
Math 309 - Linear Algebra

A simple description of the subject of (finite dimensional) Linear Algebra might be
the study of matrices and vectors. Matrices are arrays that are (usually) filled with
real or complex numbers:

A =


1 2 3 · · · 4 5
6 7 8 · · · 9 10
...

...
...

...
11 12 13 · · · 14 15


Vectors are matrices that have either one column or one row:

v =


1
2
...
3

 , v =
(

1 2 · · · 3
)

The reason that we care so much about matrices and vectors is that we can take a
system of linear equations like

2x1 + 3x2 + 9x3 + 4x4 = 2
4x1 + x2 + 5x3 + 7x4 = 5
5x1 + 6x2 + 8x3 + x4 = 2
3x1 + x2 + 8x3 + 3x4 = 9

and write them as an equation involving matrices and vectors:

Ax = b.

Another related problem is to find nonzero solutions to equations like

Ax = λx,

where λ is a real number.

The main purpose of this class will be to study equations like this. But why do we
care about these equations? Because they show up everywhere.
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• If you are interested in applied math, then you are interested in differential
equations. In virtually every interesting application, the differential equations
are too complicated to be solved by hand, so you need to use a computer to
get a numerical solution. The usual way to do this is to solve an equation of
the form Ax = b.

• If you are interested in pure math, then you’ll need to know about the algebraic
properties of matrices, which will factor prominently in our study of these
equations. We’ll look closely at matrix multiplication, inversion, etc.

• Problems like Ax = λx are the basis for the Google page rank.

• Images can be represented as matrices, and linear algebra is used in the com-
pression of images.

• Many economic models are expressed in matrices and vectors.

• Many, many, more....

In our study of these equations, we need to answer several questions:

• When do these equations have a solution?

• How do we find it?

• If there is a solution, is it unique?

• Among different methods for solving the system, which ones are best for which
situations?

All the things that we study in this class contribute to answering these questions,
although many of the things we study are interesting in their own right.

The first thing that we will study is the sets where the solutions to our equations
live, which are called vector spaces.

Chapter 1: Vector Spaces

Vector spaces are sets, so it is important that we spend a little bit of time making
sure that we know what we mean when we talk about a set. You can be as precise
as you want when talking about sets, even going to the extremes that set theorists
do. However, for our purposes, we’ll just stick with

Definition 1 A set is a collection of objects, called elements.
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Notation: We denote that an object x is an element of the set S by writing x ∈ S.
Sometimes it is convenient to write a set by listing all its elements, such as

S = {2, 3, 5, 7} or X = {x1, x2, . . . , xn}.

However, for sets with large or infinite numbers of elements, it is often easier to
use set-builder notation. For example, let N be the set of natural numbers (whole
numbers greater than zero). Then the set of even natural numbers can be written
as

E = {2, 4, 6, 8, . . .}

or
E = {x ∈ N : x is divisible by 2}.

The important thing about sets is which elements they have or don’t have. Therefore,
we don’t care what order the elements are listed in, and we don’t care if an individual
element is listed multiple times.

Operations on Sets: Using the set-builder notation makes it easy to define the
simple operations on sets:

Definition 2 Given two sets S and T , their union S ∪ T is defined by

S ∪ T = {x : x ∈ S or x ∈ T}.

Definition 3 Given two sets S and T , their intersection S ∩ T is defined by

S ∩ T = {x : x ∈ S and x ∈ T}.

Relations between sets: Since the important thing about sets is which elements
they contain, the relationship between sets that is probably the most used is the
subset relation.

Definition 4 If all the elements of a set S are also elements of a set T , then we say
that S is a subset of T , and we write S ⊂ T .

Sometimes it is obvious when one set is a subset of another set, but sometimes it isn’t
as clear. One strategy that can help in dealing with this is to think of set containment
in terms of logic. The statement S ⊂ T is equivalent to the statement

if x ∈ S, then x ∈ T.
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So, in order to show that the statement S ⊂ T is true, we can show that no matter
how we pick x ∈ S, the x we pick is also in T . In symbols this reads

x ∈ S ⇒ x ∈ T.

Logic As has been mentioned, this class is probably the first class where you will
be expected to generate your own proofs. A proof is basically a string of logical
implications that lead to a conclusion, so in writing proofs, it is very important to
understand logic.

The basis of logic is the implication. An implication relates two statements, called the
hypothesis and the conclusion. As the name suggests, the hypothesis is something
that can be assumed to be true. The conclusion is the result that we are trying to
derive once the hypothesis is assumed.

Be careful not to confuse the truth of the implication with the truth of the conclusion.
The implication can be true even though the conclusion is not, such as, “When it
rains, I bring an umbrella.” Just because I don’t have an umbrella today, doesn’t
mean that the statement is false.

Here is a table that shows the truth of the statement P ⇒ Q in relation to the
logical value (true or false) of the statements P and Q.

P Q P ⇒ Q
False False True
False True True
True False False
True True True

Note that an implication is true unless the hypothesis being true can lead to the
conclusion being false.

Example: Consider the statement

x > 2 ⇒ x2 > 4.

I think we can all agree that this statement is true. Let’s take a look at the logic
table:

x Hypothesis Conclusion
-3 False True
-1 False True
3 True True
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Example: Even though it’s pretty clear, let’s go through the logical steps in showing
that [2, 3] ⊂ [0, 4]. We have to show that no matter how we choose a point in [2, 3],
it is also in [0, 4]. Let x ∈ [2, 3]. Then 2 ≤ x ≤ 3. But 0 < 2 and 3 < 4, so
0 < 3 ≤ x ≤ 3 < 4, or 0 ≤ x ≤ 4, which is the same as x ∈ [0, 4].

Special Sets: Some sets are used so often that they have a special notation associ-
ated with them. Some examples are the natural numbers

N = {1, 2, 3, 4, . . .},

the set of all positive whole numbers, the real numbers, denoted by R, which is the
set of all numbers that have an ordinary decimal representation, and the empty set
∅ = {}, which has no elements.

Example: Suppose S is any set. Show that ∅ ⊂ S.
Just like before, to show that this is true, we have to show that no matter how we
choose x ∈ ∅, that choice of x is also in S. But since there are no elements in ∅, we
are done.

Here are two examples illustrating strategies for proving that sets are equal (meaning
that they share all the same elements):

Example: Show that S ∩ T = T ∩ S for all sets S and T .
We have that

S ∩ T = {x : x ∈ S and s ∈ T} = {x : x ∈ T and x ∈ S} = T ∩ S.

In this example, we started with one side of the equality we were proving and changed
the form until it looked like the other side.

