

Exotic Cyclic Group Actions on Smooth 4-Manifolds

Ronald Fintushel Michigan State University March, 2009

Joint work with Ron Stern and Nathan Sunukjian

<ロト <四ト <注入 <注下 <注下 <

Exotic smooth structures

Important consequences of Seiberg-Witten (and Donaldson) theory

• Existence of nondiffeomorphic but homeomorphic smooth 4-manifolds

• Existence of surfaces in a fixed smooth 4-manifold which are topologically but not smoothly equivalent

Exotic smooth group actions

• Existence of smooth actions of a group on a smooth 4-manifold which are equivariantly homeomorphic but not equivariantly diffeomorphic.

Example: Exotic involutions on S^4 , Quotient = Fake RP^4

(F- Stern/ Cappell - Shaneson, Gompf)

• Want orientation-preserving examples

Exotic smooth structures

Important consequences of Seiberg-Witten (and Donaldson) theory

- Existence of nondiffeomorphic but homeomorphic smooth 4-manifolds
- Existence of surfaces in a fixed smooth 4-manifold which are topologically but not smoothly equivalent

Exotic smooth group actions

• Existence of smooth actions of a group on a smooth 4-manifold which are equivariantly homeomorphic but not equivariantly diffeomorphic.

Example: Exotic involutions on S^4 , Quotient = Fake RP^4

- (F- Stern/ Cappell Shaneson, Gompf)
- Want orientation-preserving examples

Exotic smooth structures

Important consequences of Seiberg-Witten (and Donaldson) theory

- Existence of nondiffeomorphic but homeomorphic smooth 4-manifolds
- Existence of surfaces in a fixed smooth 4-manifold which are topologically but not smoothly equivalent

Exotic smooth group actions

• Existence of smooth actions of a group on a smooth 4-manifold which are equivariantly homeomorphic but not equivariantly diffeomorphic.

Example: Exotic involutions on S^4 , Quotient = Fake RP^4

(F- Stern/ Cappell - Shaneson, Gompf)

Want orientation-preserving examples

Exotic smooth structures

Important consequences of Seiberg-Witten (and Donaldson) theory

- Existence of nondiffeomorphic but homeomorphic smooth 4-manifolds
- Existence of surfaces in a fixed smooth 4-manifold which are topologically but not smoothly equivalent

Exotic smooth group actions

• Existence of smooth actions of a group on a smooth 4-manifold which are equivariantly homeomorphic but not equivariantly diffeomorphic.

Example: Exotic involutions on S^4 , Quotient = Fake RP^4

- (F- Stern/ Cappell Shaneson, Gompf)
- Want orientation-preserving examples

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

 $\begin{array}{l} Y\colon \mathbb{Q}\text{-homology } S^4 \text{ with } \pi_1(Y) \to G, \text{ onto, s. t. corr. cover is} \\ \tilde{Y} = S^2 \times S^2 \# Z, \text{ some } Z. \text{ Get } Y \text{ by spinning known 3D example.} \\ X_0 = E(2)_p, \ X_1 = E(2)_q, \ p \neq q \text{ odd (log transformed K3's)} \\ X_0 \# Y, \ X_1 \# Y \text{ homeo not diffeo using Seiberg-Witten} \\ \text{The } G\text{-covers } Q_i \text{ come from } \pi_1(X_i \# Y) \to \pi_1(Y) \to G \\ Q_i \cong \tilde{Y} \# |G| X_i \cong S^2 \times S^2 \# Z \# |G| X_i \\ \cong S^2 \times S^2 \# Z \# |G| X_j \cong Q_j \\ \text{since the } E(2)_p \text{'s stabilize after one } \# S^2 \times S^2. \end{array}$

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

 $\begin{array}{l} Y: \ensuremath{\mathbb{Q}}\mbox{-homology } S^4 \mbox{ with } \pi_1(Y) \to G, \mbox{ onto, s. t. corr. cover is } \\ \tilde{Y} = S^2 \times S^2 \# Z, \mbox{ some } Z. \mbox{ Get } Y \mbox{ by spinning known 3D example.} \\ X_0 = E(2)_p, \ X_1 = E(2)_q, \ p \neq q \mbox{ odd (log transformed K3's)} \\ X_0 \# Y, \ X_1 \# Y \mbox{ homeo not diffeo using Seiberg-Witten} \\ \mbox{The } G\mbox{-covers } Q_i \mbox{ come from } \pi_1(X_i \# Y) \to \pi_1(Y) \to G \\ Q_i \cong \tilde{Y} \# |G| X_i \cong S^2 \times S^2 \# Z \# |G| X_i \\ \cong S^2 \times S^2 \# Z \# |G| X_j \cong Q_j \\ \mbox{since the } E(2)_p \mbox{'s stabilize after one } \# S^2 \times S^2. \end{array}$

