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Invariants

Euler characteristic: e(X) = Z?ZO(—l)jrk(Hj(/\/l; 7))

» Intersection form: H?(X;Z) ® H*(X;Z) — Z;
a-ff=(aUp)X]

is an integral, symmetric, unimodular, bilinear form.
Signature of X = sign(X) = Signature of intersection form
=bt — b~

Type: Even if o - « even for all «; otherwise Odd

(Freedman, 1980) The intersection form classifies simply
connected topological 4-manifolds: There is one
homeomorphism type if the form is even; there are two if odd
— exactly one of which has X x S! smoothable.

(Donaldson, 1982) Two simply connected smooth 4-manifolds
are homeomorphic iff they have the same e, sign, and type.
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What do we know about smooth 4-manifolds?

Wild Conjecture
Every (simply connected) 4-manifold has either zero or
infinitely many distinct smooth 4-manifolds which are

homeomorphic to it.

In contrast, for n > 4, every n-manifold has only finitely many distinct smooth
n-manifolds which are homeomorphic to it.

Need new invariants: Donaldson, Seiberg-Witten Invariants
SW : {characteristic elements of Hy(X;Z)} — Z

» SW(() # 0 for only finitely many [3: called basic classes.
» For each surface ¥ C X with g(¥) >0and X-¥X >0

2g(X)—2>%- X4 |- 4]

for every basic class (. (adjunction inequality[Kronheimer-Mrowka])
Basic classes are the smooth analogue of

the canonical class of a complex surface.
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We need techniques to attack wild conjectures!

» Surgery/ Log transforms
» Knot surgery
» Fiber sums (including fiber to section)

» Rational blowdown




Surgery/ Log transform

T: square 0 torus C X, Tubular nbd Ny = T2 x D2,

Surgery on T: X~\N7 U, T2 x D% ¢ :9(T? x D?) — (X~ Nr)




Surgery/ Log transform

T: square 0 torus C X, Tubular nbd N7 = T2 x D2,

Surgery on T: X~\N7 U, T2 x D% ¢ :9(T? x D?) — (X~ Nr)
o(pt x OD?) = surgery curve




Surgery/ Log transform

T: square 0 torus C X, Tubular nbd N7 = T2 x D2,
Surgery on T: X~\N7 U, T2 x D% ¢ :9(T? x D?) — (X~ Nr)

o(pt x OD?) = surgery curve
Result determined by o.[pt x 9D?] € Hi(0(X ~NT))




Surgery/ Log transform

T: square 0 torus C X, Tubular nbd N7 = T2 x D2,

Surgery on T: X~\N7 U, T2 x D% ¢ :9(T? x D?) — (X~ Nr)
o(pt x OD?) = surgery curve
Result determined by o.[pt x 9D?] € Hi(0(X ~NT))

Choose basis {a, 3, [0D?]} for Hi(ONT) where {a, 3} are pushoffs
of a basis for Hi(T).




Surgery/ Log transform

T: square 0 torus C X, Tubular nbd N7 = T2 x D2,

Surgery on T: X~\N7 U, T2 x D% ¢ :9(T? x D?) — (X~ Nr)
o(pt x OD?) = surgery curve
Result determined by o.[pt x 9D?] € Hi(0(X ~NT))

Choose basis {a, 3, [0D?]} for Hi(ONT) where {a, 3} are pushoffs
of a basis for Hi(T).

¢.[pt x OD?] = pa + qf3 + r[0D?]




Surgery/ Log transform

T: square 0 torus C X, Tubular nbd N7 = T2 x D2,

Surgery on T: X~\N7 U, T2 x D% ¢ :9(T? x D?) — (X~ Nr)
o(pt x OD?) = surgery curve
Result determined by o.[pt x 9D?] € Hi(0(X ~NT))

Choose basis {a, 3, [0D?]} for Hi(ONT) where {a, 3} are pushoffs
of a basis for Hi(T).

@«lpt x OD?] = pa + 3 + r[0D?]
Write X~ Nt U, T2 x D? = X7(p, q,r)




Surgery/ Log transform

T: square 0 torus C X, Tubular nbd N7 = T2 x D2,

Surgery on T: X~\N7 U, T2 x D% ¢ :9(T? x D?) — (X~ Nr)
o(pt x OD?) = surgery curve
Result determined by o.[pt x 9D?] € Hi(0(X ~NT))

Choose basis {a, 3, [0D?]} for Hi(ONT) where {a, 3} are pushoffs
of a basis for Hi(T).

