin{array}{l} X_r \#_{\Sigma_2} X_s \text{ is a model for } \mathbb{CP}^2 \# (r + s + 1) \overline{\mathbb{CP}^2} \\ \text{Except } X_0 \#_{\Sigma_2} X_0 = \Sigma_2 \times \Sigma_2 \text{ is a model for } S^2 \times S^2 \end{array}$

- First successful implementation of this strategy for CP² # 3CP² (i.e. show surgery on model manifold results in π₁ = 0) obtained by Baldridge-Kirk and Akhmedov-Park
- First full implementation (i.e. infinite families) for CP²# 3CP²: Fintushel-Park-Stern using the 2-fold symmetric product Y = Sym²(Σ₃) as model.
- Ahkmedov-Park have paper to implement strategy for CP²#2 CP² (i.e. show surgery on model manifold results in π₁ = 0)

Model Manifolds for $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$ Basic Pieces: $X_0, X_1, X_2, X_3X_4X_5$ X_0 : $\Sigma_2 \subset T^2 \times \Sigma_2$ representing (0,1) X₁: $\Sigma_2 \subset T^2 \times T^2 \# \overline{\mathbb{CP}}^2$ representing (2, 1) - 2eX₂: $\Sigma_2 \subset T^2 \times T^2 \# 2 \overline{\mathbb{CP}^2}$ representing $(1,1) - e_1 - e_2$ X₃: $\Sigma_2 \subset S^2 \times T^2 \# \operatorname{3} \overline{\mathbb{CP}^2}$ representing $(1,3) - 2e_1 - e_2 - e_3$ X₄: $\Sigma_2 \subset S^2 \times T^2 \# 4 \overline{\mathbb{CP}}^2$ representing $(1,2) - e_1 - e_2 - e_3 - e_4$

For a symplectic 4-manifold, X, $\chi(X) = \frac{1}{4}(e + \operatorname{sign})(X)$; $c_1^2(X) = (3\operatorname{sign} + 2e)(X)$ • (Fiber Sums) If X', X'' are symplectic with symplectic submanifolds Σ' , Σ'' of square 0 and same genus g, the fiber sum $X = X' \#_{\Sigma' = \Sigma''} X''$ is again symplectic, and $c_1^2(X) = c_1^2(X') + c_1^2(X'') + 8(g-1); \ \chi(X) = \chi(X') + \chi(X'') + (g-1)$

> $X_r \#_{\Sigma_2} X_s$ is a model for $\mathbb{CP}^2 \# (r + s + 1) \overline{\mathbb{CP}^2}$ Except $X_0 \#_{\Sigma_2} X_0 = \Sigma_2 \times \Sigma_2$ is a model for $S^2 \times S^2$

Model Manifolds for $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$ Basic Pieces: $X_0, X_1, X_2, X_3X_4X_5$ X_0 : $\Sigma_2 \subset T^2 \times \Sigma_2$ representing (0,1) X₁: $\Sigma_2 \subset T^2 \times T^2 \# \overline{\mathbb{CP}}^2$ representing (2,1) - 2eX₂: $\Sigma_2 \subset T^2 \times T^2 \# 2 \overline{\mathbb{CP}^2}$ representing $(1,1) - e_1 - e_2$ X₃: $\Sigma_2 \subset S^2 \times T^2 \# \operatorname{3} \overline{\mathbb{CP}^2}$ representing $(1,3) - 2e_1 - e_2 - e_3$ X₄: $\Sigma_2 \subset S^2 \times T^2 \# 4 \overline{\mathbb{CP}}^2$ representing $(1,2) - e_1 - e_2 - e_3 - e_4$

For a symplectic 4-manifold, X, $\chi(X) = \frac{1}{4}(e + \operatorname{sign})(X)$; $c_1^2(X) = (3\operatorname{sign} + 2e)(X)$ • (Fiber Sums) If X', X'' are symplectic with symplectic submanifolds Σ' , Σ'' of square 0 and same genus g, the fiber sum $X = X' \#_{\Sigma' = \Sigma''} X''$ is again symplectic, and $c_1^2(X) = c_1^2(X') + c_1^2(X'') + 8(g-1); \ \chi(X) = \chi(X') + \chi(X'') + (g-1)$

