

Reverse-engineering families of 4-manifolds

Ron Fintushel Michigan State University June 18, 2007

Joint work with Ron Stern

(中) (종) (종) (종) (종) (종)

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{j} rk(H^{j}(M;\mathbb{Z}))$
- ▶ Intersection form: $H^2(X; \mathbb{Z}) \otimes H^2(X; \mathbb{Z}) \rightarrow \mathbb{Z};$ $\alpha \cdot \beta = (\alpha \cup \beta)[X]$

is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X) = Signature of intersection form $= <math>b^+ - b^-$

Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd

- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic iff they have the same *e*, sign, and type.

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{j} rk(H^{j}(M;\mathbb{Z}))$
- ▶ Intersection form: $H^2(X; \mathbb{Z}) \otimes H^2(X; \mathbb{Z}) \to \mathbb{Z};$ $\alpha \cdot \beta = (\alpha \cup \beta)[X]$

is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X) = Signature of intersection form $= <math>b^+ - b^-$

Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd

- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic iff they have the same *e*, sign, and type.

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{j} rk(H^{j}(M;\mathbb{Z}))$
- ▶ Intersection form: $H^2(X; \mathbb{Z}) \otimes H^2(X; \mathbb{Z}) \to \mathbb{Z};$ $\alpha \cdot \beta = (\alpha \cup \beta)[X]$

is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X) = Signature of intersection form = $b^+ - b^-$

Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd

- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic iff they have the same *e*, sign, and type.

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{j} rk(H^{j}(M;\mathbb{Z}))$
- ▶ Intersection form: $H^2(X; \mathbb{Z}) \otimes H^2(X; \mathbb{Z}) \to \mathbb{Z};$ $\alpha \cdot \beta = (\alpha \cup \beta)[X]$

is an integral, symmetric, unimodular, bilinear form.

Signature of X = sign(X) = Signature of intersection form= $b^+ - b^-$

Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd

- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic iff they have the same *e*, sign, and type.

(日)、

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{j} rk(H^{j}(M;\mathbb{Z}))$
- Intersection form: H²(X; Z) ⊗ H²(X; Z) → Z; α · β = (α ∪ β)[X] is an integral, symmetric, unimodular, bilinear form. Signature of X = sign(X) = Signature of intersection form = b⁺ − b[−]
 - Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd
- (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic iff they have the same *e*, sign, and type.

- Euler characteristic: $e(X) = \sum_{i=0}^{4} (-1)^{j} rk(H^{j}(M;\mathbb{Z}))$
- Intersection form: H²(X; Z) ⊗ H²(X; Z) → Z; α · β = (α ∪ β)[X] is an integral, symmetric, unimodular, bilinear form. Signature of X = sign(X) = Signature of intersection form = b⁺ − b[−]
 - Type: Even if $\alpha \cdot \alpha$ even for all α ; otherwise Odd
- ▶ (Freedman, 1980) The intersection form classifies simply connected topological 4-manifolds: There is one homeomorphism type if the form is even; there are two if odd exactly one of which has X × S¹ smoothable.
- (Donaldson, 1982) Two simply connected *smooth* 4-manifolds are homeomorphic iff they have the same *e*, sign, and type.

A D F A B F A B F A B F

Wild Conjecture

- Every (simply connected) 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.
- In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.
- ▶ Need new invariants: Donaldson, Seiberg-Witten Invariants SW : {characteristic elements of H₂(X; Z)} → Z
- ▶ $SW(\beta) \neq 0$ for only finitely many β : called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

$2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot \beta|$

for every basic class β . (adjunction inequality[Kronheimer-Mrowka]) Basic classes are the smooth analogue of

Wild Conjecture

Every (simply connected) 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

- ▶ Need new invariants: Donaldson, Seiberg-Witten Invariants SW : {characteristic elements of H₂(X; Z)} → Z
- ▶ $SW(\beta) \neq 0$ for only finitely many β : called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

$2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot \beta|$

for every basic class β . (adjunction inequality[Kronheimer-Mrowka]) Basic classes are the smooth analogue of

Wild Conjecture

Every (simply connected) 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

- ▶ Need new invariants: Donaldson, Seiberg-Witten Invariants SW : {characteristic elements of H₂(X; Z)} → Z
- ▶ $SW(\beta) \neq 0$ for only finitely many β : called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

$2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot \beta|$

for every basic class β . (adjunction inequality[Kronheimer-Mrowka]) Basic classes are the smooth analogue of

Wild Conjecture

Every (simply connected) 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

▶ Need new invariants: Donaldson, Seiberg-Witten Invariants SW : {characteristic elements of H₂(X; Z)} → Z

▶ $SW(\beta) \neq 0$ for only finitely many β : called *basic* classes.

• For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

$2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot \beta|$

for every basic class eta. (adjunction inequality[Kronheimer-Mrowka])

Basic classes are the smooth analogue of

Wild Conjecture

Every (simply connected) 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

- ▶ Need new invariants: Donaldson, Seiberg-Witten Invariants SW: {characteristic elements of H₂(X; Z)} → Z
- $SW(\beta) \neq 0$ for only finitely many β : called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

$2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot \beta|$

for every basic class eta. (adjunction inequality[Kronheimer-Mrowka])

Basic classes are the smooth analogue of

Wild Conjecture

Every (simply connected) 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

- ▶ Need new invariants: Donaldson, Seiberg-Witten Invariants SW : {characteristic elements of H₂(X; Z)} → Z
- $SW(\beta) \neq 0$ for only finitely many β : called *basic* classes.
- For each surface Σ ⊂ X with g(Σ) > 0 and Σ · Σ ≥ 0

$2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot \beta|$

for every basic class β . (adjunction inequality[Kronheimer-Mrowka])

Basic classes are the smooth analogue of

Wild Conjecture

Every (simply connected) 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for n > 4, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.

- ▶ Need new invariants: Donaldson, Seiberg-Witten Invariants SW : {characteristic elements of H₂(X; Z)} → Z
- $SW(\beta) \neq 0$ for only finitely many β : called *basic* classes.
- For each surface $\Sigma \subset X$ with $g(\Sigma) > 0$ and $\Sigma \cdot \Sigma \ge 0$

$2g(\Sigma) - 2 \ge \Sigma \cdot \Sigma + |\Sigma \cdot \beta|$

for every basic class β . (adjunction inequality[Kronheimer-Mrowka]) Basic classes are the smooth analogue of the canonical class of a complex surface.

(日)、

All manifolds minimal $c = 3 \operatorname{sign} + 2e$ $\chi_h = \frac{\operatorname{sign} + e}{4}$

С

All manifolds minimal $c = 3 \operatorname{sign} + 2e$ $\chi_h = \frac{\operatorname{sign} + e}{4}$

・ロト ・ 日 ト ・ モ ト ・ モ ト

*S*⁴

- Surgery/ Log transforms
- Knot surgery
- Fiber sums (including fiber to section)
- Rational blowdown

We need techniques to attack wild conjectures!

Surgery/ Log transforms

- Knot surgery
- Fiber sums (including fiber to section)
- Rational blowdown

- Surgery/ Log transforms
- Knot surgery
- Fiber sums (including fiber to section)
- Rational blowdown

- Surgery/ Log transforms
- Knot surgery
- Fiber sums (including fiber to section)
- Rational blowdown

- Surgery/ Log transforms
- Knot surgery
- Fiber sums (including fiber to section)
- Rational blowdown

Surgery/ Log transform

T: square 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*: $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \smallsetminus N_T)$ $\varphi(pt \times \partial D^2) =$ surgery curve Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \smallsetminus N_T))$ Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$. $\varphi_*[pt \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$ Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$ Note: $X_T(0, 0, 1) = X$

Need formula for the Seiberg-Witten invariant of $X_T(p, q, r)$ Due to Morgan, Mrowka, and Szabo.

Surgery/ Log transform

T: square 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$.

Surgery on *T*: $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \smallsetminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \mathsf{surgery curve}$

Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \smallsetminus N_T))$ Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pu

of a basis for $H_1(T)$.

 $\varphi_*[pt \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$ Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p, q, r)$ Note: $X_T(0, 0, 1) = X$

Need formula for the Seiberg-Witten invariant of $X_T(p, q, r)$ Due to Morgan, Mrowka, and Szabo.