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

 $\begin{array}{l} Y: \ensuremath{\mathbb{Q}}\mbox{-homology } S^4 \mbox{ with } \pi_1(Y) \to G, \mbox{ onto, s. t. corr. cover is } \\ \tilde{Y} = S^2 \times S^2 \# Z, \mbox{ some } Z. \mbox{ Get } Y \mbox{ by spinning known 3D example.} \\ X_0 = E(2)_p, \ X_1 = E(2)_q, \ p \neq q \mbox{ odd (log transformed K3's)} \\ X_0 \# Y, \ X_1 \# Y \mbox{ homeo not diffeo using Seiberg-Witten} \\ \mbox{The } G\mbox{-covers } Q_i \mbox{ come from } \pi_1(X_i \# Y) \to \pi_1(Y) \to G \\ Q_i \cong \tilde{Y} \# |G| X_i \cong S^2 \times S^2 \# Z \# |G| X_i \\ \cong S^2 \times S^2 \# Z \# |G| X_j \cong Q_j \\ \mbox{since the } E(2)_p \mbox{'s stabilize after one } \# S^2 \times S^2. \end{array}$

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

 $\begin{array}{l} Y: \ \mathbb{Q}\text{-homology } S^4 \ \text{with } \pi_1(Y) \to G, \ \text{onto, s. t. corr. cover is} \\ \tilde{Y} = S^2 \times S^2 \# Z, \ \text{some } Z. \ \text{Get } Y \ \text{by spinning known 3D example.} \\ X_0 = E(2)_p, \ X_1 = E(2)_q, \ p \neq q \ \text{odd} \ (\text{log transformed K3's}) \\ X_0 \# Y, \ X_1 \# Y \ \text{homeo not diffeo using Seiberg-Witten} \\ \text{The } G\text{-covers } Q_i \ \text{come from } \pi_1(X_i \# Y) \to \pi_1(Y) \to G \\ Q_i \cong \tilde{Y} \# |G| X_i \cong S^2 \times S^2 \# Z \# |G| X_i \\ \cong S^2 \times S^2 \# Z \# |G| X_i \cong Q_j \\ \text{since the } E(2)_p \text{'s stabilize after one } \# S^2 \times S^2. \end{array}$

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

 $\begin{array}{l} Y: \ \mathbb{Q}\text{-homology } S^4 \ \text{with } \pi_1(Y) \to G, \ \text{onto, s. t. corr. cover is} \\ \tilde{Y} = S^2 \times S^2 \# Z, \ \text{some } Z. \ \text{Get } Y \ \text{by spinning known 3D example.} \\ X_0 = E(2)_p, \ X_1 = E(2)_q, \ p \neq q \ \text{odd} \ (\text{log transformed K3's}) \\ X_0 \# Y, \ X_1 \# Y \ \text{homeo not diffeo using Seiberg-Witten} \\ \text{The } G\text{-covers } Q_i \ \text{come from } \pi_1(X_i \# Y) \to \pi_1(Y) \to G \\ Q_i \cong \tilde{Y} \# |G| X_i \cong S^2 \times S^2 \# Z \# |G| X_i \\ \cong S^2 \times S^2 \# Z \# |G| X_i \cong Q_j \\ \text{since the } E(2)_p \text{'s stabilize after one } \# S^2 \times S^2. \end{array}$

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

Y: Q-homology S^4 with $\pi_1(Y) \to G$, onto, s. t. corr. cover is $\tilde{Y} = S^2 \times S^2 \# Z$, some Z. Get Y by spinning known 3D example. $X_0 = E(2)_p, X_1 = E(2)_q, p \neq q$ odd (log transformed K3's) $X_0 \# Y, X_1 \# Y$ homeo not diffeo using Seiberg-Witten The G-covers Q_i come from $\pi_1(X_i \# Y) \to \pi_1(Y) \to G$ $Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# Z \# |G|X_i$ $\cong S^2 \times S^2 \# Z \# |G|X_i \cong Q_i$ since the $E(2)_p$'s stabilize after one $\# S^2 \times S^2$.