> $X_r \#_{\Sigma_2} X_s$ is a model for $\mathbb{CP}^2 \# (r+s+1) \overline{\mathbb{CP}^2}^2$ Except $X_0 \#_{\Sigma_2} X_0 = \Sigma_2 \times \Sigma_2$ is a model for $S^2 \times S^2$

Model Manifolds for $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$ Basic Pieces: $X_0, X_1, X_2, X_3X_4X_5$ X_0 : $\Sigma_2 \subset T^2 \times \Sigma_2$ representing (0,1) X₁: $\Sigma_2 \subset T^2 \times T^2 \# \overline{\mathbb{CP}}^2$ representing (2, 1) - 2eX₂: $\Sigma_2 \subset T^2 \times T^2 \# 2 \overline{\mathbb{CP}^2}$ representing $(1,1) - e_1 - e_2$ X₃: $\Sigma_2 \subset S^2 \times T^2 \# \operatorname{3} \overline{\mathbb{CP}^2}$ representing $(1,3) - 2e_1 - e_2 - e_3$ X₄: $\Sigma_2 \subset S^2 \times T^2 \# 4 \overline{\mathbb{CP}^2}$ representing $(1,2) - e_1 - e_2 - e_3 - e_4$

For a symplectic 4-manifold, X, $\chi(X) = \frac{1}{4}(e + \operatorname{sign})(X)$; $c_1^2(X) = (3\operatorname{sign} + 2e)(X)$ ▶ (Fiber Sums) If X', X'' are symplectic with symplectic submanifolds Σ' , Σ'' of square 0 and same genus g, the fiber sum $X = X' \#_{\Sigma' = \Sigma''} X''$ is again symplectic, and $c_1^2(X) = c_1^2(X') + c_1^2(X'') + 8(g-1); \ \chi(X) = \chi(X') + \chi(X'') + (g-1)$

> $X_r \#_{\Sigma_2} X_s$ is a model for $\mathbb{CP}^2 \# (r+s+1) \overline{\mathbb{CP}^2}^2$ Except $X_0 \#_{\Sigma_2} X_0 = \Sigma_2 \times \Sigma_2$ is a model for $S^2 \times S^2$

- First successful implementation of this strategy for $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ (i.e. show surgery on model manifold results in $\pi_1 = 0$) obtained by Baldridge-Kirk and Akhmedov-Park
- First full implementation (i.e. infinite families) for $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$: Fintushel-Park-Stern using the 2-fold symmetric product $Y = Sym^2(\Sigma_3)$ as model.

$\begin{array}{c} \mbox{Model Manifolds for } \mathbb{CP}^2 \# k \ \overline{\mathbb{CP}}^2 \\ \mbox{Basic Pieces: } X_0, X_1, X_2, X_3 X_4 X_5 \\ X_0: \ \Sigma_2 \subset T^2 \times \Sigma_2 \ \mbox{representing (0,1)} \\ X_1: \ \Sigma_2 \subset T^2 \times T^2 \# \ \overline{\mathbb{CP}}^2 \ \mbox{representing (2,1)} - 2e \\ X_2: \ \Sigma_2 \subset T^2 \times T^2 \# 2 \ \overline{\mathbb{CP}}^2 \ \mbox{representing (1,1)} - e_1 - e_2 \\ X_3: \ \Sigma_2 \subset S^2 \times T^2 \# 3 \ \overline{\mathbb{CP}}^2 \ \mbox{representing (1,3)} - 2e_1 - e_2 - e_3 \\ X_4: \ \Sigma_2 \subset S^2 \times T^2 \# 4 \ \overline{\mathbb{CP}}^2 \ \mbox{representing (1,2)} - e_1 - e_2 - e_3 - e_4 \end{array}$

For a symplectic 4-manifold, X, χ(X) = ¼(e + sign)(X); c₁²(X) = (3 sign + 2 e)(X)
 (Fiber Sums) If X', X'' are symplectic with symplectic submanifolds Σ', Σ'' of square 0 and same genus g, the fiber sum X = X'#_{Σ'=Σ''}X'' is again symplectic, and c₁²(X) = c₁²(X') + c₁²(X'') + 8(g − 1); χ(X) = χ(X') + χ(X'') + (g − 1)

 $\begin{array}{l} X_r \#_{\Sigma_2} X_s \text{ is a model for } \mathbb{CP}^2 \# (r+s+1) \overline{\mathbb{CP}^2} \\ \text{Except } X_0 \#_{\Sigma_2} X_0 = \Sigma_2 \times \Sigma_2 \text{ is a model for } S^2 \times S^2 \end{array}$