Surgery/ Log transform

T: square 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$. Surgery on T: $X \setminus N_T \cup_{\omega} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \mathsf{surgery curve}$ Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \setminus N_T))$ Write $X \setminus N_T \cup_{\omega} T^2 \times D^2 = X_T(p, q, r)$

Need formula for the Seiberg-Witten invariant of $X_T(p, q, r)$ Due to Morgan, Mrowka, and Szabo.

T: square 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$. Surgery on *T*: $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \smallsetminus N_T)$ $\varphi(\text{pt} \times \partial D^2) = \text{surgery curve}$ Result determined by $\varphi_*[\text{pt} \times \partial D^2] \in H_1(\partial(X \smallsetminus N_T))$ Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$. $\varphi_*[\text{pt} \times \partial D^2] = p\alpha + q\beta + r[\partial D^2]$

Write $X \smallsetminus N_T \cup_{\varphi} T^2 \times D^2 = X_T(p,q,r)$

Note: $X_T(0, 0, 1) = X$

T: square 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$. Surgery on T: $X \setminus N_T \cup_{\omega} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \text{surgery curve}$ Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \setminus N_T))$ Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$. $\varphi_*[\mathsf{p}\mathsf{t} \times \partial D^2] = \mathsf{p}\alpha + \mathsf{q}\beta + \mathsf{r}[\partial D^2]$

T: square 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$. Surgery on T: $X \setminus N_T \cup_{\omega} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \text{surgery curve}$ Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \setminus N_T))$ Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$. $\varphi_*[\mathsf{p}\mathsf{t} \times \partial D^2] = \mathsf{p}\alpha + \mathsf{q}\beta + \mathsf{r}[\partial D^2]$ Write $X \setminus N_T \cup_{\omega} T^2 \times D^2 = X_T(p,q,r)$

T: square 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$. Surgery on T: $X \setminus N_T \cup_{\omega} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \text{surgery curve}$ Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \setminus N_T))$ Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$. $\varphi_*[\mathsf{p}\mathsf{t} \times \partial D^2] = \mathsf{p}\alpha + \mathsf{q}\beta + \mathsf{r}[\partial D^2]$ Write $X \setminus N_T \cup_{\omega} T^2 \times D^2 = X_T(p,q,r)$ Note: $X_T(0, 0, 1) = X$

T: square 0 torus $\subset X$, Tubular nbd $N_T \cong T^2 \times D^2$. Surgery on T: $X \setminus N_T \cup_{\omega} T^2 \times D^2$, $\varphi : \partial(T^2 \times D^2) \to \partial(X \setminus N_T)$ $\varphi(\mathsf{p}t \times \partial D^2) = \text{surgery curve}$ Result determined by $\varphi_*[pt \times \partial D^2] \in H_1(\partial(X \setminus N_T))$ Choose basis $\{\alpha, \beta, [\partial D^2]\}$ for $H_1(\partial N_T)$ where $\{\alpha, \beta\}$ are pushoffs of a basis for $H_1(T)$. $\varphi_*[\mathsf{p}t \times \partial D^2] = \mathsf{p}\alpha + \mathsf{q}\beta + \mathsf{r}[\partial D^2]$ Write $X \setminus N_T \cup_{\omega} T^2 \times D^2 = X_T(p,q,r)$ Note: $X_{T}(0, 0, 1) = X$

$$\sum_{i} SW_{X_{T}(p,q,r)}(k+2i[T_{(p,q,r)}]) = p \sum_{i} SW_{X_{T}(1,0,0)}(k'+2i[T_{(1,0,0)}]) + q \sum_{i} SW_{X_{T}(0,1,0)}(k''+2i[T_{(0,1,0)}]) + r \sum_{i} SW_{X}(k'''+2i[T])$$

k characteristic element of $H_2(X_{T(p,q,r)})$

$$\begin{array}{rcccc} H_2(X_T(p,q,r)) & \to & H_2(X_T(p,q,r), N_{T_{(p,q,r)}}) & k & \to & \bar{k} \\ & \downarrow \cong & & \downarrow \\ & & H_2(X \smallsetminus N_T, \partial) & & \hat{k} = \hat{k}' \\ & \uparrow \cong & & \uparrow \\ & & H_2(X_T(1,0,0)) & \to & H_2(X_T(1,0,0), N_{T_{(1,0,0)}}) & & k' & \to & \bar{k}' \end{array}$$

• All basic classes of $X_T(p, q, r)$ arise in this way.

Important to understand situations when sums collapse to single summand.

イロト 不得 トイヨト イヨト

э

$$\sum_{i} SW_{X_{T}(p,q,r)}(k+2i[T_{(p,q,r)}]) = p \sum_{i} SW_{X_{T}(1,0,0)}(k'+2i[T_{(1,0,0)}]) + q \sum_{i} SW_{X_{T}(0,1,0)}(k''+2i[T_{(0,1,0)}]) + r \sum_{i} SW_{X}(k'''+2i[T])$$

k characteristic element of $H_2(X_{T(p,q,r)})$

$$\begin{array}{cccc} H_2(X_T(p,q,r)) & \to & H_2(X_T(p,q,r), N_{T_{(p,q,r)}}) & k & \to & \bar{k} \\ & \downarrow \cong & & \downarrow \\ & & H_2(X \smallsetminus N_T, \partial) & & \hat{k} = \hat{k}' \\ & \uparrow \cong & & \uparrow \\ H_2(X_T(1,0,0)) & \to & H_2(X_T(1,0,0), N_{T_{(1,0,0)}}) & k' & \to & \bar{k}' \end{array}$$

• All basic classes of $X_T(p, q, r)$ arise in this way.

Important to understand situations when sums collapse to single summand.

・ロト ・聞ト ・ヨト ・ヨト

$$\sum_{i} SW_{X_{T}(p,q,r)}(k+2i[T_{(p,q,r)}]) = p \sum_{i} SW_{X_{T}(1,0,0)}(k'+2i[T_{(1,0,0)}]) + q \sum_{i} SW_{X_{T}(0,1,0)}(k''+2i[T_{(0,1,0)}]) + r \sum_{i} SW_{X}(k'''+2i[T])$$

k characteristic element of $H_2(X_{T(p,q,r)})$

$$\begin{array}{cccc} H_2(X_T(p,q,r)) & \to & H_2(X_T(p,q,r), N_{\mathcal{T}_{(p,q,r)}}) & k & \to & \bar{k} \\ & \downarrow \cong & & \downarrow \\ & & H_2(X \smallsetminus N_T, \partial) & & \hat{k} = \hat{k}' \\ & \uparrow \cong & & \uparrow \\ H_2(X_T(1,0,0)) & \to & H_2(X_T(1,0,0), N_{\mathcal{T}_{(1,0,0)}}) & k' & \to & \bar{k}' \end{array}$$

• All basic classes of $X_T(p, q, r)$ arise in this way.

Important to understand situations when sums collapse to single summand.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\sum_{i} SW_{X_{T}(p,q,r)}(k+2i[T_{(p,q,r)}]) = p \sum_{i} SW_{X_{T}(1,0,0)}(k'+2i[T_{(1,0,0)}]) + q \sum_{i} SW_{X_{T}(0,1,0)}(k''+2i[T_{(0,1,0)}]) + r \sum_{i} SW_{X}(k'''+2i[T])$$

k characteristic element of $H_2(X_{T(p,q,r)})$

$$\begin{array}{cccc} H_2(X_T(p,q,r)) & \to & H_2(X_T(p,q,r), N_{T_{(p,q,r)}}) & k & \to & \bar{k} \\ & \downarrow \cong & & \downarrow \\ & & H_2(X \smallsetminus N_T, \partial) & & \hat{k} = \hat{k}' \\ & \uparrow \cong & & \uparrow \\ & & H_2(X_T(1,0,0)) & \to & H_2(X_T(1,0,0), N_{T_{(1,0,0)}}) & k' & \to & \bar{k}' \end{array}$$

• All basic classes of $X_T(p, q, r)$ arise in this way.

• Important to understand situations when sums collapse to single summand.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Reducing to one summand

- ▶ When a core torus is nullhomologous.
- When a core torus is essential, but there is a square 0 torus that intersects it algebraically nontrivially.

Dual situations for surgery on T

- a. T primitive, $\alpha \subset T$ essential in $X \smallsetminus T$.
 - $\Rightarrow T_{(1,0,r)} \text{ nullhomologous in } X_T(1,0,r).$

(Its meridian is $\alpha + r\mu_T \sim \alpha \not\sim 0$ in $X \smallsetminus N_T$.)

