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Things which are seen are temporal,
but the things which are not seen are eternal.

B. Stewart and P.G. Tait
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Smooth structures

Wild Conjecture

Every smooth simply connected 4-manifold has infinitely many
distinct 4-manifolds which are homeomorphic to it.

The goal of this lecture —
Discuss a technique which can be used to study this conjecture
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Nullhomologous Tori

One way to try to prove this conjecture —
Find a “dial” (figuratively) to turn

to change the smooth structure at will.

This “dial”: Surgery on nullhomologous tori
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Knot Surgery

K : Knot in S3, T : square 0 essential torus in X

Definition
XK = (X rNT ) ∪ (S1 × (S3rNK ))

Facts about knot surgery

I If X and X rT both simply connected; so is XK .

I SWXK
= SWX ·∆K (t2)

Conclusion

I If X , X rT , simply connected and SWX 6= 0, then there is an
infinite family of distinct manifolds all homeomorphic to X .

e.g. X = K 3, SWX = 1, SWXK
= ∆K (t2)
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Knot Surgery and Nullhomologous Tori

Relation of knot surgery to nullhomologous tori —
proof of Knot Surgery Theorem

Knot surgery on torus T in 4-manifold X with knot K :

0

λ
m

XK
= S1x      X #

T = S  x m1

Λ = S1 × λ = nullhomologous torus — Used to change crossings
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The Morgan, Mrowka, Szabo Formula

Describes how surgery on a torus changes the Seiberg-Witten
invariant

T : torus in X with self-intersection = 0 Nbd = S1 × S1 × D2

Do S1 × (p/q) - surgery (precise description below) to get X ′

Roughly
SWX ′ = p SWX + q SWX0

where X0 = result of 0-surgery on T .
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An Example: Some Smooth Structures on E (1)

E (1) = CP2#9 CP2

Elliptic surface F : fiber (torus of square 0) NF = S1 × S1 × D2

F = S1 × f

Λ = S1 × λ
Nullhomologous torus in E (1)
= Whitehead double of fiber

s lies in a section

What is the result of surgery
on Λ?
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Smooth Structures on E (1), cont.

SWE(1) = 0 =⇒ SWE(1)Λ,1/n
= n SWE(1)Λ,0

(by Morgan, Mrowka, Szabo)

E (1)Λ,0 obtained by killing longitude of λ by surgery
Has b1 = 1 and b+ = 2

Whitehead link symmetry =⇒

Achieve this in E (1) directly by knot surgery on s = unknot.
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0-Surgery on Λ

0

λ
m

0

s

             into E(1)Accomplished by gluing  S1 x

gives E (1)Λ,0

Hoste =⇒“ s ( ... )” means “sewn-up link exterior such that H1 = Z⊕ Z
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An Infinite Family of Smooth Structures on E (1)

SWE(1)Λ,0
calculated by macarena moves on L

Can use this to calculate SWE(1)Λ,0
= t−1 − t

=⇒ 1/n - surgeries on Λ give manifolds homeo to E (1) and

SWE(1)Λ,1/n
= 1 · SWE(1) + n SWE(1)Λ,0

= n(t−1 − t)

=⇒ infinite family
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Reverse Engineering

Difficult to find useful nullhomologous tori like Λ.

Procedure to insure their existence:

1. Find model manifold M with same Euler number and signature
as desired manifold, but with b1 6= 0 and with SW 6= 0.

2. Find b1 disjoint essential tori in M containing generators of
H1. Surger to get manifold X with H1 = 0. Want result of
each surgery to have SW 6= 0 (except perhaps the very last).

3. X will contain a “useful” nullhomologous torus.
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Surgery on tori

T = α× β: square 0 torus in M. T 3 = ∂NT .

S1
α, S1

β loops in T 3 such that S1
α ∼ α and S1

β ∼ β in NT

∂NT = S1
α × S1

β × ∂D2 µ = ∂D2

p/q-surgery on T w.r.t. β means:

MT ,β(p/q) = (M rNT ) ∪ϕ (S1 × S1 × D2)
ϕ : S1 × S1 × ∂D2 −→ ∂(M rNT )

such that ϕ∗[∂D2] = q[S1
β ] + pµ in H1(∂(M rNT )

Core torus of MT ,β(p/q) is called Tp/q

This operation does not change e(M) or sign(M).
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Surgery Duality, (a)

(a). T primitive in H2(M) and [S1
β ] 6= 0 in H1(MrNT )