- First successful implementation of this strategy for CP² # 3CP² (i.e. show surgery on model manifold results in π₁ = 0) obtained by Baldridge-Kirk and Akhmedov-Park
- First full implementation (i.e. infinite families) for CP²# 3CP²: Fintushel-Park-Stern using the 2-fold symmetric product Y = Sym²(Σ₃) as model.
- Ahkmedov-Park have paper to implement strategy for $\mathbb{CP}^2 \# 2 \overline{\mathbb{CP}^2}$ (i.e. show surgery on model manifold results in $\pi_1 = 0$)

Model Manifolds

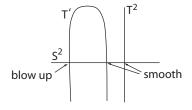
Basic Pieces: X₃

 $X_3 = S^2 \times T^2 \# 3 \overline{\mathbb{CP}}^2$, $c_1^2(X_3) = -3$, $\chi(X_3) = 0$ In $S^2 \times T^2$ there is an embedded torus T' representing $2T^2$. Consider configuration $T' + T^2 + S^2$ which has 3 double points. Blowup one double point on T' and smooth the other two double points. Then blow up at two more points on the result. Get Σ : genus 2, square 0 homologous to $3T^2 + S^2 - 2E_1 - E_2 - E_3$.

Model Manifolds

Basic Pieces: X₃

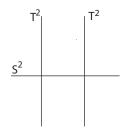
 $X_3 = S^2 \times T^2 \# 3 \overline{\mathbb{CP}}^2$, $c_1^2(X_3) = -3$, $\chi(X_3) = 0$ In $S^2 \times T^2$ there is an embedded torus T' representing $2T^2$. Consider configuration $T' + T^2 + S^2$ which has 3 double points. Blowup one double point on T' and smooth the other two double points. Then blow up at two more points on the result. Get Σ : genus 2, square 0 homologous to $3T^2 + S^2 - 2E_1 - E_2 - E_3$.



Model Manifolds

Basic Pieces: X₄

 $X_4 = S^2 \times T^2 \# 4 \overline{\mathbb{CP}}^2$, $c_1^2(X_4) = -4$, $\chi(X_4) = 0$ In $S^2 \times T^2$ consider configuration with 2 disjoint copies of T^2 and one S^2 . Smooth the double points and then blow up at 4 points to get Σ homologous to $2T^2 + S^2 - E_1 - E_2 - E_3 - E_4$. Σ has genus 2 and square 0.



Model Manifold:

 $\begin{aligned} X_2 \#_{\Sigma_2} X_0 &= ((T^4 \# \mathbb{CP}^2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \\ &= (Sym^2(\Sigma_2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \cong Sym^2(\Sigma_3) \end{aligned}$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

Is symplectic and has disjoint Lagrangian tori carrying basis for $\mathcal{H}_{1}.$

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. (Li-Liu)
- Get infinite family of distinct manifolds all homeomorphic to $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}}^2$ (joint with Ron Stern and Doug Park)
- Examples first obtained by Baldridge-Kirk and Akhmedov-Park.

Model Manifold:

 $\begin{aligned} X_2 \#_{\Sigma_2} X_0 &= ((T^4 \# \mathbb{CP}^2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \\ &= (Sym^2(\Sigma_2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \cong Sym^2(\Sigma_3) \end{aligned}$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

Is symplectic and has disjoint Lagrangian tori carrying basis for $\mathcal{H}_{1}.$

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. (Li-Liu)
- Examples first obtained by Baldridge-Kirk and Akhmedov-Park.

Model Manifold:

 $\begin{aligned} X_2 \#_{\Sigma_2} X_0 &= ((T^4 \# \mathbb{CP}^2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \\ &= (Sym^2(\Sigma_2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \cong Sym^2(\Sigma_3) \end{aligned}$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

Is symplectic and has disjoint Lagrangian tori carrying basis for H_1 .

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. (Li-Liu)
- Get infinite family of distinct manifolds all homeomorphic to $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}}^2$ (joint with Ron Stern and Doug Park)
- Examples first obtained by Baldridge-Kirk and Akhmedov-Park.