Let $\alpha' =$ surgery curve on $\partial N_{T_{(1,0,r)}} \subset X_T(1,0,r)$ which gives back X

 α' bounds in $X_T(1,0,r) \smallsetminus N_{T_{(1,0,r)}} = X \smallsetminus N_T$.

Reducing to one summand

- ▶ When a core torus is nullhomologous.
- When a core torus is essential, but there is a square 0 torus that intersects it algebraically nontrivially.

Dual situations for surgery on T

- a. T primitive, $\alpha \subset T$ essential in $X \smallsetminus T$.
 - $\Rightarrow T_{(1,0,r)} \text{ nullhomologous in } X_T(1,0,r).$

(Its meridian is $\alpha + r\mu_T \sim \alpha \not\sim 0$ in $X \smallsetminus N_T$.)

Let $\alpha' =$ surgery curve on $\partial N_{T_{(1,0,r)}} \subset X_T(1,0,r)$ which gives back X

 α' bounds in $X_T(1,0,r) \smallsetminus N_{T_{(1,0,r)}} = X \smallsetminus N_T$.

Reducing to one summand

- ▶ When a core torus is nullhomologous.
- When a core torus is essential, but there is a square 0 torus that intersects it algebraically nontrivially.

Dual situations for surgery on 7

- a. T primitive, $\alpha \subset T$ essential in $X \smallsetminus T$.
 - $\Rightarrow T_{(1,0,r)} \text{ nullhomologous in } X_T(1,0,r).$

(Its meridian is $\alpha + r\mu_T \sim \alpha \not\sim 0$ in $X \smallsetminus N_T$.)

Let $\alpha' =$ surgery curve on $\partial N_{T_{(1,0,r)}} \subset X_T(1,0,r)$ which gives back X

 α' bounds in $X_T(1,0,r) \smallsetminus N_{T_{(1,0,r)}} = X \smallsetminus N_T$.

Reducing to one summand

- ▶ When a core torus is nullhomologous.
- When a core torus is essential, but there is a square 0 torus that intersects it algebraically nontrivially.

Dual situations for surgery on T

- a. T primitive, $\alpha \subset T$ essential in $X \smallsetminus T$.
 - $\Rightarrow T_{(1,0,r)} \text{ nullhomologous in } X_T(1,0,r).$

(Its meridian is $\alpha + r\mu_T \sim \alpha \not\sim 0$ in $X \smallsetminus N_T$.)

Let $\alpha' =$ surgery curve on $\partial N_{T_{(1,0,r)}} \subset X_T(1,0,r)$ which gives back X

 α' bounds in $X_T(1,0,r) \smallsetminus N_{T_{(1,0,r)}} = X \smallsetminus N_T$.

Reducing to one summand

- ▶ When a core torus is nullhomologous.
- When a core torus is essential, but there is a square 0 torus that intersects it algebraically nontrivially.

Dual situations for surgery on T

- a. T primitive, $\alpha \subset T$ essential in $X \smallsetminus T$.
 - \Rightarrow $T_{(1,0,r)}$ nullhomologous in $X_T(1,0,r)$.

(Its meridian is $\alpha + r\mu_T \sim \alpha \not\sim 0$ in $X \smallsetminus N_T$.)

Let $\alpha' =$ surgery curve on $\partial N_{\mathcal{T}_{(1,0,r)}} \subset X_{\mathcal{T}}(1,0,r)$ which gives back X

 α' bounds in $X_T(1,0,r) \smallsetminus N_{T_{(1,0,r)}} = X \smallsetminus N_T$.

Reducing to one summand

- ▶ When a core torus is nullhomologous.
- When a core torus is essential, but there is a square 0 torus that intersects it algebraically nontrivially.

Dual situations for surgery on T

- a. T primitive, $\alpha \subset T$ essential in $X \setminus T$.
 - $\Rightarrow T_{(1,0,r)} \text{ nullhomologous in } X_T(1,0,r).$

(Its meridian is $\alpha + r\mu_T \sim \alpha \not\sim 0$ in $X \setminus N_T$.)

Let $\alpha' =$ surgery curve on $\partial N_{\mathcal{T}_{(1,0,r)}} \subset X_{\mathcal{T}}(1,0,r)$ which gives back X

 α' bounds in $X_T(1,0,r) \smallsetminus N_{T_{(1,0,r)}} = X \smallsetminus N_T$.

Reducing to one summand

- ▶ When a core torus is nullhomologous.
- When a core torus is essential, but there is a square 0 torus that intersects it algebraically nontrivially.

Dual situations for surgery on T

- a. T primitive, $\alpha \subset T$ essential in $X \setminus T$.
 - \Rightarrow $T_{(1,0,r)}$ nullhomologous in $X_T(1,0,r)$.

(Its meridian is $\alpha + r\mu_T \sim \alpha \not\sim 0$ in $X \setminus N_T$.)

Let $\alpha' =$ surgery curve on $\partial N_{\mathcal{T}_{(1,0,r)}} \subset X_{\mathcal{T}}(1,0,r)$ which gives back X

(日)、

э

 α' bounds in $X_T(1,0,r) \smallsetminus N_{T_{(1,0,r)}} = X \smallsetminus N_T$.

Reducing to one summand

- ▶ When a core torus is nullhomologous.
- When a core torus is essential, but there is a square 0 torus that intersects it algebraically nontrivially.

Dual situations for surgery on T

- a. T primitive, $\alpha \subset T$ essential in $X \setminus T$.
 - \Rightarrow $T_{(1,0,r)}$ nullhomologous in $X_T(1,0,r)$.

(Its meridian is $\alpha + r\mu_T \sim \alpha \not\sim 0$ in $X \setminus N_T$.)

Let $\alpha' =$ surgery curve on $\partial N_{\mathcal{T}_{(1,0,r)}} \subset X_{\mathcal{T}}(1,0,r)$ which gives back X

 α' bounds in $X_T(1,0,r) \smallsetminus N_{T_{(1,0,r)}} = X \smallsetminus N_T$.

Reducing to one summand

- When a core torus is nullhomologous.
- When a core torus is essential, but there is a square 0 torus that intersects it algebraically nontrivially.

Dual situations for surgery on T

- a. T primitive, $\alpha \subset T$ essential in $X \setminus T$.
 - \Rightarrow $T_{(1,0,r)}$ nullhomologous in $X_T(1,0,r)$.

(Its meridian is $\alpha + r\mu_T \sim \alpha \not\sim 0$ in $X \setminus N_T$.)

Let $\alpha' =$ surgery curve on $\partial N_{\mathcal{T}_{(1,0,r)}} \subset X_{\mathcal{T}}(1,0,r)$ which gives back X

 α' bounds in $X_T(1,0,r) \smallsetminus N_{T_{(1,0,r)}} = X \smallsetminus N_T$.

K: Knot in S^3 , T: square 0 essential torus in X

Definition

 $X_{\mathcal{K}} = (X \smallsetminus N_{\mathcal{T}}) \cup (S^1 \times (S^3 \smallsetminus N_{\mathcal{K}}))$

Facts about knot surgery

▶ If X and $X \setminus T$ both simply connected; so is X_K .

$$\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$$

Conclusion

e.g.
$$X = K3$$
, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

K: Knot in S^3 , T: square 0 essential torus in X

Definition $X_{\mathcal{K}} = (X \smallsetminus N_{\mathcal{T}}) \cup (S^1 \times (S^3 \smallsetminus N_{\mathcal{K}}))$

Facts about knot surgery

▶ If X and $X \smallsetminus T$ both simply connected; so is X_K .

$$\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$$

Conclusion

e.g.
$$X = K3$$
, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

K: Knot in S^3 , T: square 0 essential torus in X

Facts about knot surgery

• If X and $X \smallsetminus T$ both simply connected; so is X_K .

$$\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$$

Conclusion

e.g.
$$X = K3$$
, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

K: Knot in S^3 , T: square 0 essential torus in X

Definition

$$X_{\mathcal{K}} = (X \smallsetminus N_{\mathcal{T}}) \cup (S^1 \times (S^3 \smallsetminus N_{\mathcal{K}}))$$

Facts about knot surgery

- If X and $X \setminus T$ both simply connected; so is X_K .
- $\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$

Conclusion

e.g.
$$X = K3$$
, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

K: Knot in S^3 , T: square 0 essential torus in X

Definition

$$X_{\mathcal{K}} = (X \smallsetminus N_{\mathcal{T}}) \cup (S^1 \times (S^3 \smallsetminus N_{\mathcal{K}}))$$

Facts about knot surgery

• If X and $X \setminus T$ both simply connected; so is X_K .