• The Q_i are reducible.

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

 $\begin{array}{l} Y: \ \mathbb{Q}\text{-homology } S^4 \ \text{with } \pi_1(Y) \to G, \ \text{onto, s. t. corr. cover is} \\ \tilde{Y} = S^2 \times S^2 \# Z, \ \text{some } Z. \ \text{Get } Y \ \text{by spinning known 3D example.} \\ X_0 = E(2)_p, \ X_1 = E(2)_q, \ p \neq q \ \text{odd} \ (\text{log transformed K3's}) \\ X_0 \# Y, \ X_1 \# Y \ \text{homeo not diffeo using Seiberg-Witten} \\ \text{The } G\text{-covers } Q_i \ \text{come from } \pi_1(X_i \# Y) \to \pi_1(Y) \to G \\ Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# Z \# |G|X_i \\ \cong S^2 \times S^2 \# Z \# |G|X_i \cong Q_j \\ \text{since the } E(2)_p \text{'s stabilize after one } \# S^2 \times S^2. \end{array}$

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

Y: Q-homology S^4 with $\pi_1(Y) \to G$, onto, s. t. corr. cover is $\tilde{Y} = S^2 \times S^2 \# Z$, some Z. Get Y by spinning known 3D example. $X_0 = E(2)_p, X_1 = E(2)_q, p \neq q$ odd (log transformed K3's) $X_0 \# Y, X_1 \# Y$ homeo not diffeo using Seiberg-Witten The G-covers Q_i come from $\pi_1(X_i \# Y) \to \pi_1(Y) \to G$ $Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# Z \# |G|X_i$ $\cong S^2 \times S^2 \# Z \# |G|X_j \cong Q_j$ since the $E(2)_p$'s stabilize after one $\# S^2 \times S^2$.

• The Q_i are reducible.

Exotic cyclic group actions

Theorem (F., Stern, Sunukjian)

Let Y be a simply connected 4-manifold with $b^+ \ge 1$ containing an embedded surface Σ of genus $g \ge 1$ of nonnegative self-intersection. Suppose that $\pi_1(Y \setminus \Sigma) = \mathbb{Z}_d$ and that the pair (Y, Σ) has a nontrivial relative Seiberg-Witten invariant. Suppose also that Σ contains a nonseparating loop which bounds an embedded 2-disk in $Y \setminus \Sigma$. Let d' divide d, and let X be the (simply connected) d'-fold cover of Y branched over Σ . Then X admits an infinite family of smoothly distinct but topologically equivalent actions of $\mathbb{Z}_{d'}$.

Some simple examples

Curves in \mathbb{CP}^2 $Y = \mathbb{CP}^2$, Σ = embedded degree *d* curve. X = degree *d* hypersurface in \mathbb{CP}^3

If d = 3, $X = \mathbb{CP}^2 \# 6\overline{\mathbb{CP}}^2 \implies$ we have infinitely many smoothly inequivalent topologically equivalent \mathbb{Z}_3 -actions on $\mathbb{CP}^2 \# 6\overline{\mathbb{CP}}^2$.

If d = 4, X = K3, \implies smoothly inequivalent topologically equivalent \mathbb{Z}_4 -actions on the K3-surface. Also theorem \implies families of \mathbb{Z}_2 and \mathbb{Z}_3 -actions on K3.

 \mathbb{Z}_5 -actions on quintics, etc.

Some simple examples

Curves in \mathbb{CP}^2 $Y = \mathbb{CP}^2$, Σ = embedded degree *d* curve. X = degree *d* hypersurface in \mathbb{CP}^3

If d = 3, $X = \mathbb{CP}^2 \# 6\overline{\mathbb{CP}^2} \Longrightarrow$ we have infinitely many smoothly inequivalent topologically equivalent \mathbb{Z}_3 -actions on $\mathbb{CP}^2 \# 6\overline{\mathbb{CP}^2}$.

If d = 4, X = K3, \implies smoothly inequivalent topologically equivalent \mathbb{Z}_4 -actions on the K3-surface. Also theorem \implies families of \mathbb{Z}_2 and \mathbb{Z}_3 -actions on K3.