µ ∼ 0 in M rNT =⇒

In MT ,β(p/1) (p = 0, 1, 2, . . . ), meridian to Tp/1 is

S1
β + pµ ∼ S1

β 6∼ 0 in M rNT = MT ,β(p/1)rNTp/1

=⇒ Tp/1 is nullhomologous in MT ,β(p/1)

and µ becomes a nontrivial loop on Tp/1

with a preferred ‘pushoff’ S1
µ on ∂NTp/1

and

S1
µ ∼ 0 in MT ,β(p/1)rNTp/1

= M rNT

=⇒ Case (b)
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Surgery Duality, (b)

(b). T nullhomologous in M and [S1
β ] = 0 in H1(MrNT )

In MT ,β(0), meridian to T0 is S1
β ∼ 0 in MT ,β(0)rNT0 = M rNT
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and µ becomes a nontrivial loop on T0

with a preferred ‘pushoff’ S1
µ on ∂NT0 and
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µ 6∼ 0 in MT ,β(0)rNT0 = M rNT

=⇒ Case (a)
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Surgery Duality, Addendum

(a) −→ (b) reduces b1 by 1 and decreases H2 by a hyperbolic pair.

(b) −→ (a) does the opposite.

(b) again: T ∼ 0 in M and [S1
β ] = 0 in H1(MrNT )

MT ,β(1/p) has the same homology as M and

in MT ,β(1/p), meridian to T1/p is
p [S1

β ] + µ ∼ µ 6∼ 0 in
MT ,β(1/p)rNT1/p

= M rNT

=⇒ T1/p is again nullhomologous in MT ,β(0)

Ron Fintushel Michigan State University Reverse Engineering



Surgery Duality, Addendum

(a) −→ (b) reduces b1 by 1 and decreases H2 by a hyperbolic pair.

(b) −→ (a) does the opposite.

(b) again: T ∼ 0 in M and [S1
β ] = 0 in H1(MrNT )

MT ,β(1/p) has the same homology as M and

in MT ,β(1/p), meridian to T1/p is
p [S1

β ] + µ ∼ µ 6∼ 0 in
MT ,β(1/p)rNT1/p

= M rNT

=⇒ T1/p is again nullhomologous in MT ,β(0)

Ron Fintushel Michigan State University Reverse Engineering



Surgery Duality, Addendum

(a) −→ (b) reduces b1 by 1 and decreases H2 by a hyperbolic pair.

(b) −→ (a) does the opposite.

(b) again: T ∼ 0 in M and [S1
β ] = 0 in H1(MrNT )

MT ,β(1/p) has the same homology as M and

in MT ,β(1/p), meridian to T1/p is
p [S1

β ] + µ ∼ µ 6∼ 0 in
MT ,β(1/p)rNT1/p

= M rNT

=⇒ T1/p is again nullhomologous in MT ,β(0)

Ron Fintushel Michigan State University Reverse Engineering



Surgery Duality, Addendum

(a) −→ (b) reduces b1 by 1 and decreases H2 by a hyperbolic pair.

(b) −→ (a) does the opposite.

(b) again: T ∼ 0 in M and [S1
β ] = 0 in H1(MrNT )

MT ,β(1/p) has the same homology as M and

in MT ,β(1/p), meridian to T1/p is
p [S1

β ] + µ ∼ µ 6∼ 0 in
MT ,β(1/p)rNT1/p

= M rNT

=⇒ T1/p is again nullhomologous in MT ,β(0)

Ron Fintushel Michigan State University Reverse Engineering



Surgery Duality, Review

M, β nontrivial in H1, T = α× β primitive in H2, SWM 6= 0

(p/1)-surgery on β ↓ ↑ 0-surgery on β′

M ′, β′ nontrivial in H1, T ′ = α′ × β′ nullhomologous in H2

(1/n)-surgery on T ′ w.r.t. β′

gives manifolds homology equivalent to M ′

Infinite family because SWM′
T ′,β′ (1/n) = SWM′ + n SWM

Iterate this construction to kill H1(M).
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Luttinger Surgery

X : symplectic manifold T : Lagrangian torus in X

Preferred framing for T : Lagrangian framing
w.r.t. which all pushoffs of T remain Lagrangian

(1/n)-surgeries w.r.t. this framing are again symplectic
(Auroux, Donaldson, Katzarkov)

If S1
β = Lagrangian pushoff, XT ,β(±1): symplectic mfd

=⇒ if b+ > 1, XT ,β(±1) has SW 6= 0
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Families

I The SW condition
If M is symplectic and surgery tori are Lagrangian and we do
(±1)-surgeries with respect to the Lagrangian framings, each
resultant manifold will be symplectic and have SW 6= 0.