Example: Prove that S ∩ ∅ = ∅ for any set S.
We have already shown that ∅ ⊂ S ∩ ∅. If we can show the reverse inclusion, then
they must be the same set. Let x ∈ S ∩ ∅. This means that x ∈ S and x ∈ ∅,
so S ∩ ∅ ⊂ ∅. The two conditions ∅ ⊂ S ∩ ∅ and S ∩ ∅ ⊂ ∅ together imply that
S ∩ ∅ = ∅.

Quick Skip Ahead to Chapter 2

Systems of Linear Equations

We talked briefly last time about how answering fundamental questions about linear
systems of equations (existence, uniqueness of a solution, etc.) is one of the main
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focuses of this class. We’ll take some time now to talk in more details about these
systems.

You probably have some experience working with systems of equations that have two
or three variables. Most likely, you learned a method for solving such equations that
involved eliminating variables until you knew the value of one variable, and then
substituting the value of that variable back through the proceeding equations until
you knew the value of all the variables.

We’re going to develop this method carefully so that we can use it on arbitrarily
large systems of equations. Also, in using this method, we’ll be able to answer a lot
of our questions about a given system, such as whether or not it has a solution and
whether or not a solution is unique.

Let’s begin with an example:

x+ y − z = −1
2x+ 4y = −4
−x+ 3y + 2z = −6

.

We say that equations such as this are linear because the only operations that are
applied to the variables are multiplication by scalars and addition of other such
terms. Of course, our goal here is to find values of x, y and z that satisfy the three
equations simultaneously.

The set where we need to begin to look is called R3. In set-builder notation,

R3 = {(x, y, z) : x, y, and z ∈ R},

or in other words, all ordered pairs of three real numbers. But we are looking for
order pairs that satisfy our equations, so the solution set to our equations is

S = {(x, y, z) ∈ R3 : x+ y − z = −1, 2x+ 4y = −4, −x+ 3y + 2z = −6}.

Any element of S will be a solution to our system. To check if an element of R3

is in S, we simply substitute the x, y, and z coordinates of the candidate solution
into the left-hand side of the equations, and see if the result matches the right-hand
side.

Example: Is (−4, 1,−2) ∈ S?
We have

(−4) + (1)− (−2) = −1 X
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2(−4) + 4(1) = −4 X

−(−4) + 3(1) + 2(−2) = 3

It is easy to find elements of R3 that are not in S. But how do we find out if there
are any elements in S? The answer is to simplify the system so it becomes more
clear just what a solution looks like. We can do anything we want to to simplify this
system, as long as we maintain the equalities. What this means is that if we change
one side of an equation, we must change the other side as well.

For example, we can replace the third equation with the sum of the first and the
third equations, to get the new system

x+ y − z = −1
2x+ 4y = −4
4y + z = −7

.

We have changed the form of the problem, but we haven’t changed the solution set
S for the problem. Notice that we eliminated x from the last equation. We can
continue to simplify by adding −2 times the first equation to the second to get

x+ y − z = −1
2y + 2z = −2
4y + z = −7

R2=− 1
2
R2

−→
x+ y − z = −1
y + z = −1
4y + z = −7

R3=−4R2+R3−→
x+ y − z = −1
y + z = −1
−3z = −3

R3= 1
3
R3

−→
x+ y − z = −1
y + z = −1
z = 1

R2=R2−R3, R1=R1+R3−→
x+ y = 0
y = −2
z = 1

R1=R1−R2−→
x = 2
y = −2
z = 1

This process of simplifying the equations has shown us that S = {(2,−2, 1)}. Because
we didn’t change the equalities as we simplified the equations, we did not change S.
The equations we started with and the simple ones we ended with have the same
solution.

Also notice that there is no real reason that we need to write out the variables each
time we take a step to simplify the equations. All the variables really do is hold our
place until we have solved the system. Each variable corresponds to it’s own column
in the equations. Why not let each variable have it’s own column in a matrix? Our
original system could be represented as 1 1 −1 −1

2 4 0 −4
−1 3 2 −6

 .
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The vertical line here represents the equals signs in the original system of equations.
The matrix on the left of the vertical line is the coefficient matrix for the system.
The vector on the right of the vertical line is the same as the right-hand sides of the
original equations. Now, instead of writing out the whole system each time we make
a simplification, we can just work with this augmented matrix.

We can solve the system again with the following steps: 1 1 −1 −1
2 4 0 4
−1 3 2 −6

 ∼
 1 1 −1 −1

0 2 2 −2
0 4 1 −7



∼

 1 0 −2 0
0 1 1 −1
0 0 −3 −3

 ∼
 1 0 0 2

0 1 0 −2
0 0 1 1

 .

Since we’re working with matrices now, let’s take a moment out to establish some
standard notation. A matrix A is said to be m× n if it has m rows and n columns.
We locate the elements of a matrix by the row and column in which they are located.
If we are interested in the entries of a matrix A, then we denote the (i, j) entry (the
entry in the ith row and jth column) by aij.

A =


a11 a12 · · · a1,n−1 a1n

a21 a22 · · · a2,n−1 a2n
...

... · · · ...
...

am−1,1 am−1,2 · · · am−1,n−1 am−1,n

am1 am2 · · · am,n−1 amn

 .

The operations that we are can perform that will preserve the equalities in a system
of equations are called elementary row operations on the augmented matrix.

Definition 5 An elementary row operation on an m × n matrix A is any of the
following operations:
1. Interchange rows r and s of A. That is, replace ar1, ar2, . . . , arn by as1, as2, . . . , asn
and vice-versa.
2. Multiply row r of A by c 6= 0. That is, replace ar1, ar2, . . . , arn by car1, car2, . . . , carn.
3. Add d times row r of A to row s of A, where r 6= s. That is, replace as1, as2, . . . , asn
by as1 + dar1, as2 + dar2, . . . , asn + darn.
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We have seen that performing elementary row operations on a matrix does not change
the solution set of the system it represents. For this reason, if we can get from
one matrix to another by row operations, we call the two matrices are called row
equivalent.

Definition 6 An m × n matrix A is said to be row equivalent to an m × n matrix
B if B can be obtained by applying a finite sequence of elementary row operations to
A.

Now we know how to apply row operations, but what is our goal? What did we do
in the example above to simplify the system?

Definition 7 An m × n matrix is said to be in reduced row echelon form when it
satisfies the following properties:
1. All rows consisting entirely of zeros are at the bottom of the matrix.
2. Reading from left to right, the first nonzero entry in each row that does not consist
entirely of zeros is a 1, called the leading entry of its row.
3. If rows i and i + 1 are two successive rows that do not consist entirely of zeros,
then the leading entry of row i+ 1 is to the right of the leading entry of row i.
4. If a column contains a leading entry of some row, then all other entries in that
column are zero.

Note that there don’t have to be any rows that are all zeros. But if there are, they
must all be at the bottom of a matrix in reduced row echelon form.

The reason that this definition exists is to tell us when we are done with the row
reduction process. When a matrix is in reduced row echelon form, then it is (usually)
easy to see what the solution to the corresponding system of equations is.