Model Manifold:

 $X_2 \#_{\Sigma_2} X_0 = ((T^4 \# \mathbb{CP}^2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2)$ $= (Sym^2(\Sigma_2) \# \mathbb{CP}^2) \#_{\Sigma_2}(T^2 \times \Sigma_2) \cong Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

Is symplectic and has disjoint Lagrangian tori carrying basis for H_1 .

- Six surgeries give a simply connected symplectic X whose
- Not diffeomorphic to $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ since each symplectic form
- Get infinite family of distinct manifolds all homeomorphic to
- Examples first obtained by Baldridge-Kirk and (日) (同) (三) (三) (三) (○) (○)

Model Manifold:

 $\begin{aligned} X_2 \#_{\Sigma_2} X_0 &= ((T^4 \# \mathbb{CP}^2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \\ &= (Sym^2(\Sigma_2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \cong Sym^2(\Sigma_3) \end{aligned}$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

Is symplectic and has disjoint Lagrangian tori carrying basis for H_1 .

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. (Li-Liu)
- Examples first obtained by Baldridge-Kirk and Akhmedov-Park.

Model Manifold:

 $\begin{aligned} X_2 \#_{\Sigma_2} X_0 &= ((T^4 \# \mathbb{CP}^2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \\ &= (Sym^2(\Sigma_2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2) \cong Sym^2(\Sigma_3) \end{aligned}$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

Is symplectic and has disjoint Lagrangian tori carrying basis for H_1 .

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP²#3CP² since each symplectic form on CP²#3CP² pairs negatively with its canonical class. (Li-Liu)
- Examples first obtained by Baldridge-Kirk and Akhmedov-Park.

Model Manifold:

 $X_2 \#_{\Sigma_2} X_0 = ((T^4 \# \mathbb{CP}^2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2)$ $= (Sym^2(\Sigma_2) \# \mathbb{CP}^2) \#_{\Sigma_2}(T^2 \times \Sigma_2) \cong Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

Is symplectic and has disjoint Lagrangian tori carrying basis for H_1 .

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ since each symplectic form on $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}}^2$ pairs negatively with its canonical class. (Li-Liu)
- Get infinite family of distinct manifolds all homeomorphic to $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ (joint with Ron Stern and Doug Park)
- Examples first obtained by Baldridge-Kirk and (日) (同) (三) (三) (三) (○) (○)

Model Manifold:

 $X_2 \#_{\Sigma_2} X_0 = ((T^4 \# \mathbb{CP}^2) \# \mathbb{CP}^2) \#_{\Sigma_2} (T^2 \times \Sigma_2)$ $= (Sym^2(\Sigma_2) \# \mathbb{CP}^2) \#_{\Sigma_2}(T^2 \times \Sigma_2) \cong Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

Is symplectic and has disjoint Lagrangian tori carrying basis for H_1 .

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ since each symplectic form on $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}}^2$ pairs negatively with its canonical class. (Li-Liu)
- Get infinite family of distinct manifolds all homeomorphic to $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ (joint with Ron Stern and Doug Park)
- Examples first obtained by Baldridge-Kirk and Akhmedov-Park.

Complex fake projective plane is a complex surface X with $H_*(X; \mathbb{Q}) = H_*(\mathbb{CP}^2; \mathbb{Q})$ but not diffeo to \mathbb{CP}^2 .

Completely classified by Prasad and Yeung via ball quotients.

Finitely many, each has nontrivial $H_1(X; \mathbb{Z})$ First example due to Mumford.

Complex fake projective plane is a complex surface X with $H_*(X; \mathbb{Q}) = H_*(\mathbb{CP}^2; \mathbb{Q})$ but not diffeo to \mathbb{CP}^2 .

Completely classified by Prasad and Yeung via ball quotients.

Finitely many, each has nontrivial $H_1(X; \mathbb{Z})$ First example due to Mumford.

Complex fake projective plane is a complex surface X with $H_*(X; \mathbb{Q}) = H_*(\mathbb{CP}^2; \mathbb{Q})$ but not diffeo to \mathbb{CP}^2 .

Completely classified by Prasad and Yeung via ball quotients.

Finitely many, each has nontrivial $H_1(X; \mathbb{Z})$ First example due to Mumford.

Complex fake projective plane is a complex surface X with $H_*(X; \mathbb{Q}) = H_*(\mathbb{CP}^2; \mathbb{Q})$ but not diffeo to \mathbb{CP}^2 .