I Simple connectivity
Easier in some cases than others

I Infinite families

Above surgery process ends with

1. H1 = 0 (simply connected, if lucky) manifold X

2. Nullhomologous torus Λ ⊂ X

3. Loop λ on Λ with nullhomologous pushoff and SWXΛ,λ(1/n) all
different

=⇒ Infinite family
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Fake CP2# 3CP2’s

Model Manifold = Sym2(Σ3)

Has the same e and sign as CP2# 3CP2.

Has π1 = H1(Σ3) (so b1 = 6)

Is symplectic and has disjoint Lagrangian tori carrying basis
for H1.

• Six surgeries give a simply connected symplectic X whose
canonical class pairs positively with the symplectic form.

• Not diffeomorphic to CP2# 3CP2 since each symplectic form
on CP2# 3CP2 pairs negatively with its canonical class.
(Li-Liu)

• Get infinite family of distinct manifolds all homeomorphic to
CP2# 3CP2 (joint with Ron Stern and Doug Park)

• Examples first obtained by Baldridge-Kirk and
Akhmedov-Park.
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References for Constructions

I A. Akhmedov and B.D. Park, Exotic smooth structures on small
4-manifolds, Inventione Math. (to appear).

I A. Akhmedov and B.D. Park, Exotic smooth structures on small
4-manifolds with odd signatures, preprint.

I S. Baldridge and P. Kirk, A symplectic manifold homeomorphic but
not diffeomorphic to CP2# 3CP2, Geom. Topol. (to appear)

I R. Fintushel and R. Stern, Families of simply connected 4-manifolds
with the same Seiberg-Witten invariants, Topology 43 (2004),
1449–1467.

I R. Fintushel and R. Stern, Surgery on nullhomologous tori and
simply connected 4-manifolds with b+ = 1, Journal of Topology 1
(2008), 1–15.

I R. Fintushel,B. D. Park and R. Stern, Reverse engineering small
4-manifolds, Algebraic & Geometric Topology 7 (2007), 2103-2116.
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Constructing Model Manifolds

Chern number and Holomorphic Euler number

For a symplectic 4-manifold, X ,
c2

1 (X ) = 1
4 (e(X ) + sign(X )) and χ(X ) = 3 sign + 2 e(X )

Fiber Sums
If X ′, X ′′ are symplectic with symplectic submanifolds Σ′, Σ′′ of
square 0 and same genus g , the fiber sum X = X ′#Σ′=Σ′′X

′′ is
again symplectic, and

• c2
1 (X ) = c2

1 (X ′) + c2
1 (X ′′) + 8(g − 1)

• χ(X ) = χ(X ′) + χ(X ′′) + (g − 1)

Model Manifolds
Constructed from fiber sums where g = 2.
(As in Families of simply connected 4-manifolds with the same
Seiberg-Witten invariants, op.cit.)
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Many Model Manifolds
Basic Pieces: X0, X1, X2

X0 = T 2 × Σ2, c2
1 (X0) = 0, χ(X0) = 0

Σ = pt× Σ2.

X1 = T 2 × T 2#CP2, c2
1 (X1) = −1, χ(X1) = 0

In T 2 × T 2, call first torus T1 and second T2.
2T1 also represented by a torus. 2 T1 intersects T2 in two points.
Blow up one and smooth the other. Get Σ: genus 2, square 0.
Σ homologous to 2T1 + T2 − 2E .

X2 = T 2 × T 2#2 CP2, c2
1 (X2) = −2, χ(X1) = 0

In T 2 × T 2, blow up T1 + T2 twice. Get Σ: genus 2, square 0
homologous to T1 + T2 − E1 − E2.
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Many Model Manifolds
Basic Pieces: X3

X3 = S2 × T 2#3 CP2, c2
1 (X0) = −3, χ(X0) = 0

In S2 × T 2 there is an embedded torus T ′ representing 2T 2.
Consider configuration T ′ + T 2 + S2 which has 3 double points.
Blowup one double point on T ′ and smooth the other two double
points. Then blow up at two more points on the result.
Get Σ: genus 2, square 0 homologous to 3T 2 + S2−2E1−E2−E3.
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Basic Pieces: X3