So our approach to solving a system of equations is:

• Form the augmented matrix.

• Row reduce the augmented matrix to reduced row echelon form.

• Determine the solution(s) to the system (or if there are any).

This process is usually called Gaussian elimination or Gauss-Jordan reduction.
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Example Find the solution to the linear system

x+ 2y + 3z = 9
2x− y + z = 8
3x− z = 3

.

The augmented matrix reduces as 1 2 3 9
2 −1 1 8
3 0 −1 3

 ∼
 1 2 3 9

0 −5 −5 10
0 −6 −10 −24

 ∼
 1 0 1 5

0 1 1 2
0 0 −4 −12



∼

 1 0 0 2
0 1 0 −1
0 0 1 3

 .

Thus, the solution to the system is x = 2, y = −1, and z = 3.

Example Find the solution to the linear system

x+ y + 2z − 5w = 3
2x+ 5y − z − 9w = −3
2x+ y − z + 3w = −11
x− 3y + 2z + 7w = −5

We again row reduce the augmented matrix:
1 1 2 −5 3
2 5 −1 −9 −3
2 1 −1 3 −11
1 −3 2 7 −5

 ∼


1 1 2 −5 3
0 3 −5 1 −9
0 −1 −5 13 −17
0 −4 0 12 −8



∼


1 0 −3 8 −14
0 1 5 −13 17
0 0 −20 40 −60
0 0 20 −40 60

 ∼


1 0 0 2 −5
0 1 0 −3 2
0 0 1 −2 3
0 0 0 0 0

 .

Notice that this time we ended up with a row of zeros (located at the bottom of
the matrix, as required). If we again interpret this augmented matrix as a system
of equations, then the last equation is saying that 0 = 0, which is hopefully obvious.
This means that one of our equations is unnecessary, in the sense that the information
it contains is already contained in the other equations. So what we really have is
four unknowns, but only three equations.
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In terms of the row-reduced matrix, there is a leading one in every column but the
last. We can think of a variable having a leading one in it’s column as that variable
being fixed once values have been chosen for the rest of the variables. In this example,
there is not a leading one in the column for w, so it can take on any value. This
means that this system has infinitely many solutions.

We write our solution as

x = −2w − 5, y = 3w + 2, z = 2w + 3,

where w can be any real number that we choose.

Example: Find the solution to the system

x+ 2y + 3z + 4w = 5
x+ 3y + 5z + 7w = 11
x− z − 2w = −6

.

 1 2 3 4 5
1 3 5 7 11
1 0 −1 −2 −6

 ∼
 1 2 3 4 5

0 1 2 3 6
0 −2 −4 −6 −11


∼

 1 0 −1 −2 −7
0 1 2 3 6
0 0 0 0 1


This time there is a row of zeros in the coefficient matrix, but there is a one on the
other side of the vertical line. If we interpret this as and equation, it says that 0 = 1.
This is impossible, so we are forced to conclude that the system of equations has no
solutions.

A system of equations that has no solution is called inconsistent. If the system
has one or more solutions, then it is called consistent. We can recognize these
different solutions by looking at the reduced row-echelon form of the augmented
matrix. If there is a row that is all zeros except the last element, which is not zero,
then the system is inconsistent. If the augmented matrix in RREF has one or more
rows that consist entirely of zeros, then the system is consistent, but it may have
infinitely many solutions. If the augmented matrix in RREF has a leading one in
every column, there is a unique solution to the system.

Back to Chapter 1

We have been talking about solution sets, so now is the time to develop some ideas
about what the solution sets of some equations look like.
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Vectors: You’ve probably had some previous experience in dealing with vectors.
In physics vectors are defined to be a quantity that has both a magnitude and
a direction. It makes sense to add them together and to scale them. Graphically,
vectors from physics are often represented by a directed line segment. Vectors can be
added graphically “tip to tail” and scaled by changing their length by the appropriate
factor.

Our approach here is to define sets of vectors that encompass these examples, but also
examples that show up elsewhere in mathematics, such as in the study of differential
equations. Algebraically speaking, the thing that is important about the vectors from
physics is the way in which they are added and scaled. We have a good idea of what
it means to perform these operations in that setting, but what if instead of directed
line segments, the vectors that we use are something different? Perhaps in that
situation we would also need to change what we mean by addition and scaling.

Because of this, we’re not going to be very specific about what we mean by addition
and scalar multiplication just yet, but we are going to require that these operations
follow some rules.

Definition 8 A vector space is a set V with operations of addition and scalar multi-
plication. The elements of V are called vectors. The operation of addition combines
any two vectors v ∈ V and w ∈ V to produce another vector in V denoted v + w.
The operation of scalar multiplication combines any real number r ∈ R and any vec-
tor v ∈ V to produce another vector in V denoted rv. A real number used in this
operation is called a scalar. These operations must satisfy the following eight axioms
for all v, w, x ∈ V and r, s ∈ R.
1. v + w = w + v (commutative law of addition)
2. (v + w) + x = v + (w + x) (associative law of addition)
3. There is a vector in V , denoted 0, such that v + 0 = v. (additive identity law)
4. For each vector v in V , there is a vector in V , denoted −v, such that v+(−v) = 0.
(additive inverse law)
5. r(v + w) = rv + rw. (distributive law)
6. (r + s)v = rv + sv. (distributive law)
7. r(sv) = (rs)v. (associative law of multiplication)
8. 1v = v. (scalar identity law)

What we are doing here is adding a level of abstraction. We are allowing the vectors
to be more general objects, but we are requiring familiar rules of algebra to continue
to hold in that more abstract setting.
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This is a good place to point out an important part of this definition: both the
operations of vector addition and scalar multiplication must produce another element
of the vector space. We say that a vector space is closed under the operations of
vector addition and scalar multiplication.

There are lots of easy examples of sets that are closed under the usual definitions of
addition and multiplication, such as the natural numbers, rational numbers, integers,
and real numbers. However, the real numbers are not closed under the operation of
division, since we can’t divide by zero.

If you think that a set is closed under a certain operation (such as addition), then
to prove that this is true, you need to start with an arbitrary element (or elements,
depending on the operation in question) of the set, and show that the result of the
operation is an element of the set.

If you think that a set is not closed under an operation, you need only find one
example of element(s) such that when the operation is applied, the result is not an
element of the original set.

Example: Are the sets [0, 1] and {0, 1, 2} closed under normal multiplication?
First we have to decide whether we think the answer is yes or no, and then we have
to come up with a proof of our assertion. In the case of [0, 1], when you multiply
together two of its elements, you get a result that is smaller than either of the original
numbers, but still positive (unless one of the factors was zero). So it should still be
in [0, 1].