Completely classified by Prasad and Yeung via ball quotients.

Finitely many, each has nontrivial $H_1(X; \mathbb{Z})$ First example due to Mumford.

Start with elliptic fibration on E(1) with 4 I_3 fibers.

$I_3 \leftrightarrow 3$ nodal fibers with parallel vanishing cycles

Do knot surgery on E(1) with K = trefoil knot section becomes torus of self-intersection -1 (Pseudosection) Red curve isotopic to green and blue curves

Meridian to knot bounds vanishing disk in $E(1) \smallsetminus N_F$

Get disjoint disks of self-intersection -1

- 日本 - 1 日本 - 1 日本 - 1 日本

Start with elliptic fibration on E(1) with 4 I_3 fibers.

 $\textit{I}_3 \leftrightarrow 3$ nodal fibers with parallel vanishing cycles

Do knot surgery on E(1) with K = trefoil knot section becomes torus of self-intersection -1 (Pseudosection) Red curve isotopic to green and blue curves

Meridian to knot bounds vanishing disk in $E(1) \smallsetminus N_F$

Get disjoint disks of self-intersection -1

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Use to surger pseudosection to sphere of square -3

э

Start with elliptic fibration on E(1) with 4 I_3 fibers.

 $\textit{I}_3 \leftrightarrow 3$ nodal fibers with parallel vanishing cycles

A D > A D > A D > A D >

Do knot surgery on E(1) with K = trefoil knot section becomes torus of self-intersection -1 (Pseudosection)

Red curve isotopic to green and blue curves Meridian to knot bounds vanishing disk in $E(1) \smallsetminus N_F$

Get disjoint disks of self-intersection -1

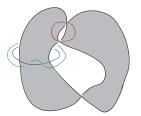
Use to surger pseudosection to sphere of square -3

ъ

Start with elliptic fibration on E(1) with 4 I_3 fibers.

 $\textit{I}_3 \leftrightarrow 3$ nodal fibers with parallel vanishing cycles

Do knot surgery on E(1) with K = trefoil knot section becomes torus of self-intersection -1 (Pseudosection)



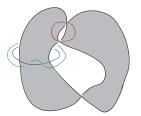
Red curve isotopic to green and blue curves Meridian to knot bounds vanishing disk in $E(1) \smallsetminus N_F$

Get disjoint disks of self-intersection $-1 \label{eq:Get_dispersion}$

Start with elliptic fibration on E(1) with 4 I_3 fibers.

 $\textit{I}_3 \leftrightarrow 3$ nodal fibers with parallel vanishing cycles

Do knot surgery on E(1) with K = trefoil knot section becomes torus of self-intersection -1 (Pseudosection)



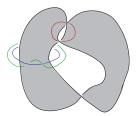
Red curve isotopic to green and blue curves Meridian to knot bounds vanishing disk in $E(1) \smallsetminus N_F$

Get disjoint disks of self-intersection $-1 \label{eq:Get_dispersion}$

Start with elliptic fibration on E(1) with 4 I_3 fibers.

 $\textit{I}_3 \leftrightarrow 3$ nodal fibers with parallel vanishing cycles

Do knot surgery on E(1) with K = trefoil knot section becomes torus of self-intersection -1 (Pseudosection)



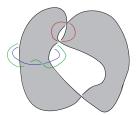
Red curve isotopic to green and blue curves Meridian to knot bounds vanishing disk in $E(1) \smallsetminus N_F$

Get disjoint disks of self-intersection $-1 \label{eq:Get_disjoint}$

Start with elliptic fibration on E(1) with 4 I_3 fibers.

 $\textit{I}_3 \leftrightarrow 3$ nodal fibers with parallel vanishing cycles

Do knot surgery on E(1) with K = trefoil knot section becomes torus of self-intersection -1 (Pseudosection)



Red curve isotopic to green and blue curves Meridian to knot bounds vanishing disk in $E(1) \smallsetminus N_F$

Get disjoint disks of self-intersection $-1 \label{eq:Get_disjoint}$

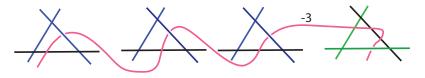
In $E(1)_K$ can arrange

Follow idea of Keum: Collapse three (-2)-(-2) to c(L(3, -2))Take 3-fold branched cover — get homotopy E(1)(nonsingular) : Y Y contains three copies of (-3)-(-2)-(-2).