@«lpt x OD?] = pa + 3 + r[0D?]
Write X~ Nt U, T2 x D? = X7(p, q,r)
Note: X7(0,0,1) =X




Surgery/ Log transform

T: square 0 torus C X, Tubular nbd N7 = T2 x D2,

Surgery on T: X~\N7 U, T2 x D% ¢ :9(T? x D?) — (X~ Nr)
o(pt x OD?) = surgery curve
Result determined by o.[pt x 9D?] € Hi(0(X ~NT))

Choose basis {a, 3, [0D?]} for Hi(ONT) where {a, 3} are pushoffs
of a basis for Hi(T).

@«lpt x OD?] = pa + 3 + r[0D?]
Write X~ Nt U, T2 x D? = X7(p, q,r)
Note: X7(0,0,1) =X

Need formula for the Seiberg-Witten invariant of X1 (p, q, r)
Due to Morgan, Mrowka, and Szabo.
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The Morgan, Mrowka, Szabo Formula

D SWixs (painy(k + 21 Tipan]) = P> SWxr1.0.0)(K + 2i[ T1.00)])

+q Z SWx,(0,1,0) (K" +2i[To1,0]) + r Z SWx (k" +2i[T])

]

k characteristic element of Ha(X7(5q.r))
H(Xr(p,q,r)) — Ho(X7(p,q.r), N1, ) k —  k
HQ(X\:NT, d) k :l i
H»(X7(1,0,0)) — H2(X-,-(1,0,:0), NTi00) k' — g’

e All basic classes of X7(p, g, r) arise in this way.

e Important to understand situations when sums collapse to
single summand.
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Surgery

Reducing to one summand
» When a core torus is nullhomologous.

» When a core torus is essential, but there is a square 0 torus
that intersects it algebraically nontrivially.

Dual situations for surgery on T

a. T primitive, a C T essential in X\ T.
= T(1,0,r) nullhomologous in X7(1,0, r).
(Its meridian is a + rpur ~ a % 0 in X~ N7t.)
Let o/ = surgery curve on ONT,,,) C X71(1,0, r) which gives
back X
o’ bounds in X7(1,0, r)\NT(l,O,r) = X~ Nt.
b. T nullhomologous, a bounds in X~ Nt
(1,0,0) (i.e. nullhomologous) surgery on T gives (a).
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Knot Surgery

K: Knot in S3, T: square 0 essential torus in X

Definition
Xk = (X\NT) U (51 X (53\NK))

Facts about knot surgery

» If X and X~ T both simply connected; so is Xk
> SWXK =SWyx - AK(tz)

Conclusion
» If X, X\ T, simply connected and SWx # 0, then there is an
infinite family of distinct manifolds all homeomorphic to X.

eg X=K3, SWx=1, SWXK = AK(t2)
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Blowing down a —4-sphere

Sphere S € X with S-S5 = —4.

Ns =2 —(Nbd conic C CP?).

CP?~ {conic} = Nbd(RP?) = B,. —
Trade Ns for B,. 4 RP2
Simple formula for SW Nbd =B,
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Rational blowdown in general

Suppose X contains a configuration C, of 2-spheres

—(p+2) -2 -2

up uy Up—2

0C, = L(p? 1 - p),

which bounds a rational homology ball B,.
Rationally blowdown X by replacing C, with B,.
Simple formula for change in SW-invariant.

Process decreases b~ by p — 1, leaves b* unchanged.
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Some exotic T = 0 manifolds with bt =1
Start with elliptic surface E(1

Perform knot surgery in the double node nbd using twist knot

Cn 711

RH 24
tW|sts

K = twist knot
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E(1)x

In E(1)k:

N~
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Some exotic m; = 0 manifolds with b =1
Double Node Trick

The double node trick trades the ‘genus one pseudosection’ for an
immersed sphere:

el
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Some exotic m; = 0 manifolds with b™ =1
b~ =8

Blow up the double point of the pseudosection:

0
-2

o0
N

AV s

-1 9 9

Gz C E(1)k#CP?
Rationally blow down to get co family homeo to CP?#8 CP? by
varying K = twist knot
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Some exotic m; = 0 manifolds with b =1
b =7

Blow up the double point of one of the nodal fibers:

o
o

-4
| |

AV

-1

Smooth intersection of “-4" with “—5"
Get a sphere of self intersection —7 in E(1),#2 CP?
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Some exotic m; = 0 manifolds with b™ =1
b~ = 7(cont.)

C5 in E(1)g#2CP?

Rationally blow down to get co family homeo to CP?#7 CP? by
varying K = twist knot

Similar techniques oo families homeo to CP?#6 CP? and
CP2#5 CP?
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Reverse Engineering

Idea behind reverse engineering
Let T be a nullhomologous torus in X.