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Conclusion

e.g.
$$X = K3$$
, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

K: Knot in S^3 , T: square 0 essential torus in X

Definition

$$X_{\mathcal{K}} = (X \smallsetminus N_{\mathcal{T}}) \cup (S^1 \times (S^3 \smallsetminus N_{\mathcal{K}}))$$

Facts about knot surgery

• If X and $X \setminus T$ both simply connected; so is X_K .

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Conclusion

e.g.
$$X = K3$$
, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

K: Knot in S^3 , T: square 0 essential torus in X

Definition

$$X_{\mathcal{K}} = (X \smallsetminus N_{\mathcal{T}}) \cup (S^1 \times (S^3 \smallsetminus N_{\mathcal{K}}))$$

Facts about knot surgery

• If X and $X \setminus T$ both simply connected; so is X_K .

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Conclusion

If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.

e.g. X = K3, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

K: Knot in S^3 , T: square 0 essential torus in X

Definition

$$X_{\mathcal{K}} = (X \smallsetminus N_{\mathcal{T}}) \cup (S^1 \times (S^3 \smallsetminus N_{\mathcal{K}}))$$

Facts about knot surgery

• If X and $X \setminus T$ both simply connected; so is X_K .

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Conclusion

If X, X \ T, simply connected and SW_X ≠ 0, then there is an infinite family of distinct manifolds all homeomorphic to X.

e.g.
$$X = K3$$
, $SW_X = 1$, $SW_{X_K} = \Delta_K(t^2)$

Blowing down

Blowing down

Sphere $E \subset X$ with $E \cdot E = -1$. $N_E \cong -(\text{Nbd } \mathbb{CP}^1 \subset \mathbb{CP}^2).$ $\mathbb{CP}^2 \setminus \mathbb{CP}^1 \cong B^4.$

Blowing down

Sphere $E \subset X$ with $E \cdot E = -1$. $N_E \cong -(\text{Nbd } \mathbb{CP}^1 \subset \mathbb{CP}^2)$. $\mathbb{CP}^2 \setminus \mathbb{CP}^1 \cong B^4$. Trade N_E for B^4 . Simple formula for SW

(日)、

3

Blowing down

Sphere $E \subset X$ with $E \cdot E = -1$. $N_E \cong -(\text{Nbd } \mathbb{CP}^1 \subset \mathbb{CP}^2)$. $\mathbb{CP}^2 \setminus \mathbb{CP}^1 \cong B^4$. Trade N_E for B^4 . Simple formula for SW

Blowing down a -4-sphere

(日)、

Blowing down

Sphere $E \subset X$ with $E \cdot E = -1$. $N_E \cong -(\text{Nbd } \mathbb{CP}^1 \subset \mathbb{CP}^2)$. $\mathbb{CP}^2 \setminus \mathbb{CP}^1 \cong B^4$. Trade N_E for B^4 . Simple formula for SW

Blowing down a -4-sphere

Sphere
$$S \subset X$$
 with $S \cdot S = -4$.
 $N_S \cong -(\text{Nbd conic } \subset \mathbb{CP}^2)$.
 $\mathbb{CP}^2 \setminus \{\text{conic}\} \cong \text{Nbd}(\mathbb{RP}^2) = B_2$.

(日)、

(三)

Blowing down

Sphere $E \subset X$ with $E \cdot E = -1$. $N_E \cong -(\text{Nbd } \mathbb{CP}^1 \subset \mathbb{CP}^2)$. $\mathbb{CP}^2 \setminus \mathbb{CP}^1 \cong B^4$. Trade N_E for B^4 . Simple formula for SW

Blowing down a -4-sphere

Sphere
$$S \subset X$$
 with $S \cdot S = -4$.
 $N_S \cong -(\text{Nbd conic } \subset \mathbb{CP}^2)$.
 $\mathbb{CP}^2 \setminus \{\text{conic}\} \cong \text{Nbd}(\mathbb{RP}^2) = B_2$
Trade N_S for B_2 .
Simple formula for SW

Suppose X contains a configuration C_p of 2-spheres

 $\partial C_p = L(p^2, 1-p),$ which bounds a rational homology ball B_p . Rationally blowdown X by replacing C_p with B_p . Simple formula for change in SW-invariant. Process decreases b^- by p - 1, leaves b^+ unchanged.

Suppose X contains a configuration C_p of 2-spheres

 $\partial C_p = L(p^2, 1-p),$ which bounds a rational homology ball B_p . Bationally blowdown X by replacing C, with B.

Simple formula for change in SW-invariant.

Process decreases b^- by p - 1, leaves b^+ unchanged.

Suppose X contains a configuration C_p of 2-spheres

$$\begin{array}{ccc} -(p+2) & -2 & & -2 \\ \underbrace{u_0}^{\bullet} & \underbrace{u_1}^{\bullet} & \cdots & \underbrace{u_{p-2}}^{\bullet} \end{array}$$

 $\partial C_p = L(p^2, 1-p),$ which bounds a rational homology ball B_p . Rationally blowdown X by replacing C_p with B_p . Simple formula for change in SW-invariant. Process decreases b^- by p-1, leaves b^+ unchanged.

Suppose X contains a configuration C_p of 2-spheres

 $\partial C_p = L(p^2, 1-p),$ which bounds a rational homology ball B_p . Rationally blowdown X by replacing C_p with B_p . Simple formula for change in SW-invariant. Process decreases b^- by p-1, leaves b^+ unchanged.

Rational blowdown in general

Suppose X contains a configuration C_p of 2-spheres

$$\begin{array}{ccc} -(p+2) & -2 & & -2 \\ \underbrace{u_0}^{\bullet} & \underbrace{u_1}^{\bullet} & \cdots & \underbrace{u_{p-2}}^{\bullet} \end{array}$$

 $\partial C_p = L(p^2, 1-p),$ which bounds a rational homology ball B_p . Rationally blowdown X by replacing C_p with B_p . Simple formula for change in SW-invariant. Process decreases b^- by p-1, leaves b^+ unchanged.

Some exotic $\pi_1 = 0$ manifolds with $b^+ = 1$ Start with elliptic surface E(1).

Perform knot surgery in the double node nbd using twist knot

Some exotic $\pi_1 = 0$ manifolds with $b^+ = 1$ Start with elliptic surface E(1).

Perform knot surgery in the double node nbd using twist knot

The double node trick trades the 'genus one pseudosection' for an immersed sphere:

30

Blow up the double point of the pseudosection:

Rationally blow down to get ∞ family homeo to $\mathbb{CP}^2 \# 8 \overline{\mathbb{CP}}^2$ by varying K = twist knot

Blow up the double point of the pseudosection:

 $\mathcal{C}_3 \subset \mathcal{E}(1)_{\mathcal{K}} \# \overline{\mathbb{CP}}^2$

Rationally blow down to get ∞ family homeo to $\mathbb{CP}^2 \# 8 \overline{\mathbb{CP}^2}$ by varying K = twist knot

Blow up the double point of the pseudosection:

 $\mathcal{C}_3 \subset \mathcal{E}(1)_{\mathcal{K}} \# \overline{\mathbb{CP}}^2$

Rationally blow down to get ∞ family homeo to $\mathbb{CP}^2 \# 8 \overline{\mathbb{CP}^2}$ by varying K = twist knot

(日)、

Blow up the double point of one of the nodal fibers:

Get a sphere of self intersection -7 in $E(1)_{\mathcal{K}} \# 2 \overline{\mathbb{CP}^2}$

Blow up the double point of one of the nodal fibers:

(三)

Blow up the double point of one of the nodal fibers:

Rationally blow down to get ∞ family homeo to $\mathbb{CP}^2 \#7 \mathbb{CP}^2$ by varying K = twist knotSimilar techniques ∞ families homeo to $\mathbb{CP}^2 \#6 \overline{\mathbb{CP}}^2$ and $\mathbb{CP}^2 \#5 \overline{\mathbb{CP}}^2$

Rationally blow down to get ∞ family homeo to $\mathbb{CP}^2 \# 7 \overline{\mathbb{CP}}^2$ by varying $\mathcal{K} = \text{twist knot}$ Similar techniques ∞ families homeo to $\mathbb{CP}^2 \# 6 \overline{\mathbb{CP}}^2$ and $\mathbb{CP}^2 \# 5 \overline{\mathbb{CP}}^2$

Rationally blow down to get ∞ family homeo to $\mathbb{CP}^2 \# 7 \overline{\mathbb{CP}^2}$ by varying K =twist knot Similar techniques ∞ families homeo to $\mathbb{CP}^2 \# 6 \overline{\mathbb{CP}^2}$ and $\mathbb{CP}^2 \# 5 \overline{\mathbb{CP}^2}$

30

(日)、

Idea behind reverse engineering

Let *T* be a nullhomologous torus in *X*. Morgan, Mrowka, Szabo formula says (more-or-less) that $\mathcal{SW}_{X_T(p,0,1)} = p \, \mathcal{SW}_{X_T(1,0,0)} + \mathcal{SW}_X$ So if $\mathcal{SW}_{X_T(1,0,0)} \neq 0$ then we get an infinite family.