Let’s write this out as a proof: Let x1, x2 ∈ [0, 1]. Then x1x2 ≥ 0 because x1 and x2

are in [0, 1], and x1x2 ≤ 1 · x2 ≤ 1, so x1x2 ∈ [0, 1]. This implies that [0, 1] is closed
under multiplication.

How about {0, 1, 2}? A little experimentation yields a counterexample, which is also
our proof: The set {0, 1, 2} is not closed under multiplication because 2 · 2 = 4 6∈
{0, 1, 2}.

Properties of Vector Spaces: We already know about the eight properties that
all vector spaces must have by definition. But are there other properties that all
vector spaces must have, which can be logically deduced from the definition? The
answer is yes, and we’ll work out a few here.

Theorem 1 Suppose V is a vector space. If v is any element of V , then 0 + v = v.

This might seem like a no-brainer, but there is one step involved.
Proof : One of our assumptions is that v + 0 = v. That is almost what we want,
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but it is in the wrong order. However, another of our assumptions tells us that
v+w = w+ v for all choices of v and w in V . Therefore, v+ 0 = 0 + v = v. �

Theorem 2 Suppose V is a vector space. For any v ∈ V there is only one vector
−v in V that satisfies the additive inverse condition of axiom 4 (i.e., such that v+(-
v)=0).

Proof : This is a proof of uniqueness, and as such, a good strategy is to assume the
opposite and try to derive a contradiction. If assuming that the additive inverse is
not unique leads us to a conclusion that is clearly nonsense, then we know that our
assumption must be wrong, and therefore it must be unique.

Assume that there are two different vectors, x and y, such that

v + x = 0 and v + y = 0.

Let’s look at the first of these equations, and add y to both sides. Then

v + y + x = y ⇒ 0 + x = y ⇒ x = y.

Obviously, our original assumption that the vectors were different is wrong. �

Theorem 3 Suppose V is a vector space. If v is any element of V , then 0v = 0.

Proof : Here are two ways to accomplish this proof.

0v = (0 + 0)v = 0v + 0v

⇒ 0v + (−0v) = (0v + 0v) + (−0v)

⇒ 0 = 0v + (0v + (−0v))

⇒ 0 = 0v

OR
0v = 0v + 0 = 0v + (0v + (−0v)) = (0v + 0v) + (−0v)

= (0 + 0)v + (−0v) = 0v + (−0v) = 0.

�

Here are some other useful properties. You will be asked to prove some of them as
exercises, but you might want to prove them all for yourself, just for practice.
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Theorem 4 Suppose v is any element of a vector space V , and r, s ∈ R. The fol-
lowing results hold:
1. -v+v=0.
2. r0=0.
3. If rv = 0, then r = 0 or v = 0.
4. (−1)v = −v.
5. If −v = v, then v = 0.
6. −(−v) = v.
7. (−rv) = −(rv).
8. r(−v) = −(rv).
9. if v 6= 0 and rv = sv, then r = s.

Subtraction and Cancellation Since we have defined vector addition and additive
inverses for vectors, we have enough machinery in place to define subtraction.

Definition 9 let V be a vector space. The operation of subtraction combines two
vectors v ∈ V and w ∈ V to produce a vector denoted v − w and defined by the
formula

v − w = v + (−w).

Theorem 5 Suppose v, w and x are vectors in a vector space V . If v + x = w + x,
then v = w.

Proof : If v + x = w + x, then v + x + (−x) = (w + x) + (−x), which we can
rearrange as v+ (x+ (−x)) = w+ (x+ (−x)), and since x+ (−x) = 0, we must have
that v = w.

The Euclidean Spaces

When we talked about solving linear equations, we used the space

R3 = {(x, y, z) : x, y, z ∈ R}.

In particular, we used this set because the system we were solving at the time had
three unknowns. Of course, we might want to solve systems with more than three
unknowns, and in this case it makes sense to use vectors with more components.

Definition 10 The set Rn is defined as

Rn = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R}

for each natural number n.
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While it is useful as a set, it would be much more useful to have a vector space. For
this reason, we need define the operations of vector addition and scalar multiplication
on Rn. Since the entries of the vectors in Rn are just real numbers, the best way to
define these operations is in terms of addition and multiplication of real numbers.
That way we can be sure that things like associativity, distributivity, etc. will work
like we need them to.

Definition 11 If v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) are elements of Rn,
we define their sum by

v + w = (v1 + w1, v2 + w2, . . . , vn + wn).

If c ∈ R, then we define cv ∈ Rn by

cv = (cv1, cv2, . . . , cvn).

With these operations defined, Rn is a vector space. Let’s verify a few of the re-
quirements, just to make sure. You may want to verify them all for yourself, just for
practice.

Example: Show that addition in Rn is commutative.
Remember that commutative means that we get the same answer no matter what
order we add in. Let v, w ∈ Rn. Then

v + w =


v1 + w1

v2 + w2
...

vn + wn

 =


w1 + v1

w2 + v2
...

wn + vn

 = w + v.

We were able to switch the order of addition of the elements because we already
know that addition of real numbers is commutative.

For the purposes of exploring the vector space Rn, we don’t care if the vectors are
represented as rows or as columns. They are the same. However, when we start
having vectors and matrices interact via matrix multiplication, then we’ll have to be
careful whether we’re talking about row or column vectors.

Example: Show that each element of Rn has an additive inverse.
Let v ∈ Rn. Then 

v1

v2
...
vn

+


−v1

−v2
...
−vn

 =


0
0
...
0

 .
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In other words, (−v) = −v. Notice that the additive identity (zero vector) in Rn is
the one that has all zero entries.

Example: Show that the distributive property r(v+w) = rv+rw holds for v, w ∈ Rn

and r ∈ R.
We have that

r(v + w) = r


v1 + w1

v2 + w2
...

vn + wn

 =


r(v1 + w1)
r(v2 + w2)

...
r(vn + wn)



=


rv1 + rw1

rv2 + rw2
...

rvn + rwn

 =


rv1

rv2
...
rvn

+


rw1

rw2
...

rwn

 = rv + rw.

More on Matrices First, we need to define the sets of matrices that we will talk
about.

Definition 12 Let m and n be positive integers. We denote by M(m,n) the set of
all rectangular arrays of real numbers with m horizontal rows and n vertical columns.

Since we are able to add vectors and multiply them by scalars, it makes sense that
we should be able to perform these operations on matrices as well, since in some
sense we can think of matrices as vectors that have been “reshaped.”

Let

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 and B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn


be elements of M(m,n). Then we define their sum by

A+B =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

...
am1 + bm1 am2 + bm2 · · · amn + bmn

 .
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That is, we add matrices element-wise. Because of this, matrices must have the same
size in order to add them. Also, if r ∈ R is a scalar, then

rA =


ra11 ra12 · · · ra1n

ra21 ra22 · · · ra2n
...

...
...

ram1 ram2 · · · ramn

 .