 $\mathbb{Z}_5\text{-}\mathsf{actions}$ on quintics, etc.

Knot surgery K: Knot in S^3 , T: square 0 essential torus in X $X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K)$ $S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts

- If X and X \ T both simply connected, so is X_K. (So X_K homeo to X)
- $\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$

Rim surgery

 $\Sigma \subset X$: embedded orientable surface in simply connected 4-manifold.

C: homologically essential loop in Σ

Rim torus: preimage of C in bdry of normal bundle of Σ .

Knot surgery K: Knot in S^3 , T: square 0 essential torus in X $X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K)$ $S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts

- If X and X \ T both simply connected, so is X_K. (So X_K homeo to X)
- $\blacktriangleright SW_{X_K} = SW_X \cdot \Delta_K(t^2)$

Rim surgery

 $\Sigma \subset X$: embedded orientable surface in simply connected 4-manifold.

C: homologically essential loop in $\boldsymbol{\Sigma}$

Rim torus: preimage of C in bdry of normal bundle of Σ .

Knot surgery K: Knot in S^3 , T: square 0 essential torus in X $X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K)$ $S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts

If X and X \ T both simply connected, so is X_K. (So X_K homeo to X)

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Rim surgery

 $\Sigma \subset X$: embedded orientable surface in simply connected 4-manifold.

C: homologically essential loop in Σ

Rim torus: preimage of C in bdry of normal bundle of Σ .

Knot surgery K: Knot in S^3 , T: square 0 essential torus in X $X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K)$ $S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts

If X and X \ T both simply connected, so is X_K. (So X_K homeo to X)

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Rim surgery

 $\Sigma \subset X$: embedded orientable surface in simply connected 4-manifold.

C: homologically essential loop in Σ

Rim torus: preimage of C in bdry of normal bundle of Σ .

Knot surgery K: Knot in S^3 , T: square 0 essential torus in X $X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K)$ $S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts

If X and X \ T both simply connected, so is X_K. (So X_K homeo to X)

$$\blacktriangleright \mathcal{SW}_{X_{\mathcal{K}}} = \mathcal{SW}_X \cdot \Delta_{\mathcal{K}}(t^2)$$

Rim surgery

 $\Sigma \subset X$: embedded orientable surface in simply connected 4-manifold.

C: homologically essential loop in Σ

Rim torus: preimage of C in bdry of normal bundle of Σ .

More on rim surgery

Spinning a knot K in S^3 gives 2-knot in S^4 : S^1 -action on S^4 . Orbit space B^3 .

Spun knot = preimage of knotted arc. Preimage of ∂B^3 = twin Knot surgery replaces $C \times S^1 \times D^2$ with $S^4 \setminus (\text{spun knot} \cup \text{twin})$ $C \times B^3$ = complement of trivial twin in S^4 .

More on rim surgery

Spinning a knot K in S^3 gives 2-knot in S^4 : S^1 -action on S^4 . Orbit space B^3 .

Spun knot = preimage of knotted arc. Preimage of ∂B^3 = twin Knot surgery replaces $C \times S^1 \times D^2$ with $S^4 \setminus (\text{spun knot} \cup \text{twin})$ $C \times B^3$ = complement of trivial twin in S^4 .

- 日本 - 1 日本 - 日本 - 日本

More on rim surgery

Spinning a knot K in S^3 gives 2-knot in S^4 : S^1 -action on S^4 . Orbit space B^3 . Spun knot = preimage of knotted arc. Preimage of ∂B^3 = twin Knot surgery replaces $C \times S^1 \times D^2$ with $S^4 \setminus (\text{spun knot} \cup \text{twin})$ $C \times B^3$ = complement of trivial twin in S^4 .

(Can't get enough of that) Rim surgery

Theorem (F - Stern). Let $g(\Sigma) > 0$. If $\pi_1(X) = 0 = \pi_1(X \setminus \Sigma)$ then there is a self-homeo of X throwing Σ_K on Σ . If $\Sigma^2 > 0$, then the relative SW-invariant of (X, Σ_K) is the relative SW-invariant of (X, Σ) times the Alexander polynomial of K. Get smoothly inequivalent embeddings if original SW inv't is $\neq 0$. (E.g. symplectic submanifold.) Relative SW-invariant lives in monopole Floer homology group.