Suppose X is simply connected. For (p, 0, 1) - surgery on T with nullhomologous α :

- $H_1(X_T(p,0,1)) = 0$, and if $\pi_1(X_T(p,0,1)) = 0$, then $X_T(p,0,1)$ is homeomorphic to X.
- The new core torus $T_{(p,0,1)}$ is nullhomologous in $X_T(p,0,1)$
- If $T_{(1,0,0)}$ has a 'dual' torus T' of square 0 such that $T' \cdot T_{(1,0,0)} \neq 0$, then the corresponding sum in the M-M-Sz Formula collapses to one term.

Idea behind reverse engineering

Let T be a nullhomologous torus in X.

Morgan, Mrowka, Szabo formula says (more-or-less) that $SW_{X_T(p,0,1)} = pSW_{X_T(1,0,0)} + SW_X$

So if $SW_{X_{T}(1,0,0)} \neq 0$ then we get an infinite family.

Suppose X is simply connected. For (p, 0, 1) - surgery on T with nullhomologous α :

- $H_1(X_T(p,0,1)) = 0$, and if $\pi_1(X_T(p,0,1)) = 0$, then $X_T(p,0,1)$ is homeomorphic to X.
- The new core torus $T_{(p,0,1)}$ is nullhomologous in $X_T(p,0,1)$
- If $T_{(1,0,0)}$ has a 'dual' torus T' of square 0 such that $T' \cdot T_{(1,0,0)} \neq 0$, then the corresponding sum in the M-M-Sz Formula collapses to one term.

Idea behind reverse engineering

Let T be a nullhomologous torus in X.

Morgan, Mrowka, Szabo formula says (more-or-less) that

 $\mathcal{SW}_{X_{\mathcal{T}}(p,0,1)} = p \, \mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} + \mathcal{SW}_{X}$

So if $SW_{X_{\tau}(1,0,0)} \neq 0$ then we get an infinite family.

Suppose X is simply connected. For (p, 0, 1) - surgery on T with nullhomologous α :

- $H_1(X_T(p,0,1)) = 0$, and if $\pi_1(X_T(p,0,1)) = 0$, then $X_T(p,0,1)$ is homeomorphic to X.
- The new core torus $T_{(p,0,1)}$ is nullhomologous in $X_T(p,0,1)$
- If $T_{(1,0,0)}$ has a 'dual' torus T' of square 0 such that $T' \cdot T_{(1,0,0)} \neq 0$, then the corresponding sum in the M-M-Sz Formula collapses to one term.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Idea behind reverse engineering

Let T be a nullhomologous torus in X.

Morgan, Mrowka, Szabo formula says (more-or-less) that

 $\mathcal{SW}_{X_{\mathcal{T}}(p,0,1)} = p \, \mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} + \mathcal{SW}_{X}$

So if $\mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} \neq 0$ then we get an infinite family.

Suppose X is simply connected. For (p, 0, 1) - surgery on T with nullhomologous α :

- $H_1(X_T(p,0,1)) = 0$, and if $\pi_1(X_T(p,0,1)) = 0$, then $X_T(p,0,1)$ is homeomorphic to X.
- The new core torus $T_{(p,0,1)}$ is nullhomologous in $X_T(p,0,1)$
- If $T_{(1,0,0)}$ has a 'dual' torus T' of square 0 such that $T' \cdot T_{(1,0,0)} \neq 0$, then the corresponding sum in the M-M-Sz Formula collapses to one term.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Idea behind reverse engineering

Let T be a nullhomologous torus in X.

Morgan, Mrowka, Szabo formula says (more-or-less) that

 $\mathcal{SW}_{X_{\mathcal{T}}(p,0,1)} = p \, \mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} + \mathcal{SW}_{X}$

So if $\mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} \neq 0$ then we get an infinite family.

Suppose X is simply connected. For (p, 0, 1) - surgery on T with nullhomologous α :

- $H_1(X_T(p,0,1)) = 0$, and if $\pi_1(X_T(p,0,1)) = 0$, then $X_T(p,0,1)$ is homeomorphic to X.
- The new core torus $T_{(p,0,1)}$ is nullhomologous in $X_T(p,0,1)$
- If $T_{(1,0,0)}$ has a 'dual' torus T' of square 0 such that $T' \cdot T_{(1,0,0)} \neq 0$, then the corresponding sum in the M-M-Sz Formula collapses to one term.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Idea behind reverse engineering

Let T be a nullhomologous torus in X.

Morgan, Mrowka, Szabo formula says (more-or-less) that

 $\mathcal{SW}_{X_{\mathcal{T}}(p,0,1)} = p \, \mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} + \mathcal{SW}_{X}$

So if $\mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} \neq 0$ then we get an infinite family.

Suppose X is simply connected. For (p, 0, 1) - surgery on T with nullhomologous α :

- $H_1(X_T(p,0,1)) = 0$, and if $\pi_1(X_T(p,0,1)) = 0$, then $X_T(p,0,1)$ is homeomorphic to X.
- The new core torus $T_{(p,0,1)}$ is nullhomologous in $X_T(p,0,1)$
- If $T_{(1,0,0)}$ has a 'dual' torus T' of square 0 such that $T' \cdot T_{(1,0,0)} \neq 0$, then the corresponding sum in the M-M-Sz Formula collapses to one term.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Idea behind reverse engineering

Let T be a nullhomologous torus in X.

Morgan, Mrowka, Szabo formula says (more-or-less) that

 $\mathcal{SW}_{X_{\mathcal{T}}(p,0,1)} = p \, \mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} + \mathcal{SW}_{X}$

So if $\mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} \neq 0$ then we get an infinite family.

Suppose X is simply connected. For (p, 0, 1) - surgery on T with nullhomologous α :

- $H_1(X_T(p,0,1)) = 0$, and if $\pi_1(X_T(p,0,1)) = 0$, then $X_T(p,0,1)$ is homeomorphic to X.
- The new core torus $T_{(p,0,1)}$ is nullhomologous in $X_T(p,0,1)$
- If $T_{(1,0,0)}$ has a 'dual' torus T' of square 0 such that $T' \cdot T_{(1,0,0)} \neq 0$, then the corresponding sum in the M-M-Sz Formula collapses to one term.

Idea behind reverse engineering

Let T be a nullhomologous torus in X.

Morgan, Mrowka, Szabo formula says (more-or-less) that

 $\mathcal{SW}_{X_{\mathcal{T}}(p,0,1)} = p \, \mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} + \mathcal{SW}_{X}$

So if $\mathcal{SW}_{X_{\mathcal{T}}(1,0,0)} \neq 0$ then we get an infinite family.

Suppose X is simply connected. For (p, 0, 1) - surgery on T with nullhomologous α :

- $H_1(X_T(p, 0, 1)) = 0$, and if $\pi_1(X_T(p, 0, 1)) = 0$, then $X_T(p, 0, 1)$ is homeomorphic to X.
- The new core torus $T_{(p,0,1)}$ is nullhomologous in $X_T(p,0,1)$
- If $T_{(1,0,0)}$ has a 'dual' torus T' of square 0 such that $T' \cdot T_{(1,0,0)} \neq 0$, then the corresponding sum in the M-M-Sz Formula collapses to one term.

A D F A B F A B F A B F

Find a model manifold

Suppose we wish to construct a family of manifolds homeomorphic to the simply connected manifold Q.

Surgery on a torus changes neither the euler number nor signature.

- 1. Start with a model manifold M which has the same e and sign as Q, but with $b_1 > 0$.
- 2. Want disjoint homologically primitive tori in M, each of which contains a generator of $H_1(M)$, and such that surgeries on these tori reduce $b_1(M)$ to 0.
- 3. Also want each such torus to have a dual as above.
- 4. Want to order the surgeries so that the next-to-last manifold (with $b_1 = 1$) has $SW \neq 0$.