Sometimes it is nice to use a shorthand when referring to matrices, especially since
the algebraic operations that we have just defined for matrices are applied element-
wise. We can refer to a matrix A by its elements aij by writing A = [aij]. If we add
two matrices A and B, then we can write this as

[aij] + [bij] = [aij + bij].

It shouldn’t be a surprise that M(m,n) is a vector space when endowed with these
operations.

Example Show that if A,B ∈M(m,n) and r ∈ R, then r(A+B) = rA+ rB.
Using our shorthand notation, this is straight forward

r(A+B) = r[aij + bij] = [r(aij + rbij)] = [raij + rbij] = [raij] + [rbij] = rA+ rB.

Function Spaces So far we have talked about vector spaces whose elements are
either rows, columns, or arrays of real numbers. In the case of Rn, we can think of
each element as a function that takes an integer (the index) as input, and outputs
a real number. So it shouldn’t be surprising that we can also define vector spaces
whose elements are functions.

Definition 13 A real-valued function f defined on a set X is a rule that assigns to
each element x ∈ X a unique and unambiguous real number, denoted f(x).

If X = R, then we are just talking about the usual functions that you encountered
in previous algebra and calculus classes. If X = Rn, then we are talking about a
function of several variables, such as those studied in Calculus III.

A function that is defined on a set X and takes values in a set Y is usually denoted
by f : X → Y . In this case, the set X is called the domain of X, and Y is called the
range. The set of all y ∈ Y that can be realized as f(x) for some x ∈ X is called the
image of the function f .
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Definition 14 Let F(X) be se set of all possible real-valued functions defined on the
nonempty set X.

We will think of the functions in this set (which is very large) as the elements of a
vector space. Therefore, we will need to make sure that we understand how to add
together functions and multiply them by scalars in such a way that the requirements
in the definition of a vector space will hold.

One thing to be careful of is not to confuse the function f with its values f(x). The
function f is an element of F(X), while f(x) is a real number. To know what f is,
we have to know all of its values. For two functions f, g ∈ F(X) to be equal means
that they agree at every point in X, i.e., f(x) = g(x) for all x ∈ X.

Definition 15 Let X be a nonempty set. The sum of two functions f, g ∈ F(X) is
the function (f + g) ∈ F(X) defined by

(f + g)(x) = f(x) + g(x) for all x ∈ X.

If r ∈ R is a scalar, then the function rf ∈ F(X) is defined by

(rf)(x) = r · f(x) for all x ∈ X.

There should be nothing new about these definitions. We are just adding func-
tions pointwise, just like you should be used to doing from Calculus. Also, scalar
multiplication is done pointwise.

Thinking about what function addition looks like graphically depends a lot on what
the functions involved are. Scalar multiplication is a little more straightforward,
though. When you multiply a function by a scalar, the graph of the function is
stretched toward or away from the x-axis. If the scalar is negative, then the function
is also flipped around the x-axis.

Subspaces: Remember that a vector space is a set which has operations of vector
addition and scalar multiplication that satisfy certain properties. When we talked
about sets in general, the important relation between them was the subset relation.
Therefore, we can talk about subsets of a vector space. But since a vector space is
more than just a set, we are most interested in subsets that inherit the properties of
a subspace as well.

Definition 16 A subspace of a vector space V is a subset S ⊂ V such that when
the addition and scalar multiplication of V are used to add and scalar multiply the
elements of S, then S is a vector space.
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Example: Consider the vector space R3. We know that another vector space is R2,
which is a plane. In fact, R2 is, for all intents and purposes, the same as the set

S = {(x1, x2, 0) : x1, x2 ∈ R},

which is a subset of R3. Since it is so closely related to R2, it seems reasonable that
this might be a subspace of R3. Let’s verify this.

According to the definition, all we have to do to check that a subset of a vector space
is a subspace is verify that it is closed under vector addition and scalar multiplica-
tion. All the other properties of a vector space are inherited from the larger vector
space.

To check that S is closed under scalar multiplication, we choose any two elements of
S, say v and w. Since, they are in S, we know that v3 = w3 = 0. Therefore,

v + w =

 v1 + w1

v2 + w2

0

 ∈ S.
To check that S is closed under scalar multiplication, we choose r ∈ R and again let
v be an arbitrary element of S. Then

rv =

 rv1

rv2

0

 ∈ S.
Since S is closed under vector addition and scalar multiplication, S is a subspace of
the vector space R3.

This is a general method for determining that a subset of a vector space is a subspace,
so we’ll write it down as a theorem:

Theorem 6 Suppose a subset S of a vector space V satisfies the following conditions:
1. S is nonempty.
2. S is closed under addition.
3. S is closed under scalar multiplication.
Then S is a subspace of V .

Proof : Since the identities in the axioms for a vector space hold for all elements
of V , they must hold when the elements come form S. That leaves only a couple
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of things to check. First, we have to check that 0 ∈ S. Since S is nonempty, we
can choose a vector v ∈ S. Since S is closed under scalar multiplication, we have
that 0v = 0 ∈ S. The other thing that we need to check is that the elements of
S have additive inverses. If v ∈ S, then so is −1v, since it is closed under scalar
multiplication. We showed previously that −1v = −v, so v has an additive inverse
in S.

Example: Show that the set of points on the plane 3x + 2y − z = 0 is a subspace
of R3.
Let S = {(x, y, z) : 3x+2y−z = 0}. Obviously S is not empty, since ~0 ∈ S. Suppose
that ~v, ~w ∈ S. Then

3v1 + 2v2 − v3 = 0 and 3w1 + 2w2 − w3 = 0.

To show that S is closed under vector addition, we must show that

3(v1 + w1) + 2(v2 + w2)− (v3 + w3) = 0.

This is true, because

3(v1 +w1) + 2(v2 +w2)− (v3 +w3) = (3v1 + 2v2− v3) + (3w1 + 2w2−w3) = 0 + 0 = 0.

Also, S is closed under scalar multiplication, since if r ∈ R,

3(rv1) + 2(rv2)− (rv3) = r(3v1 + 2v2 − v3) = r0 = 0.

Example: Show that the set

S = {A ∈M(2, 2) : a12 = a21 = 0}

is a subspace of M(2, 2).
S is nonempty, since the 2× 2 zero matrix is in S. If we take A,B ∈ S, then

A+B =

(
a11 0
0 a22

)
+

(
b11 0
0 b22

)
=

(
a11 + b11 0

0 a22 + b22

)
.

Since the 1, 2 and 2, 1 elements are zero, A+B ∈ S. Also, if r ∈ R, then

rA =

(
ra11 0

0 ra22

)
,

which is also in S. Therefore, by the subspace theorem, S is a subspace of M(2, 2).
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Example: Show that the set P2 of all polynomials of degree 2 or lower forms a
subspace of F(R).
Obviously P2(x) is nonempty. Let p, q ∈ P2, say p(x) = p1x

2 + p2x + p3 and q(x) =
q1x

2 + q2x+ q3. Then

(p+ q)(x) = (p1 + q1)x
2 + (p2 + q2)x+ p3 + q3 ∈ P2.