Want to take cyclic branched covers — need $\pi_1(X \setminus \Sigma) = \mathbb{Z}_d$. Problem: Rim surgery will not preserve this condition. Solution (Kim - Ruberman) *k*-Twist-spun rim surgery does preserve $\pi_1 = \mathbb{Z}_d$ as long as *k* is prime to *d*. In fact, they show that the new surface obtained is topologically equivalent to the old one in this case. Relative SW-invariant is the same as for ordinary rim surgery.

(Can't get enough of that) Rim surgery

Theorem (F - Stern). Let $g(\Sigma) > 0$. If $\pi_1(X) = 0 = \pi_1(X \setminus \Sigma)$ then there is a self-homeo of X throwing Σ_K on Σ . If $\Sigma^2 > 0$, then the relative SW-invariant of (X, Σ_K) is the relative SW-invariant of (X, Σ) times the Alexander polynomial of K. Get smoothly inequivalent embeddings if original SW inv't is $\neq 0$. (E.g. symplectic submanifold.) Relative SW-invariant lives in monopole Floer homology group.

Want to take cyclic branched covers — need $\pi_1(X \setminus \Sigma) = \mathbb{Z}_d$. Problem: Rim surgery will not preserve this condition.

Solution (Kim - Ruberman) k-Twist-spun rim surgery does preserve $\pi_1 = \mathbb{Z}_d$ as long as k is prime to d. In fact, they show that the new surface obtained is topologica

equivalent to the old one in this case.

Relative SW-invariant is the same as for ordinary rim surgery.

(Can't get enough of that) Rim surgery

Theorem (F - Stern). Let $g(\Sigma) > 0$. If $\pi_1(X) = 0 = \pi_1(X \setminus \Sigma)$ then there is a self-homeo of X throwing Σ_K on Σ . If $\Sigma^2 > 0$, then the relative SW-invariant of (X, Σ_K) is the relative SW-invariant of (X, Σ) times the Alexander polynomial of K. Get smoothly inequivalent embeddings if original SW inv't is $\neq 0$. (E.g. symplectic submanifold.) Relative SW-invariant lives in monopole Floer homology group.

Want to take cyclic branched covers — need $\pi_1(X \setminus \Sigma) = \mathbb{Z}_d$. Problem: Rim surgery will not preserve this condition. Solution (Kim - Ruberman) *k*-Twist-spun rim surgery does preserve $\pi_1 = \mathbb{Z}_d$ as long as *k* is prime to *d*. In fact, they show that the new surface obtained is topologically equivalent to the old one in this case. Relative SW-invariant is the same as for ordinary rim surgery.

Twist-spinning

Twist-spinning a knot

K: knot in S^3 . Twist-spinning operation due to Zeeman. Get knotted S^2 in S^4 and circle action.

Twist-spun rim surgery, $\Sigma_{K,k}$

Twist-rim $C \times S^1 \times D^2$ with S^4 (twist-spun knot \cup twin) $C \times I \times D^2$ replaced by complement of trivial twin in S^4 . Annulus on surface replaced by

twist-spun knot minus polar caps.

Twist-spinning

Twist-spinning a knot

K: knot in S^3 . Twist-spinning operation due to Zeeman. Get knotted S^2 in S^4 and circle action.

Twist-spun rim surgery, $\Sigma_{\mathcal{K},k}$

Twist-rim $C \times S^1 \times D^2$ with S^4 (twist-spun knot \cup twin) $C \times I \times D^2$ replaced by complement of trivial twin in S^4 . Annulus on surface replaced by

twist-spun knot minus polar caps.

Twist-spinning

Twist-spinning a knot

K: knot in S^3 . Twist-spinning operation due to Zeeman. Get knotted S^2 in S^4 and circle action.

Twist-spun rim surgery, $\Sigma_{\mathcal{K},k}$

Twist-rim $C \times S^1 \times D^2$ with S^4 (twist-spun knot \cup twin) $C \times I \times D^2$ replaced by complement of trivial twin in S^4 .

Annulus on surface replaced by twist-spun knot minus polar caps.

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3 Fixed point set = S^0 or S^2 . Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3 . S^1 -action on S^4 with orbit space S^3 , $p: S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\overline{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

gets replaced with $S^4 \setminus \text{Nbd}(p^{-1}(E_k))$ where $E_k = \text{closed}$ arc labeled ' \mathbb{Z}_k '.

