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How exotic is ‘exotic’?

Exotic smooth structures
Important consequences of Seiberg-Witten (and Donaldson) theory

• Existence of nondiffeomorphic but homeomorphic smooth
4-manifolds

• Existence of surfaces in a fixed smooth 4-manifold which are
topologically but not smoothly equivalent

Exotic smooth group actions

• Existence of smooth actions of a group on a smooth 4-manifold
which are equivariantly homeomorphic but not equivariantly
diffeomorphic.
Example: Exotic involutions on S4, Quotient = Fake RP4

(F- Stern/ Cappell - Shaneson, Gompf)
• Want orientation-preserving examples
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Ue’s examples

Ue’s Theorem, 1998
For any nontrivial finite group G there exists a smooth 4-manifold
that has infinitely many free G-actions so that their orbit spaces
are homeomorphic but mutually nondiffeomorphic.

The examples

Y : Q-homology S4 with π1(Y )→ G , onto, s. t. corr. cover is
Ỹ = S2 × S2#Z , some Z . Get Y by spinning known 3D example.

X0 = E (2)p, X1 = E (2)q, p 6= q odd (log transformed K3’s)

X0#Y , X1#Y homeo not diffeo using Seiberg-Witten

The G -covers Qi come from π1(Xi#Y )→ π1(Y )→ G
Qi
∼= Ỹ #|G |Xi

∼= S2 × S2#Z #|G |Xi
∼= S2 × S2#Z #|G |Xj

∼= Qj

since the E (2)p’s stabilize after one #S2 × S2.

• The Qi are reducible.
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∼= Ỹ #|G |Xi

∼= S2 × S2#Z #|G |Xi
∼= S2 × S2#Z #|G |Xj

∼= Qj

since the E (2)p’s stabilize after one #S2 × S2.

• The Qi are reducible.



Ue’s examples

Ue’s Theorem, 1998
For any nontrivial finite group G there exists a smooth 4-manifold
that has infinitely many free G-actions so that their orbit spaces
are homeomorphic but mutually nondiffeomorphic.

The examples

Y : Q-homology S4 with π1(Y )→ G , onto, s. t. corr. cover is
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Exotic cyclic group actions

Theorem (F., Stern, Sunukjian)

Let Y be a simply connected 4-manifold with b+ ≥ 1 containing
an embedded surface Σ of genus g ≥ 1 of nonnegative
self-intersection. Suppose that π1(Y rΣ) = Zd and that the pair
(Y ,Σ) has a nontrivial relative Seiberg-Witten invariant. Suppose
also that Σ contains a nonseparating loop which bounds an
embedded 2-disk in Y rΣ. Let d ′ divide d, and let X be the
(simply connected) d ′-fold cover of Y branched over Σ. Then X
admits an infinite family of smoothly distinct but topologically
equivalent actions of Zd ′ .



Some simple examples

Curves in CP2

Y = CP2, Σ = embedded degree d curve.
X = degree d hypersurface in CP3

If d = 3, X = CP2#6CP2 =⇒ we have infinitely many smoothly
inequivalent topologically equivalent Z3-actions on CP2#6CP2.

If d = 4, X = K 3, =⇒ smoothly inequivalent topologically
equivalent Z4-actions on the K3-surface.
Also theorem =⇒ families of Z2 and Z3-actions on K3.

Z5-actions on quintics, etc.
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Knot and rim surgery (F. - Stern)

Knot surgery

K : Knot in S3, T : square 0 essential torus in X
XK = X rNT ∪ S1 × (S3rNK )
S1 × (S3rNK ) has the homology of T 2 × D2.

Facts

I If X and X rT both simply connected, so is XK . (So XK

homeo to X )

I SWXK
= SWX ·∆K (t2)

Rim surgery

Σ ⊂ X : embedded orientable surface in simply connected
4-manifold.
C : homologically essential loop in Σ
Rim torus: preimage of C in bdry of normal bundle of Σ.

