Activity: Square Roots and Complex Numbers

Definition of a Square Root: If a is a real number, then b is said to be a square root of a if $b^{2}=a$. For example, $b=5$ is a square root of 25 .
Positive and Negative Square Roots: If b is a square root of a, then $-b$ is also a square root of a since $(-b)^{2}=b^{2}=a$. Every positive real number $a>0$ has two distinct square roots, one positive (denoted \sqrt{a}) and one negative (denoted $-\sqrt{a}$). Zero only has one square root, namely zero.
Multiplicative Property of Square Roots: If $a, b \geq 0$, then $\sqrt{a b}=\sqrt{a} \sqrt{b}$. WARNING: This property is not true if a or b is a negative number.

1. Using the multiplicative property you can simplify radicals. For example, $\sqrt{32}=\sqrt{16(2)}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$. Simplify each of the following radicals.
(a) $\sqrt{75}$
(b) $\sqrt{243}$
(c) $\sqrt{4000}$
2. CAUTION: $\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$ in general. Give at least one example. Which seems to be bigger, $\sqrt{a+b}$ or $\sqrt{a}+\sqrt{b}$? Is this always true? Is it ever true that $\sqrt{a+b}=\sqrt{a}+\sqrt{b}$?

The Imaginary Number i : Let i be a number with the property that $i^{2}=-1$. In other words, i is a square root of -1 . Of course, $-i$ is also a square root of -1 . The number i is not a real number, since the square of any real number is non-negative. Nonetheless, the real number system can be extended to the complex number system (see below).
Square Roots of Negative Numbers: If $a>0$, then $\sqrt{-a}=\sqrt{a} i$ by definition. For example, $a=25>0$, so $\sqrt{-25}=\sqrt{25} i=5 i$ by definition. This is a correct definition since $(5 i)^{2}=(5 i)(5 i)=5^{2} i^{2}=25(-1)=-25$, in other words $5 i$ is a square root of -25 . What is the other square root of -25 ?
Sound Advice: Whenever you encounter the square root of a negative number, immediately re-write the square root using i. For example, $\sqrt{-42}$ should be re-written as $\sqrt{42} i$.
What happens if you ignore this advice? Well, we might be tempted to say the following:

$$
\left.-1=i^{2}=\sqrt{-1} \sqrt{-1}\right)=\sqrt{(-1)(-1)}=\sqrt{1}=1
$$

The conclusion is that $-1=1$. Clearly something is wrong. The mistake is that the multiplicative property of square roots only applies for non-negative
numbers. So, for example, $\sqrt{5} \sqrt{3}=\sqrt{15}$, but $\sqrt{-5} \sqrt{-3}$ is not equal to $\sqrt{15}$. What is $\sqrt{-5} \sqrt{-3}$ equal to? (Use the sound advice!)
Rewrite each radical using the imaginary number i and then simplify the expression.

1. $\sqrt{-64}$
2. $\sqrt{-128}$
3. $\sqrt{-3} \sqrt{-5} \sqrt{-15}$

The Field of Complex Numbers: An expression of the form $a+b i$, where a and b are real numbers and i has the property that $i^{2}=-1$ is called a complex number. The value a is called the real part and the value b is called the imaginary part. Two complex numbers are equal if they have equal real and imaginary parts. Thus $3+2 i$ is not equal to $3-2 i$ since $2 \neq-2$.
Define the sum of complex numbers as follows:
$(a+b i)+(c+d i)=(a+c)+(b+d) i$.
Define the product of complex numbers as follows:
$(a+b i)(c+d i)=(a c-b d)+(a c+b d) i$.
With these definitions, complex numbers behave like polynomials. For example, you expand $(2+3 i)(4+5 i)$ as you would $(2+3 x)(4+5 x)$, namely you use the distributive property.
Even better, every non-zero complex number has a reciprocal:

$$
\frac{1}{a+b i}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i .
$$

Modulus (also called absolute value): The modulus of $a+b i$ is the number, denoted by $|a+b i|$, equal to $\sqrt{a^{2}+b^{2}}$. The modulus is a non-negative real number.
Complex Conjugate: The complex conjugate of $a+b i$, denoted by $\overline{a+b i}$, is equal to $a-b i$. So, the complex conjugate is another complex number. When is a complex number equal to its own conjugate?
Conjugates, Modulus, and Reciprocals: These three properties are related by the following equations:

$$
(a+b i)(a-b i)=a^{2}+b^{2} \quad \text { and } \quad \frac{1}{a+b i}=\frac{a-b i}{a^{2}+b^{2}}
$$

1. Verify that the left equation above is correct by expanding $(a+b i)(a-b i)$.
2. Deduce that the right equation above is true by using the left equation.