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3 Fixed point set = S^0 or S^2 . Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3 . S^1 -action on S^4 with orbit space S^3 , $p: S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\sum_{K,k}$ gets replaced with $S^4 \setminus Nbd(p^{-1}(E_k))$ where $E_k = closed$ arc labeled ' \mathbb{Z}_k '.

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3 Fixed point set = S^0 or S^2 . Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3 . S^1 -action on S^4 with orbit space S^3 , $p: S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3 Fixed point set = S^0 or S^2 . Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3 . S^1 -action on S^4 with orbit space S^3 , $p: S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3 Fixed point set = S^0 or S^2 . Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3 . S^1 -action on S^4 with orbit space S^3 , $p: S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{\mathcal{K},k}$

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3 Fixed point set = S^0 or S^2 . Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3 . S^1 -action on S^4 with orbit space S^3 , $p: S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3 Fixed point set = S^0 or S^2 . Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3 . S^1 -action on S^4 with orbit space S^3 , $p: S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3 Fixed point set = S^0 or S^2 . Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3 . S^1 -action on S^4 with orbit space S^3 , $p: S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{\mathcal{K},k}$

By blowing up, assume $\Sigma \cdot \Sigma = 0$.

Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spins structures s on X satisfying $\langle s_i(s_i), \Sigma \rangle = 2\pi s_i^2 s_i^2$

 $SW_{(Y|\Sigma)}: H_2(Y \smallsetminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \to \mathbb{R}$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(\mathcal{B}(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$

 $z = [(A, \Phi)]$ solving SW eq'ns.

*a*₀: unique spin^c-structure on $\Sigma \times S^1$ of degree 2g - 2

Knot surgery theorem

Basic classes for $Y|\Sigma_{K,k}: z+j\rho, \rho = PD(\text{rim torus}), t^j \text{ has } \neq 0$ coeff in $\Delta_K(t)$.

By blowing up, assume $\Sigma \cdot \Sigma = 0$. Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spin^c-structures \mathfrak{s} on Y satisfying $\langle c_1(\mathfrak{s}), \Sigma \rangle = 2g - 2$. $SW_{(Y|\Sigma)} : H_2(Y \setminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \to \mathbb{R}$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(\mathcal{B}(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$

 $z = [(A, \Phi)]$ solving SW eq'ns.

 a_0 : unique spin^c-structure on $\Sigma \times S^1$ of degree 2g-2

Knot surgery theorem

Basic classes for $Y|\Sigma_{K,k}: z+j\rho, \rho = PD(\text{rim torus}), t^j \text{ has } \neq 0$ coeff in $\Delta_K(t)$.

By blowing up, assume $\Sigma \cdot \Sigma = 0$. Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spin^c-structures \mathfrak{s} on Y satisfying $\langle c_1(\mathfrak{s}), \Sigma \rangle = 2g - 2$. $SW_{(Y|\Sigma)} : H_2(Y \setminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \to \mathbb{R}$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(\mathcal{B}(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$

 $z = [(A, \Phi)]$ solving SW eq'ns. a_0 : unique spin^c-structure on $\Sigma \times S^1$ of degree 2g - 2

Knot surgery theorem

Basic classes for $Y|\Sigma_{K,k}: z+j\rho, \rho = \mathsf{PD}(\mathsf{rim torus}), t^j \text{ has } \neq 0$ coeff in $\Delta_K(t)$.

By blowing up, assume $\Sigma \cdot \Sigma = 0$. Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spin^c-structures \mathfrak{s} on Y satisfying $\langle c_1(\mathfrak{s}), \Sigma \rangle = 2g - 2$. $SW_{(Y|\Sigma)} : H_2(Y \setminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \to \mathbb{R}$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(\mathcal{B}(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$ $z = [(A, \Phi)]$ solving SW eq'ns.

 a_0 : unique spin^c-structure on $\Sigma \times S^1$ of degree 2g - 2

Knot surgery theorem

Basic classes for $Y|\Sigma_{K,k}: z+j\rho, \rho = \mathsf{PD}(\mathsf{rim torus}), t^j has \neq 0$ coeff in $\Delta_K(t)$.