Take 7-fold branched cover — get $X\colon$ rational homology \mathbb{CP}^2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In $E(1)_K$ can arrange



Follow idea of Keum: Collapse three (-2)-(-2) to c(L(3,-2))

Take 3-fold branched cover — get homotopy E(1) (nonsingular) : Y

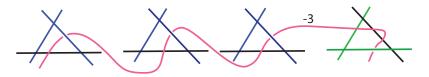
Y contains three copies of (-3)-(-2)-(-2).

Take 7-fold branched cover — get X: rational homology \mathbb{CP}^2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

In $E(1)_K$ can arrange



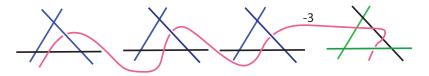
Follow idea of Keum: Collapse three (-2)-(-2) to c(L(3,-2))

Take 3-fold branched cover — get homotopy E(1) (nonsingular) : Y

Y contains three copies of (-3)-(-2)-(-2).

Take 7-fold branched cover — get $X\colon$ rational homology \mathbb{CP}^2

In $E(1)_K$ can arrange



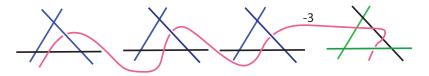
Follow idea of Keum: Collapse three (-2)-(-2) to c(L(3,-2))

Take 3-fold branched cover — get homotopy E(1) (nonsingular) : Y

Y contains three copies of (-3)-(-2)-(-2).

Take 7-fold branched cover — get $X\colon$ rational homology \mathbb{CP}^2

In $E(1)_K$ can arrange

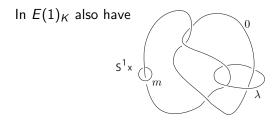


Follow idea of Keum: Collapse three (-2)-(-2) to c(L(3,-2))

Take 3-fold branched cover — get homotopy E(1) (nonsingular) : Y

Y contains three copies of (-3)-(-2)-(-2).

Take 7-fold branched cover — get X: rational homology \mathbb{CP}^2



Constructions above can be shown to be disjoint from $S^1 imes\lambda$

p/q-surgeries give \mathbb{Q} -homology E(1)'s with different SW-invariants

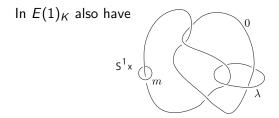
Construction gives \mathbb{Q} -homology \mathbb{CP}^2 's. SW = ?

They have Z/7-actions with different orbit spaces.

Are they irreducible?

э

イロト 不得 トイヨト イヨト



Constructions above can be shown to be disjoint from $S^1 imes \lambda$

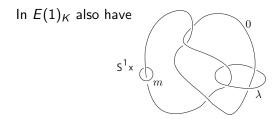
p/q-surgeries give \mathbb{Q} -homology E(1)'s with different SW-invariants

Construction gives \mathbb{Q} -homology \mathbb{CP}^2 's. SW = ?

They have Z/7-actions with different orbit spaces.

Are they irreducible?

(日) (四) (王) (日) (日) (日)



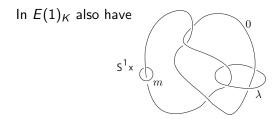
Constructions above can be shown to be disjoint from $S^1 imes \lambda$

p/q-surgeries give \mathbb{Q} -homology E(1)'s with different SW-invariants

Construction gives \mathbb{Q} -homology \mathbb{CP}^2 's. SW = ?

They have Z/7-actions with different orbit spaces.

Are they irreducible?



Constructions above can be shown to be disjoint from $S^1 imes \lambda$

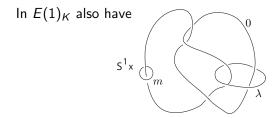
p/q-surgeries give \mathbb{Q} -homology E(1)'s with different SW-invariants

Construction gives \mathbb{Q} -homology \mathbb{CP}^2 's. SW = ?

They have Z/7-actions with different orbit spaces.

Are they irreducible?

(日) (個) (E) (E) (E)



Constructions above can be shown to be disjoint from $S^1 imes \lambda$

p/q-surgeries give \mathbb{Q} -homology E(1)'s with different SW-invariants

Construction gives \mathbb{Q} -homology \mathbb{CP}^2 's. SW = ?

They have Z/7-actions with different orbit spaces.

Are they irreducible?