Find a model manifold

Suppose we wish to construct a family of manifolds homeomorphic to the simply connected manifold Q.

Surgery on a torus changes neither the euler number nor signature.

- 1. Start with a model manifold M which has the same e and sign as Q, but with $b_1 > 0$.
- 2. Want disjoint homologically primitive tori in M, each of which contains a generator of $H_1(M)$, and such that surgeries on these tori reduce $b_1(M)$ to 0.
- 3. Also want each such torus to have a dual as above.
- 4. Want to order the surgeries so that the next-to-last manifold (with $b_1 = 1$) has $SW \neq 0$.

Find a model manifold

Suppose we wish to construct a family of manifolds homeomorphic to the simply connected manifold Q.

Surgery on a torus changes neither the euler number nor signature.

- 1. Start with a model manifold M which has the same e and sign as Q, but with $b_1 > 0$.
- 2. Want disjoint homologically primitive tori in M, each of which contains a generator of $H_1(M)$, and such that surgeries on these tori reduce $b_1(M)$ to 0.
- 3. Also want each such torus to have a dual as above.
- 4. Want to order the surgeries so that the next-to-last manifold (with $b_1 = 1$) has $SW \neq 0$.

Find a model manifold

Suppose we wish to construct a family of manifolds homeomorphic to the simply connected manifold Q.

Surgery on a torus changes neither the euler number nor signature.

- 1. Start with a model manifold M which has the same e and sign as Q, but with $b_1 > 0$.
- 2. Want disjoint homologically primitive tori in M, each of which contains a generator of $H_1(M)$, and such that surgeries on these tori reduce $b_1(M)$ to 0.
- 3. Also want each such torus to have a dual as above.
- 4. Want to order the surgeries so that the next-to-last manifold (with $b_1 = 1$) has $SW \neq 0$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Find a model manifold

Suppose we wish to construct a family of manifolds homeomorphic to the simply connected manifold Q.

Surgery on a torus changes neither the euler number nor signature.

- 1. Start with a model manifold M which has the same e and sign as Q, but with $b_1 > 0$.
- 2. Want disjoint homologically primitive tori in M, each of which contains a generator of $H_1(M)$, and such that surgeries on these tori reduce $b_1(M)$ to 0.
- 3. Also want each such torus to have a dual as above.
- 4. Want to order the surgeries so that the next-to-last manifold (with $b_1 = 1$) has $SW \neq 0$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Find a model manifold

Suppose we wish to construct a family of manifolds homeomorphic to the simply connected manifold Q.

Surgery on a torus changes neither the euler number nor signature.

- 1. Start with a model manifold M which has the same e and sign as Q, but with $b_1 > 0$.
- 2. Want disjoint homologically primitive tori in M, each of which contains a generator of $H_1(M)$, and such that surgeries on these tori reduce $b_1(M)$ to 0.
- 3. Also want each such torus to have a dual as above.
- 4. Want to order the surgeries so that the next-to-last manifold (with $b_1 = 1$) has $SW \neq 0$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Find a model manifold

Suppose we wish to construct a family of manifolds homeomorphic to the simply connected manifold Q.

Surgery on a torus changes neither the euler number nor signature.

- 1. Start with a model manifold M which has the same e and sign as Q, but with $b_1 > 0$.
- 2. Want disjoint homologically primitive tori in M, each of which contains a generator of $H_1(M)$, and such that surgeries on these tori reduce $b_1(M)$ to 0.
- 3. Also want each such torus to have a dual as above.
- 4. Want to order the surgeries so that the next-to-last manifold (with $b_1 = 1$) has $SW \neq 0$.

Suppose Y is a 4-manifold with

► b₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{Xp} = pSW_Y + SW_X
- Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{Xp} = pSW_Y + SW_X
- Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

Contains square 0 torus T' with T' · T ≠ 0
SW_Y ≠ 0

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{X_p} = pSW_Y + SW_X
- Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{X_p} = pSW_Y + SW_X
- Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{X_p} = pSW_Y + SW_X
- Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{Xp} = pSW_Y + SW_X
- Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{Xp} = pSW_Y + SW_X
- Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

Perform a surgery on T which kills α homologically — get X.

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- Λ = core torus of surgery is nullhomologous in *X*.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{Xp} = pSW_Y + SW_X
- Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

Perform a surgery on T which kills α homologically — get X.

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p,0,1)-surgery to get X_p.
 SW_{Xp} = pSW_Y + SW_X
- Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

Perform a surgery on T which kills α homologically — get X.

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{Xp} = pSW_Y + SW_X

(日)、

э

• Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

Perform a surgery on T which kills α homologically — get X.

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{X_p} = pSW_Y + SW_X

(日)、

э

Infinite family

Suppose Y is a 4-manifold with

▶ *b*₁=1

• Contains a homologically primitive square 0 torus T with a loop α on T representing a generator of $H_1(Y; \mathbb{Z})$.

• Contains square 0 torus T' with $T' \cdot T \neq 0$

► $SW_Y \neq 0$

Perform a surgery on T which kills α homologically — get X.

- ▶ $b_1(X) = 0$, $H_2(Y; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \oplus$ hyperbolic pair
- $\Lambda = \text{core torus of surgery is nullhomologous in } X$.
- ∃ loop λ on Λ so that certain (0-) surgery gives back Y.
 Extend λ to basis of H₁(Λ) and do (p, 0, 1)-surgery to get X_p.
 SW_{Xp} = pSW_Y + SW_X
- Infinite family

▶ The SW condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with SW_{X'} ≠ 0. (X' = X_Λ(1,0,0))
- Infinite family

• The \mathcal{SW} condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

Simple connectivity

Easier in some cases than others

► Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with SW_{X'} ≠ 0. (X' = X_Λ(1,0,0))
- Infinite family

• The \mathcal{SW} condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with SW_{X'} ≠ 0. (X' = X_Λ(1,0,0))
- Infinite family

• The \mathcal{SW} condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

 Simple connectivity Easier in some cases than others

Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with SW_{X'} ≠ 0. (X' = X_Λ(1,0,0))
- Infinite family

• The \mathcal{SW} condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

 Simple connectivity Easier in some cases than others

Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with SW_{X'} ≠ 0. (X' = X_Λ(1,0,0))
- Infinite family

• The \mathcal{SW} condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with SW_{X'} ≠ 0. (X' = X_Λ(1,0,0))
- Infinite family

• The \mathcal{SW} condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with SW_{X'} ≠ 0. (X' = X_Λ(1,0,0))
- Infinite family

• The \mathcal{SW} condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with SW_{X'} ≠ 0. (X' = X_Λ(1,0,0))
- Infinite family

• The \mathcal{SW} condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with $\mathcal{SW}_{X'} \neq 0$. ($X' = X_{\Lambda}(1,0,0)$)
 - Infinite family

• The \mathcal{SW} condition

If *M* is symplectic and the tori chosen for surgery are Lagrangian and we do $(p, 0, \pm 1)$ surgery with respect to the Lagrangian framing of of one of these tori then the resultant manifold will again be symplectic and so it has $SW \neq 0$.

Simple connectivity

Easier in some cases than others

Infinite families

- 1. $H_1 = 0$ (simply connected, if lucky) manifold X
- 2. Nullhomologous torus $\Lambda \subset X$
- 3. Loop λ on Λ with nullhomologous pushoff so that corresponding surgery gives X', the next-to-last manifold with $\mathcal{SW}_{X'} \neq 0$. ($X' = X_{\Lambda}(1,0,0)$)
- Infinite family

Model Manifold = $Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. Li-Liu
- Get infinite family of distinct manifolds all homeomorphic to Cℙ² # 3 ⊂ℙ² (joint with Ron Stern and Doug Park)

Model Manifold = $Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. Li-Liu

Model Manifold = $Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. Li-Liu
- Get infinite family of distinct manifolds all homeomorphic to Cℙ² # 3 ⊂ℙ² (joint with Ron Stern and Doug Park)

Model Manifold = $Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. Li-Liu

Model Manifold = $Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. Li-Liu
- Get infinite family of distinct manifolds all homeomorphic to Cℙ² # 3 ⊂ℙ² (joint with Ron Stern and Doug Park)

Model Manifold = $Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. Li-Liu
- Get infinite family of distinct manifolds all homeomorphic to Cℙ² # 3 ⊂ℙ² (joint with Ron Stern and Doug Park)

Model Manifold = $Sym^2(\Sigma_3)$

Has the same *e* and sign as $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$.