By blowing up, assume $\Sigma \cdot \Sigma = 0$. Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spin^c-structures \mathfrak{s} on Y satisfying $\langle c_1(\mathfrak{s}), \Sigma \rangle = 2g - 2$. $SW_{(Y|\Sigma)} : H_2(Y \setminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \to \mathbb{R}$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(\mathcal{B}(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$ $z = [(A, \Phi)]$ solving SW eq'ns.

 a_0 : unique spin^c-structure on $\Sigma \times S^1$ of degree 2g - 2

Knot surgery theorem

Basic classes for $Y|\Sigma_{K,k}: z + j\rho, \rho = \mathsf{PD}(\mathsf{rim torus}), t^j \text{ has } \neq 0$ coeff in $\Delta_K(t)$.

Cyclic group actions

- Y: simply connected smooth 4-manifold.
- Σ genus ≥ 1 surface embedded in Y such that $\pi_1(Y \setminus \Sigma) = \mathbb{Z}_d$. C: nonseparating loop on Σ , bounds D^2 in complement.
- X = d-fold branched cyclic cover.

Choose k relatively prime to $d \exists$ family of knots K_i so that d-fold branched covers X_i of $(Y, \Sigma_{K_i,k})$ are all topologically equivalent but smoothly distinct covers.

Topologically equivalent but smoothly distinct actions of \mathbb{Z}_d .

Need to see that X_i are diffeomorphic to each other.

Cyclic group actions

Y: simply connected smooth 4-manifold.

 Σ genus ≥ 1 surface embedded in Y such that $\pi_1(Y \setminus \Sigma) = \mathbb{Z}_d$. C: nonseparating loop on Σ , bounds D^2 in complement. X = d-fold branched cyclic cover.

Choose k relatively prime to $d \exists$ family of knots K_i so that d-fold branched covers X_i of $(Y, \Sigma_{K_i,k})$ are all topologically equivalent but smoothly distinct covers.

 \implies Topologically equivalent but smoothly distinct actions of \mathbb{Z}_d .

Need to see that X_i are diffeomorphic to each other.

Cyclic group actions

Y: simply connected smooth 4-manifold.

 \implies

 Σ genus ≥ 1 surface embedded in Y such that $\pi_1(Y \setminus \Sigma) = \mathbb{Z}_d$. C: nonseparating loop on Σ , bounds D^2 in complement. X = d-fold branched cyclic cover.

Choose k relatively prime to $d \exists$ family of knots K_i so that d-fold branched covers X_i of $(Y, \Sigma_{K_i,k})$ are all topologically equivalent but smoothly distinct covers.

Topologically equivalent but smoothly distinct actions of \mathbb{Z}_d .

Need to see that X_i are diffeomorphic to each other.

Branched covers of twist-spun knots

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

In cover, replacing $C \times I \times D^2$ with $S^4 \setminus E_k \neq S^1 \times B^3$

C bounds disk, $C \times I \times D^2 \cup \text{Nbd}(\text{disk}) = B^4$ in *X*

After knot surgery in Y, B^4 in cover becomes $S^4(K; k, d) \setminus B^4$. $\implies X_{k'}$ diffeomorphic to X

In cover, replacing $C imes I imes D^2$ with $S^4 imes E_k
eq S^1 imes B^3$

C bounds disk, $C \times I \times D^2 \cup \text{Nbd}(\text{disk}) = B^4$ in X

After knot surgery in Y, B^4 in cover becomes $S^4(K; k, d) \setminus B^4$. $\implies X_K$ diffeomorphic to X

(日)、

э

In cover, replacing $C \times I \times D^2$ with $S^4 \smallsetminus E_k \neq S^1 \times B^3$

C bounds disk, $C \times I \times D^2 \cup \text{Nbd}(\text{disk}) = B^4$ in X

After knot surgery in Y, B^4 in cover becomes $S^4(K; k, d) \setminus B^4$.

(日)、

э

 X_K diffeomorphic to X

In cover, replacing $C \times I \times D^2$ with $S^4 \smallsetminus E_k \neq S^1 \times B^3$

C bounds disk, $C \times I \times D^2 \cup \text{Nbd}(\text{disk}) = B^4$ in X

After knot surgery in Y, B^4 in cover becomes $S^4(K; k, d) \setminus B^4$. $\implies X_K \text{ diffeomorphic to } X$

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ■ のの()