Morgan, Mrowka, Szabo formula says (more-or-less) that
SWxr(po1) = PSWxr(1,00) + SWx

So if SWx;(1,00) # 0 then we get an infinite family.

Suppose X is simply connected. For (p,0,1) - surgery on T
with nullhomologous a:

Hy(X7(p,0,1)) = 0, and if 71 (X7 (p,0,1)) = 0, then
X7(p,0,1) is homeomorphic to X.

The new core torus T(, 0 1) is nullhomologous in X7(p,0,1)

If T(1,00) has a ‘dual’ torus T’ of square 0 such that
T - T(1,0,0) # 0, then the corresponding sum in the M-M-5z
Formula collapses to one term.
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Reverse Engineering in Practice

Find a model manifold

Suppose we wish to construct a family of manifolds
homeomorphic to the simply connected manifold Q.

Surgery on a torus changes neither the euler number nor
signature.

. Start with a model manifold M which has the same e and
sign as @, but with b; > 0.

. Want disjoint homologically primitive tori in M, each of which
contains a generator of Hy(M), and such that surgeries on
these tori reduce by(M) to 0.

. Also want each such torus to have a dual as above.

4. Want to order the surgeries so that the next-to-last manifold

(with by = 1) has SW # 0.
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A Simple Example

Suppose Y is a 4-manifold with
> b]_:].

» Contains a homologically primitive square O torus T
with a loop o on T representing a generator of Hi(Y;Z).

» Contains square 0 torus 7" with T"- T # 0
> SWy 75 0

Perform a surgery on T which kills & homologically — get X.
bi(X) =0, Ha(Y;Z) = Ha(X; Z) @ hyperbolic pair
» A\ = core torus of surgery is nullhomologous in X.

v

» Jloop A on A so that certain (0-) surgery gives back Y.
Extend A to basis of Hi(A) and do (p,0,1)-surgery to get Xp.
SWXP = pSWy + SWX

Infinite family
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Families
The SW condition
If M is symplectic and the tori chosen for surgery are
Lagrangian and we do (p,0,+1) surgery with respect to the
Lagrangian framing of of one of these tori then the resultant
manifold will again be symplectic and so it has SW # 0.

Simple connectivity
Easier in some cases than others

Infinite families

Above surgery process ends with

1. H; = 0 (simply connected, if lucky) manifold X

2. Nullhomologous torus A C X

3. Loop A on A with nullhomologous pushoff so that

corresponding surgery gives X', the next-to-last manifold with
SWx: #0. ( X' = Xa(1,0,0) )
Infinite family
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Fake CP?# 3CP?'s

Model Manifold = Sym?(X3)
Has the same e and sign as CP?# 3CP?.
Has T = H1(23) (SO b1 = 6)

Is symplectic and has plenty of disjoint Lagrangian tori with
‘duals’.

Six surgeries give a simply connected symplectic X whose
canonical class pairs positively with the symplectic form.

Not diffeomorphic to CIP?2# 3CIP? since each symplectic form
on CP?# 3CP? pairs negatively with its canonical class.

Get infinite family of distinct manifolds all homeomorphic to
CP?# 3CP? (joint with Ron Stern and Doug Park)
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The Baldridge-Kirk Example
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Comparison with other fake CP?# 3CP?'s

The Baldridge-Kirk Example
The model manifold is: ( T*#CP2)#CP? #5, Y5 x T?
T*#CP? = Sym?(X2)
Conjecture
Sym?(Lg41) = Sym?(Lg)#CP? #5, T x T2

Prove by watching >, 1 degenerate to ¥z V T27?

The Akhmedov-Park Example
(51 X MK#2@2)#22(51 X MK#F:SSI X MK)

S x My is obtained from T* by two surgeries, and
St x Mk#r—sS x Mk from ¥ x T? after 4 surgeries.

= Same model manifolds
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Other Model Manifolds

How do we find them?
Library skills — read papers on constructions of algebraic
surfaces with small p; and g

Construct them yourself!

Some examples

T4 = T2 x T?. Take double branched cover branched over
the (2,2) curve (and desingularize). Get manifold with e =8,
sigh = —4, and b; = 4 and plenty of Lagrangian tori to surger.
This model gives manifolds homeomorphic to CP?# 5CP?.
Zsz-action on X3 with 2 fixed points. (X3/Z3 = T?2).
Diagonal action on ¥3 x X3 descends to Sym?(X3) with 3
fixed points.

Get model for CP?2# 7CP?.




A Challenge

In CIP?#n CP? find a nullhomologous torus so that surgeries
on it give the known fake examples.

Santeria Surgery




