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(F- Stern/ Cappell - Shaneson, Gompf)

e Want orientation-preserving examples
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Ue's examples

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold
that has infinitely many free G-actions so that their orbit spaces
are homeomorphic but mutually nondiffeomorphic.
The examples
\N/: Q-homology S* with 71(Y) — G, onto, s. t. corr. cover is
Y = 5% x S%2#Z7, some Z. Get Y by spinning known 3D example.
Xo = E(2)p, X1 = E(2)q, p # q odd (log transformed K3's)
Xo#Y, X1#Y homeo not diffeo using Seiberg-Witten
The G-covers Q; come from m1(X;#Y) — m(Y) — G
Q= Y#(G|X; = S% x SP#Z#(G|X;

> S2 x SPHZH#|G|X; = Q)
since the E(2),'s stabilize after one #52 x S2.
e The Q; are reducible.



Exotic cyclic group actions

Theorem (F., Stern, Sunukjian)

Let Y be a simply connected 4-manifold with b+ > 1 containing
an embedded surface ¥ of genus g > 1 of nonnegative
self-intersection. Suppose that m1(Y \X) = Zg and that the pair
(Y,X) has a nontrivial relative Seiberg-Witten invariant. Suppose
also that X contains a nonseparating loop which bounds an
embedded 2-disk in Y \X. Let d’ divide d, and let X be the
(simply connected) d’-fold cover of Y branched over X.. Then X
admits an infinite family of smoothly distinct but topologically
equivalent actions of Z:.
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Some simple examples

Curves in CP?
Y = CP?, ¥ = embedded degree d curve.
X = degree d hypersurface in CP3

If d =3, X = CP?#6CP?> = we have infinitely many smoothly
inequivalent topologically equivalent Zz-actions on CP?#6CP?.

If d =4, X = K3, = smoothly inequivalent topologically
equivalent Zg-actions on the K3-surface.
Also theorem = families of Z, and Zs-actions on K3.

Zs-actions on quintics, etc.
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Knot surgery
K: Knot in S3, T: square 0 essential torus in X
XK = X\NT U 51 X (53\NK)
St x (53~ Nk) has the homology of T2 x D2.
Facts
» If X and X\ T both simply connected, so is Xk. (So Xk
homeo to X)
> SWXK =SWyx - AK(l’2)

Rim surgery

3> C X: embedded orientable surface in simply connected
4-manifold.

C: homologically essential loop in &

Rim torus: preimage of C in bdry of normal bundle of ¥.

Rim surgery = knot surgery on rim torus.
Can change embedding type of ¥. Get X C X.
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More on rim surgery

Spinning a knot K in S3 gives 2-knot in S*:
S'-action on S*. Orbit space B3.
Spun knot = preimage of knotted arc. Preimage of 9B3= twin

Knot surgery replaces C x S x D? with S*~ (spun knot U twin)
C x B3 = complement of trivial twin in S*.
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(Can’t get enough of that) Rim surgery

Theorem (F - Stern). Let g(X) > 0. If m1(X) = 0 = m(X\X)
then there is a self-homeo of X throwing ¥, on X. If ¥2 > 0,
then the relative SW-invariant of (X, Xx) is the relative
SW-invariant of (X, X) times the Alexander polynomial of K.

Get smoothly inequivalent embeddings if original SW inv't is # 0.
(E.g. symplectic submanifold.)
Relative SW-invariant lives in monopole Floer homology group.

Want to take cyclic branched covers — need 71 (X\X) = Zg.
Problem: Rim surgery will not preserve this condition.

Solution (Kim - Ruberman) k-Twist-spun rim surgery does
preserve w1 = Zg4 as long as k is prime to d.

In fact, they show that the new surface obtained is topologically
equivalent to the old one in this case.

Relative SW-invariant is the same as for ordinary rim surgery.
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K: knot in S3. Twist-spinning k
operation due to Zeeman.

Get knotted S2 in S* and circle action.

2 spin the

keepthe interior

Twist-spun rim surgery, >k

Twist-rim C x St x D? with

S*(twist-spun knot U twin)

C x | x D? replaced by complement of % D2
trivial twin in S%. 72
Annulus on surface replaced by

twist-spun knot minus polar caps.
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Circle actions on S$* and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data.
Orbit space: B3 or S3
Fixed point set = S° or S2. Exceptional orbit image 0,1 or 2 arcs.

Twist-spinning a knot Z
K: knot in S3. Sl-action on S* with .
orbit space S3, p: S* — S3 where the F

isotropy type corresponding to the arc
A is trivial.
_ A
k-twist spin of K = p~1(A) C S*.
Twist-spun rim surgery, >k

gets replaced with S*~ Nbd(p~1(Ex)) where
E, = closed arc labeled ‘Z,'.
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Relative Seiberg-Witten invariants

By blowing up, assume X - > = 0.

Seiberg-Witten invariant of Y\ N(X) obtained from
spin-structures s on Y satisfying (ci(s), X) = 2g — 2.

SWiy|x) : H2(YNN(E), X x S5, R) — R (Kronheimer/ Mrowka)

Role of basic classes played by z € mo(B(Y ~N(X); [a0])), principal
homogeneous space for H?( Y~ N(X),d)

z = [(A, ®)] solving SW eq'ns.

ag: unique spinS-structure on ¥ x S! of degree 2g — 2

Knot surgery theorem

Basic classes for Y|k k: z+ jp, p = PD(rim torus), t/ has # 0
coeff in Ag(t). =

Given (Y, X, C) there is an infinite family of knots K and surfaces
> i« all topologically equivalent but smoothly inequivalent
obtained by (K, k)-twist-rim surgery.
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Cyclic group actions

Y: simply connected smooth 4-manifold.

Y genus > 1 surface embedded in Y such that m1(Y\X) = Zg.
C: nonseparating loop on ¥, bounds D? in complement.

X = d-fold branched cyclic cover.

Choose k relatively prime to d 3 family of knots K; so that d-fold
branched covers X; of (Y, Xk, k) are all topologically equivalent
but smoothly distinct covers.

=
Topologically equivalent but smoothly distinct actions of Zg4.

Need to see that X; are diffeomorphic to each other.



Branched covers of twist-spun knots

d-fold cover Twist spun knot
branch set p-1(B) p-1(A)
S*K;kd) — S4(k)
p’l l P
Zy

G

B A =principal orbits
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Covering spaces

B*xS'#S4-E, B*xS'=S%-E,

% A
4 :
=S%(p'(B)u Twin=Ey) s (p7(A) U Trivial twin

e Eq B

In cover, replacing C x | x D? with S*~ E, # S x B3

C bounds disk, C x [ x D?> U Nbd(disk) = B*in X

After knot surgery in Y, B* in cover becomes S*(K; k, d)~ B*.
—
Xk diffeomorphic to X O