Also, if r ∈ R,
(rp)(x) = rp1x

2 + rp2x+ rp3 ∈ P2.

Since P2 is closed under vector addition and scalar multiplication, it is a subspace of
F(R).

Example: Suppose that ~v1, ~v2, . . . , ~vn are elements of a vector space V . Show that
the set

S = {c1~v1 + c2~v2 + · · ·+ cn~vn : c1, c2, . . . , cn ∈ R}

is a subspace of V .
First, S is clearly not empty, since it contains all the vectors ~v1, ~v2, . . . , ~vn. Let
~u, ~w ∈ S. Then there exist scalars a1, a2, . . . , an and b1, b2, . . . , bn such that

~u = a1~v1 + a2~v2 + · · ·+ an~vn

and
~w = b1~v1 + b2~v2 + · · ·+ bn~vn.

It follows that

~u+ ~w = (a1 + b1)~v1 + (a2 + b2)~v2 + · · ·+ (an + bn)~vn ∈ S.

Also, if r ∈ R, then

ru = ra1~v1 + ra2~v2 + · · ·+ ran~vn ∈ S.

Therefore, by the subspace theorem, S is a subspace of V .

Here are a few useful subspaces of F(X).

C(n)(X) = {f ∈ F(X) : f is continuous and has n continuous derivatives on X}

In particular, C0(X) = C(X) is the set of continuous functions on X.

Pn = {f ∈ F(R) : f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0}
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P = {f ∈ F(R) : f is a polynomial of any degree}

Lines and Planes: Since we have described R3 as a set of vectors, we can use the
idea of vectors to describe the lines and planes in R2 and R3.

As we have mentioned before, vectors can be added graphically. We add them tip
to tail. When we add two vectors together and connect the tip of the sum with the
tip of the two original vectors with line segments, we end up with a parallelogram.
This is what is known as the parallelogram law for vector addition.

Scalar multiplication also has a geometric interpretation. If ~v is a vector in R2 and
r > 1 is a scalar, then r~v is a stretched version of ~v that is exactly r times longer.
If 0 < r < 1, then ~v is shortened by a factor r. If r is negative, then ~v is reflected
through the origin before it is scaled.

The same geometric interpretations of vector addition and scalar multiplication hold
in R3. We can use these ideas and our intuition from experience working with vectors
in R2 and R3 to get a feeling for how vectors work in Rn for n > 3, where we are
unable to visualize things.

The points that lie on the tips of two vectors ~v and ~w always lie on a plane through
the origin, and the sum of those two vectors can be used to form a parallelogram,
just as in R2. Similarly, scalar multiples of a vector in higher dimensions can still
be thought of as lying on a line through the origin and the point at the tip of the
original vector.

Choose any vector ~v in R2 or R3. As we multiply this vector by different scalars, the
tips of the resulting vectors trace out a line through the origin that is parallel to ~v.
In fact, we can describe this line as the set

{r~v : r ∈ R}.

We can use this idea of describing a line as a set of multiples of a given vector in
higher dimensions as well, even when it doesn’t make sense to “draw” the line. For
example, we can think of the set

{r sinx : r ∈ R}

as the line parallel to sin(x) in F(R).

Next, let’s consider two vectors ~e1 = (1, 0) and ~e2 = (0, 1) from R2. Now, consider
another vector with components (r, s). Then we have that

r~e1 + s~e2 = r(1, 0) + s(0, 1) = (r, 0) + (0, s) = (r, s).
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Thus, we can “build” any vector in R2 from the two vectors ~e1 and ~e2. Another way
of saying this is that ~e1 and ~e2 generate R2.

The vectors ~e1 and ~e2 are easy to use to generate R2 because it is easy to see what
the choice of scalars should be that generates a given vector. But we could use other
pairs of vectors just as well. Basically, using different vectors is the same as using
different axes. Instead of using a vertical and a horizontal axis, we use two axes that
are not at a right angle. This will work as long as the vectors that we choose are not
paralell.

Since we can generate the entire plane that is R2 by taking scalar multiples of two
vectors and adding them, we can do the same thing in R3. Any two vectors ~v and
~w in R3 that are not in the same direction will generate a plane through the origin,
which can be described as the set

{r~v + s~w : r, s ∈ R}.

Since ~v, ~w, and ~0 are all in this set, it is the plane that passes through those three
points.

What if we are interested in a line or a plane that does not pass though the origin?
Whatever that line or plane is, we can think of it as a line/plane through the origin
that has been shifted. In other words, we add a single nonzero vector ~x to all the
vectors that lie on the line or plane. For example, the line through the point ~x that
is parallel to the vector ~v is the set

{r~v + ~x : r ∈ R}.

Similarly, a plane can be translated in the same way. When we translate the plane
{r~v + s~w : r, s ∈ R} by the vector ~x, it becomes the plane

{r~v + s~w + x : r, s ∈ R}.

Example: Consider the plane that passes through the points (1, 2, 3), (0, 2, 1), and
(3,−1, 1). We can choose any of these vectors to be the translation vector, so let
~x = (1, 2, 3). Then we need to figure out what the ~v and ~w are for this case, so we
subtract ~x from the other two vectors, to get ~v = (0, 2, 1) − ~x = (−1, 0 − 2) and
~w = (3,−1, 1)− ~x = (2,−2− 2). Therefore, the plane in question can be described
as

{r~v + s~w + x : r, s ∈ R}.
Notice that we get the points that we started with if we make the choices r = s = 0,
r = 1, s = 0, and r = 0, s = 1.

24



Definition 17 Suppose V is a vector space. Let ~v be a nonzero vector in V . The
line through a vector ~x ∈ V in the direction ~v is the set {rv + x : r ∈ R}. If ~v, ~w,
and ~x are three vectors in V with neither ~v nor ~w being a multiple of the other, then
the plane through ~x in the directions ~v and ~w is the set {r~v + s~w + x : r, s ∈ R}.

Example: Write the set {(x, y, z) ∈ R3 : 4x+ 2y + 2z = 6} as a plane according to
the definition above.
To do this, we have to determine what the vectors ~x, ~v and ~w should be. We can
reduce this problem to one that we already solved if we can find three points that
are in this plane. It is easy to verify that the points

(0, 3, 0), (0, 0, 3), and (1/2, 1, 1)

lie on the plane. We now choose one of these vectors to be the shift, say ~x = (0, 3, 0).
Then

~v = (0, 0, 3)− (0, 3, 0) = (0,−3, 3) and ~w = (1/2, 1, 1)− (0, 3, 0) = (1/2,−2, 1).