Has $\pi_1 = H_1(\Sigma_3)$ (so $b_1 = 6$)

Is symplectic and has plenty of disjoint Lagrangian tori with 'duals'.

- Six surgeries give a simply connected symplectic X whose canonical class pairs positively with the symplectic form.
- Not diffeomorphic to CP² # 3CP² since each symplectic form on CP² # 3CP² pairs negatively with its canonical class. Li-Liu
- Get infinite family of distinct manifolds all homeomorphic to $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ (joint with Ron Stern and Doug Park)

イロト 不良 ト イヨト イヨト

The Baldridge-Kirk Example

The model manifold is: $(T^4 \# \overline{\mathbb{CP}^2}) \# \overline{\mathbb{CP}^2} \#_{\Sigma_2} \Sigma_2 \times T^2$

 $T^4 \# \overline{\mathbb{CP}}^2 = Sym^2(\Sigma_2)$

Conjecture

 $Sym^2(\Sigma_{g+1}) \cong Sym^2(\Sigma_g) \# \overline{\mathbb{CP}}{}^2 \#_{\Sigma_g} \Sigma_g \times T^2$

Prove by watching Σ_{g+1} degenerate to $\Sigma_g \vee T^2$?

The Akhmedov-Park Example $(S^1 \times M_K \# 2 \overline{\mathbb{CP}}^2) \#_{\Sigma_2}(S^1 \times M_K \#_{F=S}S^1 \times M_K)$ $S^1 \times M_K$ is obtained from T^4 by two surgeries, and $S^1 \times M_K \#_{F=S}S^1 \times M_K$ from $\Sigma_2 \times T^2$ after 4 surgeries.

The Baldridge-Kirk Example The model manifold is: $(T^4 \# \overline{\mathbb{CP}^2}) \# \overline{\mathbb{CP}^2} \#_{\Sigma_2} \Sigma_2 \times T^2$

 $T^4 \# \overline{\mathbb{CP}}^2 = Sym^2(\Sigma_2)$

Conjecture

 $\mathit{Sym}^2(\Sigma_{g+1})\cong \mathit{Sym}^2(\Sigma_g)\#\overline{\mathbb{CP}}{}^2\,\#_{\Sigma_g}\,\Sigma_g imes\,\mathcal{T}{}^2$

Prove by watching Σ_{g+1} degenerate to $\Sigma_g \vee T^2$?

The Akhmedov-Park Example $(S^1 \times M_K \# 2 \overline{\mathbb{CP}}^2) \#_{\Sigma_2}(S^1 \times M_K \#_{F=S}S^1 \times M_K)$ $S^1 \times M_K$ is obtained from T^4 by two surgeries, and $S^1 \times M_K \#_{F=S}S^1 \times M_K$ from $\Sigma_2 \times T^2$ after 4 surgeries.

The Baldridge-Kirk Example

The model manifold is: $(T^4 \# \overline{\mathbb{CP}^2}) \# \overline{\mathbb{CP}^2} \#_{\Sigma_2} \Sigma_2 \times T^2$

 $T^4 \# \overline{\mathbb{CP}}{}^2 = Sym^2(\Sigma_2)$

Conjecture

 $Sym^2(\Sigma_{g+1}) \cong Sym^2(\Sigma_g) \# \overline{\mathbb{CP}}^2 \#_{\Sigma_g} \Sigma_g \times T^2$

Prove by watching Σ_{g+1} degenerate to $\Sigma_g \vee T^2$?

The Akhmedov-Park Example $(S^1 \times M_K \# 2 \overline{\mathbb{CP}}^2) \#_{\Sigma_2}(S^1 \times M_K \#_{F=S}S^1 \times M_K)$ $S^1 \times M_K$ is obtained from T^4 by two surgeries, and $S^1 \times M_K \#_{F=S}S^1 \times M_K$ from $\Sigma_2 \times T^2$ after 4 surgeries.

The Baldridge-Kirk Example

The model manifold is: $(T^4 \# \overline{\mathbb{CP}^2}) \# \overline{\mathbb{CP}^2} \#_{\Sigma_2} \Sigma_2 \times T^2$

 $T^4 \# \overline{\mathbb{CP}}{}^2 = \text{Sym}{}^2(\Sigma_2)$

Conjecture

$$\mathit{Sym}^2(\Sigma_{g+1}) \cong \mathit{Sym}^2(\Sigma_g) \# \overline{\mathbb{CP}}{}^2 \, \#_{\Sigma_g} \, \Sigma_g imes T^2$$

Prove by watching Σ_{g+1} degenerate to $\Sigma_g \lor \mathcal{T}^2$?

The Akhmedov-Park Example $(S^1 \times M_K \# 2 \overline{\mathbb{CP}}^2) \#_{\Sigma_2}(S^1 \times M_K \#_{F=S}S^1 \times M_K)$ $S^1 \times M_K$ is obtained from T^4 by two surgeries, and $S^1 \times M_K \#_{F=S}S^1 \times M_K$ from $\Sigma_2 \times T^2$ after 4 surgeries.

The Baldridge-Kirk Example

The model manifold is: $(T^4 \# \overline{\mathbb{CP}^2}) \# \overline{\mathbb{CP}^2} \#_{\Sigma_2} \Sigma_2 \times T^2$

 $T^4 \# \overline{\mathbb{CP}}{}^2 = \textit{Sym}{}^2(\Sigma_2)$

Conjecture

$$\mathit{Sym}^2(\Sigma_{g+1}) \cong \mathit{Sym}^2(\Sigma_g) \# \overline{\mathbb{CP}}{}^2 \, \#_{\Sigma_g} \, \Sigma_g imes T^2$$

Prove by watching Σ_{g+1} degenerate to $\Sigma_g \vee T^2$?

The Akhmedov-Park Example $(S^1 \times M_K \# 2 \overline{\mathbb{CP}}^2) \#_{\Sigma_2}(S^1 \times M_K \#_{F=S}S^1 \times M_K)$ $S^1 \times M_K$ is obtained from T^4 by two surgeries, and $S^1 \times M_K \#_{F=S}S^1 \times M_K$ from $\Sigma_2 \times T^2$ after 4 surgeries.

The Baldridge-Kirk Example

The model manifold is: $(T^4 \# \overline{\mathbb{CP}^2}) \# \overline{\mathbb{CP}^2} \#_{\Sigma_2} \Sigma_2 \times T^2$

$$T^4 \# \overline{\mathbb{CP}}{}^2 = Sym^2(\Sigma_2)$$

Conjecture

$$Sym^2(\Sigma_{g+1}) \cong Sym^2(\Sigma_g) \# \overline{\mathbb{CP}}^2 \, \#_{\Sigma_g} \, \Sigma_g \times T^2$$

Prove by watching Σ_{g+1} degenerate to $\Sigma_g \vee T^2$?

The Akhmedov-Park Example

 $(S^1 imes M_K \# 2 \overline{\mathbb{CP}}^2) \#_{\Sigma_2} (S^1 imes M_K \#_{F=S} S^1 imes M_K)$

 $S^1 imes M_K$ is obtained from T^4 by two surgeries, and $S^1 imes M_K \#_{F=S} S^1 imes M_K$ from $\Sigma_2 imes T^2$ after 4 surgeries.

The Baldridge-Kirk Example

The model manifold is: $(T^4 \# \overline{\mathbb{CP}^2}) \# \overline{\mathbb{CP}^2} \#_{\Sigma_2} \Sigma_2 \times T^2$

 $T^4 \# \overline{\mathbb{CP}}{}^2 = \textit{Sym}{}^2(\Sigma_2)$

Conjecture

$$\mathit{Sym}^2(\Sigma_{g+1}) \cong \mathit{Sym}^2(\Sigma_g) \# \overline{\mathbb{CP}}^2 \, \#_{\Sigma_g} \, \Sigma_g imes T^2$$

Prove by watching Σ_{g+1} degenerate to $\Sigma_g \vee T^2$?

The Akhmedov-Park Example $(S^1 \times M_K \# 2 \overline{\mathbb{CP}}^2) \#_{\Sigma_2}(S^1 \times M_K \#_{F=S}S^1 \times M_K)$ $S^1 \times M_K$ is obtained from T^4 by two surgeries, and $S^1 \times M_K \#_{F=S}S^1 \times M_K$ from $\Sigma_2 \times T^2$ after 4 surgeries.