Rim surgery = knot surgery on rim torus.
Can change embedding type of Σ. Get ΣK ⊂ X .
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More on rim surgery

C
I
x  D2

C x C x C x=

Do knot
surgery

Spinning a knot K in S3 gives 2-knot in S4:
S1-action on S4. Orbit space B3.
Spun knot = preimage of knotted arc. Preimage of ∂B3= twin
Knot surgery replaces C × S1 × D2 with S4r(spun knot ∪ twin)
C × B3 = complement of trivial twin in S4.
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(Can’t get enough of that) Rim surgery

Theorem (F - Stern). Let g(Σ) > 0. If π1(X ) = 0 = π1(XrΣ)
then there is a self-homeo of X throwing ΣK on Σ. If Σ2 > 0,
then the relative SW-invariant of (X ,ΣK ) is the relative
SW-invariant of (X ,Σ) times the Alexander polynomial of K .

Get smoothly inequivalent embeddings if original SW inv’t is 6= 0.
(E.g. symplectic submanifold.)
Relative SW-invariant lives in monopole Floer homology group.

Want to take cyclic branched covers — need π1(X rΣ) = Zd .
Problem: Rim surgery will not preserve this condition.

Solution (Kim - Ruberman) k-Twist-spun rim surgery does
preserve π1 = Zd as long as k is prime to d .
In fact, they show that the new surface obtained is topologically
equivalent to the old one in this case.
Relative SW-invariant is the same as for ordinary rim surgery.
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Twist-spinning

Twist-spinning a knot

K : knot in S3. Twist-spinning
operation due to Zeeman.
Get knotted S2 in S4 and circle action.

Twist-spun rim surgery, ΣK ,k

Twist-rim C × S1 × D2 with
S4(twist-spun knot ∪ twin)
C × I × D2 replaced by complement of
trivial twin in S4.
Annulus on surface replaced by
twist-spun knot minus polar caps.
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Circle actions on S4 and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data.
Orbit space: B3 or S3

Fixed point set = S0 or S2. Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K : knot in S3. S1-action on S4 with
orbit space S3, p : S4 → S3 where the
isotropy type corresponding to the arc
A is trivial.

k-twist spin of K = p−1(Ā) ⊂ S4.

Twist-spun rim surgery, ΣK ,k

gets replaced with S4rNbd(p−1(Ek)) where
Ek = closed arc labeled ‘Zk ’.
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Relative Seiberg-Witten invariants

By blowing up, assume Σ · Σ = 0.

Seiberg-Witten invariant of Y rN(Σ) obtained from
spinc-structures s on Y satisfying 〈c1(s),Σ〉 = 2g − 2.

SW(Y |Σ) : H2(Y rN(Σ),Σ× S1; R)→ R (Kronheimer/ Mrowka)

Role of basic classes played by z ∈ π0(B(Y rN(Σ); [a0])), principal
homogeneous space for H2(Y rN(Σ), ∂)
z = [(A,Φ)] solving SW eq’ns.
a0: unique spinc-structure on Σ× S1 of degree 2g − 2

Knot surgery theorem

Basic classes for Y |ΣK ,k : z + jρ, ρ = PD(rim torus), t j has 6= 0
coeff in ∆K (t). =⇒
Given (Y ,Σ,C ) there is an infinite family of knots K and surfaces
ΣK ,k all topologically equivalent but smoothly inequivalent
obtained by (K , k)-twist-rim surgery.
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Cyclic group actions

Y : simply connected smooth 4-manifold.
Σ genus ≥ 1 surface embedded in Y such that π1(Y rΣ) = Zd .
C : nonseparating loop on Σ, bounds D2 in complement.
X = d-fold branched cyclic cover.

Choose k relatively prime to d ∃ family of knots Ki so that d-fold
branched covers Xi of (Y ,ΣKi ,k) are all topologically equivalent
but smoothly distinct covers.

=⇒
Topologically equivalent but smoothly distinct actions of Zd .

Need to see that Xi are diffeomorphic to each other.
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Branched covers of twist-spun knots

Zk

F F

Zk

F F

Zd principal orbitsA =B

S4

p‘

d-fold cover
branch set  

S 4(K ; k,d) (k)

p

Twist spun knot
p-1(A)p‘-1 (B)



Covering spaces
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C x

C x  D
2

C x

S4  p-1(A)(- Trivial twin)
Ek

=B3 x S 1 =

S  p-1(B)(-
4

Twin = Ek
Ed

)

S 4
k- E B3 x S 1 S 4

k- E

‘

In cover, replacing C × I × D2 with S4rEk 6= S1 × B3

C bounds disk, C × I × D2 ∪ Nbd(disk) = B4 in X

After knot surgery in Y , B4 in cover becomes S4(K ; k , d)rB4.
=⇒

XK diffeomorphic to X
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