With these choices, we have that

{(x, y, z) ∈ R3 : 4x+ 2y + 2z = 6} = {r~v + s~w + ~x : r, s ∈ R}.

Chapter 2: Systems of Linear Equations

Section 2.3: Solving Linear Systems

We have already discussed the solution of systems of linear equations at some length.
We have talked about how to write a system of equations as an augmented matrix,
and we have discussed how to row reduce the augmented matrix to reduced row ech-
elon form. We also talked about the different possible outcomes of this process.

1. In RREF, the augmented matrix has an equation that says that 0 = 1. This
means that the system has no solution.

2. In RREF, the augmented matrix has leading ones in each column. In this case,
the solution to the system of equations is unique.

3. The system is consistent, but there is not a leading one in each column corre-
sponding to a variable in the RREF of the augmented matrix. In this case, the
solution is not unique.

The variables whose columns do not contain a leading one are called free vari-
ables. The variables whose columns do contain a leading one are called leading
variables.
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Suppose that a system of equations has an augmented matrix whose RREF is
1 1 0 0 −2 4
0 0 1 0 5 −1
0 0 0 1 3 0
0 0 0 0 0 0

 .

If the unknowns are x1, x2, x3, x4, x5, then x2 and x5 are free variables and the rest
are leading variables. Since x2 and x5 are free, we can choose any real value for them.
Lets say x2 = r and x5 = s, where r and s are real numbers. Then we can write the
solution to our system as

x1 = −r + 2s+ 4
x2 = r
x3 = −5s− 1
x4 = −3s
x5 = s

.

If we write the solution as a vector, then we have
x1

x2

x3

x4

x5

 =


−r + 2s+ 4

r
−5s− 1
−3s
s

 = r


−1
1
0
0
0

+ s


2
0
−5
−3
1

+


4
0
−1
0
0

 .

In other words, the solution set for this system of equations is

S =

r

−1
1
0
0
0

+ s


2
0
−5
−3
1

+


4
0
−1
0
0

 : r, s ∈ R

 .

Notice that this is just like the set that is a plane in R3, except that the vectors are
in R5. It is customary to call such a set a hyperplane, which is loosely defined to be
a plane in dimensions higher than three.

A system of the form

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a12x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0

,
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where all the constants on the right-hand side of the equations are zero, is called a
homogeneous equation.

The first thing that we should notice is that the zero vector ~0 is always a solution of
a homogeneous solution. For this reason, we call it the trivial solution. The question
to answer for a given system of equations is whether or not the solution set to the
homogeneous system contains more than the zero vector.

Notice that when we form the augmented matrix for a homogenous system, the
rightmost column is all zeros. Also, notice that when we perform elementary row
operations, that column of zeros will not change. Therefore, when we solve a ho-
mogeneous system, there is no reason to write that column of zeros. Just remember
that it is there.

Example: Solve the homogeneous system

x− 2y − z = 0
2x− y + 2z = 0
x+ y + 3z = 0

.

The coefficient matrix row reduces as 1 −2 −1
2 −1 2
1 1 3

 ∼
 1 −2 −1

0 3 4
0 3 4

 ∼
 1 0 5

3

0 1 4
3

0 0 0

 .

From this, we can see that z is a free variable, so let’s say z = r, where r ∈ R is
arbitrary. Then the solution to the system is x

y
z

 =

 −5
3
r

−4
3
r

r

 = r

 −5
3

−4
3

1

 .

Theorem 7 A homogeneous system of m linear equations in n unknowns with n >
m has at least one nontrivial solution.

Proof : When a matrix is in RREF, there can only be at most one leading one in
each row. Therefore, the number of columns containing leading ones must be less
than or equal to the number of rows. Since in this case there are more columns than
rows, there must be columns that do not contain leading ones. This means that there
are free variables, so there are nontrivial solutions. �

Applications: Here are a couple of applications where systems of linear equations
must be solved.
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Example: Determine a polynomial p whose graph passes through (0, 2) with a slope
of −1 and through (1, 1) with a slope of 2.
Since there are four requirements, it makes sense that a polynomial of degree 3,
having four unknown coefficients, should be able to fill the requirements. Therefore,
let p(x) = ax3 + bx2 + cx + d and p′(x) = 3ax2 + 2bx + c. The first requirement
implies that

d = 2,

and the second implies that
c = −1.

The requirements at the point (1, 1) imply that

a+ b+ c+ d = 1 and 3a+ 2b+ c = 2.

The augmented matrix for this system is
1 1 1 1 1
3 2 1 0 2
0 0 1 0 −1
0 0 0 1 2

 ∼


1 1 1 1 1
0 −1 −2 −3 −1
0 0 1 0 −1
0 0 0 1 2

 ∼


1 0 −1 −2 0
0 1 2 3 1
0 0 1 0 −1
0 0 0 1 2



∼


1 0 0 −2 2
0 1 0 3 3
0 0 1 0 −1
0 0 0 1 2

 ∼


1 0 0 0 6
0 1 0 0 −3
0 0 1 0 −1
0 0 0 1 2

 .

Therefore p(x) = 6x3 − 3x2 − x+ 2.

Example: A manufacturer makes three kinds of plastics: A, B, and C. Each
kilogram of A produces 10 grams of particulate matter discharged into the air and
30 liters of liquid waste discharged into the river. Each kilogram of B produces 20
grams of particulate matter and 50 liters of liquid waste. Each kilogram of C produces
20 grams of particulate matter and 110 liters of liquid waste. The Environmental
Protection agency limits the company to 2250 grams of particulate matter per day
and 7950 liters of liquid waste discharge per day. Determine the production levels of
the three plastics that will result in emission levels that reach the maximum values
for both particulate matter and liquid waste.

Let x, y, and z be the number of kilograms produced of plastics A, B, and C,
respectively. Then

10x+ 20y + 20z = 2250 and 30x+ 50y + 110z = 7950.
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As an augmented system, this is(
10 20 20 2250
30 50 110 7950

)
∼
(

1 2 2 225
0 −10 50 1200

)
∼
(

1 0 12 465
0 1 −5 −120

)
.

Therefore, the solution is
x = −12r + 465
y = 5r − 120
z = r

.

We have infinitely many solutions, but only some of them make sense. We have to
ensure that the values of all the variables are nonnegative. For x to be nonnegative
we must have

r ≤ 38.75,

and for y to be nonnegative, it must be true that

r ≥ 24.

Therefore, the solution set for this system is
 −12

5
1

+ r

 465
−120

0

 : 24 ≤ r ≤ 38.75

 .