The Baldridge-Kirk Example

The model manifold is: $(T^4 \# \overline{\mathbb{CP}^2}) \# \overline{\mathbb{CP}^2} \#_{\Sigma_2} \Sigma_2 \times T^2$

 $T^4 \# \overline{\mathbb{CP}}{}^2 = \textit{Sym}{}^2(\Sigma_2)$

Conjecture

$$\mathit{Sym}^2(\Sigma_{g+1}) \cong \mathit{Sym}^2(\Sigma_g) \# \overline{\mathbb{CP}}^2 \, \#_{\Sigma_g} \, \Sigma_g imes T^2$$

Prove by watching Σ_{g+1} degenerate to $\Sigma_g \vee T^2$?

The Akhmedov-Park Example $(S^1 \times M_K \# 2 \overline{\mathbb{CP}}^2) \#_{\Sigma_2}(S^1 \times M_K \#_{F=S}S^1 \times M_K)$ $S^1 \times M_K$ is obtained from T^4 by two surgeries, and $S^1 \times M_K \#_{F=S}S^1 \times M_K$ from $\Sigma_2 \times T^2$ after 4 surgeries.

The Baldridge-Kirk Example

The model manifold is: $(T^4 \# \overline{\mathbb{CP}^2}) \# \overline{\mathbb{CP}^2} \#_{\Sigma_2} \Sigma_2 \times T^2$

 $T^4 \# \overline{\mathbb{CP}}{}^2 = \textit{Sym}{}^2(\Sigma_2)$

Conjecture

$$\mathit{Sym}^2(\Sigma_{g+1}) \cong \mathit{Sym}^2(\Sigma_g) \# \overline{\mathbb{CP}}^2 \, \#_{\Sigma_g} \, \Sigma_g imes T^2$$

Prove by watching Σ_{g+1} degenerate to $\Sigma_g \vee T^2$?

The Akhmedov-Park Example $(S^1 \times M_K \# 2 \overline{\mathbb{CP}}^2) \#_{\Sigma_2}(S^1 \times M_K \#_{F=S}S^1 \times M_K)$ $S^1 \times M_K$ is obtained from T^4 by two surgeries, and $S^1 \times M_K \#_{F=S}S^1 \times M_K$ from $\Sigma_2 \times T^2$ after 4 surgeries.

<ロト <回ト < 注ト < 注ト

How do we find them?

- Library skills read papers on constructions of algebraic surfaces with small p_g and q
- Construct them yourself!

Some examples

- T⁴ = T² × T². Take double branched cover branched over the (2,2) curve (and desingularize). Get manifold with e = 8, sign = -4, and b₁ = 4 and plenty of Lagrangian tori to surger. This model gives manifolds homeomorphic to CP²# 5CP².
- \mathbb{Z}_3 -action on Σ_3 with 2 fixed points. $(\Sigma_3/\mathbb{Z}_3 = T^2)$. Diagonal action on $\Sigma_3 \times \Sigma_3$ descends to $Sym^2(\Sigma_3)$ with 3 fixed points.

How do we find them?

- Library skills read papers on constructions of algebraic surfaces with small pg and q
- Construct them yourself!

Some examples

- T⁴ = T² × T². Take double branched cover branched over the (2,2) curve (and desingularize). Get manifold with e = 8, sign = -4, and b₁ = 4 and plenty of Lagrangian tori to surger. This model gives manifolds homeomorphic to CP²# 5CP².
- \mathbb{Z}_3 -action on Σ_3 with 2 fixed points. $(\Sigma_3/\mathbb{Z}_3 = T^2)$. Diagonal action on $\Sigma_3 \times \Sigma_3$ descends to $Sym^2(\Sigma_3)$ with 3 fixed points.

How do we find them?

- Library skills read papers on constructions of algebraic surfaces with small pg and q
- Construct them yourself!

Some examples

- T⁴ = T² × T². Take double branched cover branched over the (2,2) curve (and desingularize). Get manifold with e = 8, sign = -4, and b₁ = 4 and plenty of Lagrangian tori to surger. This model gives manifolds homeomorphic to CP²# 5CP².
- \mathbb{Z}_3 -action on Σ_3 with 2 fixed points. $(\Sigma_3/\mathbb{Z}_3 = T^2)$. Diagonal action on $\Sigma_3 \times \Sigma_3$ descends to $Sym^2(\Sigma_3)$ with 3 fixed points.

How do we find them?

- Library skills read papers on constructions of algebraic surfaces with small pg and q
- Construct them yourself!

Some examples

- T⁴ = T² × T². Take double branched cover branched over the (2, 2) curve (and desingularize). Get manifold with e = 8, sign = -4, and b₁ = 4 and plenty of Lagrangian tori to surger. This model gives manifolds homeomorphic to CP² # 5 CP².
- \mathbb{Z}_3 -action on Σ_3 with 2 fixed points. $(\Sigma_3/\mathbb{Z}_3 = T^2)$. Diagonal action on $\Sigma_3 \times \Sigma_3$ descends to $Sym^2(\Sigma_3)$ with 3 fixed points.

How do we find them?

- Library skills read papers on constructions of algebraic surfaces with small pg and q
- Construct them yourself!

Some examples

• $T^4 = T^2 \times T^2$. Take double branched cover branched over the (2, 2) curve (and desingularize). Get manifold with e = 8, sign = -4, and $b_1 = 4$ and plenty of Lagrangian tori to surger.

This model gives manifolds homeomorphic to $\mathbb{CP}^2 \# 5\overline{\mathbb{CP}}^2$.

• \mathbb{Z}_3 -action on Σ_3 with 2 fixed points. $(\Sigma_3/\mathbb{Z}_3 = T^2)$. Diagonal action on $\Sigma_3 \times \Sigma_3$ descends to $Sym^2(\Sigma_3)$ with 3 fixed points.

Other Model Manifolds

How do we find them?

- Library skills read papers on constructions of algebraic surfaces with small pg and q
- Construct them yourself!

Some examples

- T⁴ = T² × T². Take double branched cover branched over the (2, 2) curve (and desingularize). Get manifold with e = 8, sign = -4, and b₁ = 4 and plenty of Lagrangian tori to surger. This model gives manifolds homeomorphic to CP²# 5CP².
- \mathbb{Z}_3 -action on Σ_3 with 2 fixed points. $(\Sigma_3/\mathbb{Z}_3 = T^2)$. Diagonal action on $\Sigma_3 \times \Sigma_3$ descends to $Sym^2(\Sigma_3)$ with 3 fixed points.

Get model for $\mathbb{CP}^2 \# 7\overline{\mathbb{CP}^2}$.

Other Model Manifolds

How do we find them?

- Library skills read papers on constructions of algebraic surfaces with small pg and q
- Construct them yourself!

Some examples

- T⁴ = T² × T². Take double branched cover branched over the (2, 2) curve (and desingularize). Get manifold with e = 8, sign = -4, and b₁ = 4 and plenty of Lagrangian tori to surger. This model gives manifolds homeomorphic to CP²# 5CP².
- \mathbb{Z}_3 -action on Σ_3 with 2 fixed points. $(\Sigma_3/\mathbb{Z}_3 = T^2)$. Diagonal action on $\Sigma_3 \times \Sigma_3$ descends to $Sym^2(\Sigma_3)$ with 3 fixed points.

Get model for $\mathbb{CP}^2 \# 7\overline{\mathbb{CP}^2}$.

Other Model Manifolds

How do we find them?

- Library skills read papers on constructions of algebraic surfaces with small pg and q
- Construct them yourself!

Some examples

- T⁴ = T² × T². Take double branched cover branched over the (2, 2) curve (and desingularize). Get manifold with e = 8, sign = -4, and b₁ = 4 and plenty of Lagrangian tori to surger. This model gives manifolds homeomorphic to CP²# 5CP².
- \mathbb{Z}_3 -action on Σ_3 with 2 fixed points. $(\Sigma_3/\mathbb{Z}_3 = T^2)$. Diagonal action on $\Sigma_3 \times \Sigma_3$ descends to $Sym^2(\Sigma_3)$ with 3 fixed points.

Get model for $\mathbb{CP}^2 \# 7\overline{\mathbb{CP}^2}$.

A Challenge

In $\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ find a nullhomologous torus so that surgeries on it give the known fake examples.

Santeria Surgery