X3 = S2 × T 2#3 CP2, c2
1 (X0) = −3, χ(X0) = 0

In S2 × T 2 there is an embedded torus T ′ representing 2T 2.
Consider configuration T ′ + T 2 + S2 which has 3 double points.
Blowup one double point on T ′ and smooth the other two double
points. Then blow up at two more points on the result.
Get Σ: genus 2, square 0 homologous to 3T 2 + S2−2E1−E2−E3.
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Many Model Manifolds
Basic Pieces: X4

X4 = S2 × T 2#4 CP2, c2
1 (X0) = −4, χ(X0) = 0

In S2 × T 2 consider configuration with 2 disjoint copies of T 2 and
one S2. Smooth the double points and then blow up at 4 points to
get Σ homologous to 2T 2 + S2 − E1 − E2 − E3 − E4.
Σ has genus 2 and square 0.

T2

2

T

S

2
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Many Model Manifolds

Model for b+ = 1, b− = k , k = 1, . . . , 8
(c2

1 = 9− k, χ = 1)

Mk = Xi#ΣXj , where i + j = k − 1

c2
1 (Mk) = c2

1 (Xi ) + c2
1 (Xj) + 8 = 9− k

χ(Mk) = χ(Xi ) + χ(Xj) + 1 = 1

Enough Lagrangian tori to surger to kill H1 =⇒ infinte family

Simply connected after surgeries?
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Many Model Manifolds
A particular example: b− = 1

M1 = X0#ΣX0 = (T 2 × Σ2)#Σ2(T 2 × Σ2) ∼= Σ2 × Σ2

Model for S2 × S2

Probably not simply
connected after surgery

Get infinite family of
distinct manifolds with
same homology as
S2 × S2
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Many Model Manifolds
More examples b− = 3

M3 = X0#ΣX2 = (T 2 × Σ2)#Σ2(T 2 × T 2#2 CP2)
∼= (T 2 × Σ2)#Σ2Sym2(Σ2)#CP2 ∼= Sym2(Σ3)

As above — model for CP2# 3CP2

Question: What about M ′3 = X1#ΣX1?

A Challenge
In CP2#n CP2 find a nullhomologous torus

so that surgeries on it give the known fake examples.
Santeria Surgery

Ron Fintushel Michigan State University Reverse Engineering



Many Model Manifolds
More examples b− = 3

M3 = X0#ΣX2 = (T 2 × Σ2)#Σ2(T 2 × T 2#2 CP2)
∼= (T 2 × Σ2)#Σ2Sym2(Σ2)#CP2 ∼= Sym2(Σ3)

As above — model for CP2# 3CP2

Question: What about M ′3 = X1#ΣX1?

A Challenge
In CP2#n CP2 find a nullhomologous torus

so that surgeries on it give the known fake examples.
Santeria Surgery

Ron Fintushel Michigan State University Reverse Engineering



Many Model Manifolds
More examples b− = 3

M3 = X0#ΣX2 = (T 2 × Σ2)#Σ2(T 2 × T 2#2 CP2)
∼= (T 2 × Σ2)#Σ2Sym2(Σ2)#CP2 ∼= Sym2(Σ3)

As above — model for CP2# 3CP2

Question: What about M ′3 = X1#ΣX1?

A Challenge
In CP2#n CP2 find a nullhomologous torus

so that surgeries on it give the known fake examples.
Santeria Surgery

Ron Fintushel Michigan State University Reverse Engineering



Many Model Manifolds
More examples b− = 3

M3 = X0#ΣX2 = (T 2 × Σ2)#Σ2(T 2 × T 2#2 CP2)
∼= (T 2 × Σ2)#Σ2Sym2(Σ2)#CP2 ∼= Sym2(Σ3)

As above — model for CP2# 3CP2

Question: What about M ′3 = X1#ΣX1?

A Challenge
In CP2#n CP2 find a nullhomologous torus

so that surgeries on it give the known fake examples.
Santeria Surgery

Ron Fintushel Michigan State University Reverse Engineering



Many Model Manifolds
More examples b− = 3

M3 = X0#ΣX2 = (T 2 × Σ2)#Σ2(T 2 × T 2#2 CP2)
∼= (T 2 × Σ2)#Σ2Sym2(Σ2)#CP2 ∼= Sym2(Σ3)

As above — model for CP2# 3CP2

Question: What about M ′3 = X1#ΣX1?

A Challenge
In CP2#n CP2 find a nullhomologous torus

so that surgeries on it give the known fake examples.
Santeria Surgery

Ron Fintushel Michigan State University Reverse Engineering