Example: A patient is injected with 1 gram of a long-lasting drug. At any time
thereafter, a portion of the drug is in use by the body, a portion is stored in the
lever, and the remainder is in circulation throughout the body. Each day, suppose
that of the amount in the circulatory system on the previous day, 20% is stored
in the liver, 30% goes into use, and the rest remains in circulation. Suppose that
20% of the amount in the liver and 10% of the amount in use on the previous day
are released into the bloodstream, with no direct transfer between the liver and the
sites of utilization. Find the amount of the drug in the various locations when the
distribution reaches equilibrium.

Let x be the amount in the circulatory system, y be the amount in the liver, and z
be the amount in use by the body. Then we have the system of equations

x+ y+ z = 1
0.5x+ 0.2y+ 0.1z = x
0.2x+ 0.8y = y
0.3x+ 0.9z = z

.
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The first equation is obvious, since there is only one gram in the body, and it has to
be split up between the three locations. The last two coefficients in the first column
and the last two coefficients in the first row were given in the problem, as were the
zero coefficients. In the last three equations, each of the columns must add up to
one, so that all of the drug in each location is accounted for, which allows us to fill
in the rest of the coefficients. Because the arithmetic is tedious, I’ll skip the row
reduction, but the RREF of the coefficient matrix is

1 0 0 0.2
0 1 0 0.2
0 0 1 0.6
0 0 0 0

 .

Section 7.1 Mathematical Induction

Mathematical induction is a very useful tool that is often used in proofs. It will be
especially useful when we get to determinants in Chapter 7.

Definition 18 The natural numbers are the positive integers. The set {1, 2, 3, . . .}
of all natural numbers is denoted N.

Mathematical induction is most often used to prove statements that claim that some-
thing is true for each value of n ∈ N

Example: Note that
1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

From this evidence, we might conjecture that

n∑
k=1

(2k − 1) = n2.

We could certainly check this by hand for a few more examples. We could even write
a computer program that would check it for a whole lot of examples. But we can’t
prove this statement by doing examples, because it would take an endless amount of
time, even for a computer.
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We can think of the situation this way: for each n ∈ N we have a statement, which
we’ll call Sn. In the case of the example, the statement is “the sum

∑n
k=1(2k − 1)

is equal to n2.” A strategy to prove that Sn is true for every n ∈ N might be as
follows:

• Show that S1 is true.

• Show that S1 being true implies that S2 is true.

• Show that S2 being true implies that S3 is true.

• Show that S3 being true implies that S4 is true.

• · · ·

This strategy works in theory, but in practice, there are still infinitely many steps.
What we need to do is shrink all those steps down into one. We do this by proving
that whenever Sn is true, it implies that Sn+1 is true. Then the steps are

1. Show that S1 is true.

2. Show that Sn being true implies that Sn+1 is true.

Let’s use this method on our example. First, we must show that S1 is true, or in
other words, we must show that

1∑
k=1

(2k − 1) = 12.

This is easy, since
1∑

k=1

(2k − 1) = 2(1)− 1 = 1.

Now for step 2. We assume that

n∑
k=1

(2k − 1) = n2,

and we use this fact to show that

n+1∑
k=1

(2k − 1) = (n+ 1)2.
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We have that

n+1∑
k=1

(2k + 1) =
n∑
k=1

(2k − 1) + 2(n+ 1)− 1 = n2 + 2n+ 1 = (n+ 1)2.

The two steps that are involved in completing a proof by induction are called the
basis step and the induction step. In the induction step, it is some times more
convenient to write it as Sn−1 ⇒ Sn. The only difference here is in notation.

Example: Show that
n∑
k=1

2k−1 = 2n − 1

for all n ∈ N.

To proceed by induction, we must first check the basis step. If n = 1, then

1∑
k=1

2k−1 = 20 = 1

and
21−1 = 1.

Next, we proceed with the induction step. In this case we’ll show that

n−1∑
k=1

2k−1 = 2n−1 − 1

implies
n∑
k=1

2k−1 = 2n − 1.

We have that

n∑
k=1

2k−1 =
n−1∑
k=1

2k−1 + 2n−1 = 2n−1 − 1 + 2n−1 = 2 · 2n−1 − 1 = 2n − 1,

and this completes the induction step.

The tower of Hanoi problem concerns three pegs and a stack of 64 rings stacked on
one of the pegs. The rings are of different sizes, and they are stacked in decreasing
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size with the largest on the bottom and the smallest on the top. The problem is to
find a strategy for transferring all the rings from the peg they are on to another peg,
subject to the rules that only one ring can be off the pegs at a time, and they must
always be stacked from largest to smallest.

Example: The Tower of Hanoi puzzle with n rings can be solved in 2n−1 moves.

Of course, we proceed by induction. First, we check the base case where n = 1. This
is simple, since if there is only one ring, we can move it to another peg in 21− 1 = 1
move. Now, for the induction step, we assume that we can solve a puzzle with n
rings in 2n−1 steps, and use this to show that we can solve a puzzle with n+ 1 rings
in 2n+1−1 steps. At first we ignore the largest ring on the bottom of the stack. Then
we use our n ring solution to move the other rings from the original peg to a new
peg. Then we use one move to take the largest ring to the unoccupied peg. Then
we again perform the n ring solution to move the other rings on top of the largest.
This takes a total of 2n − 1 + 1 + 2n − 1 = 2n+1 − 1 moves.

Example: Show that 4n − 1 is divisible by 3 whenever n ∈ N.

First we check the basis step where n = 1. In this case 4n−1 = 3, which is obviously
divisible by 3. Next, we assume that 4n − 1 is divisible by 3 and use that to show
that 4n+1 − 1 is divisible by 3. We have that

4n+1 − 1 = 4 · 4n − 1 = 4 · 4n − 4 + 3 = 4(4n − 1) + 3.

Since both of the numbers in this sum are divisible by three, it must be true that
4n+1 − 1 is divisible by 3.

Chapter 3: Dimension Theory

We have already made reference to dimension several times in class so far, even
though we haven’t given a precise definition for what we mean. We can probably all
agree that a line is a one dimensional object, and that a plane is two dimensional.
But sometimes there are gray areas. For example, if we twist a line into a knot, is
the resulting object still one dimensional, or is it three dimensional?

Fortunately, we can develop a very precise definition for what the dimension of a
vector space is. The mathematical machinery that we develop on the way to making
this definition will be very useful throughout the rest of the course.

Section 3.1: Linear Combinations

Back in Chapter 1, we looked at planes in R3, and we saw that we were able to build
them out of two vectors, as long as the two vectors were not parallel. The way that
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we built the plane form these vectors was to take scalar multiples of the vectors and
add them together. When we did this for all possible combinations of the scalars,
we got a plane. This is an example of a linear combination.

Definition 19 Let {~v1, ~v2, . . . , ~vn} be a finite set of vectors in a vector space V . A
linear combination of ~v1, ~v2, . . . , ~vn is any vector of the form

r1~v1 + r2~v2 + · · ·+ rn~vn,

where r1, r2, . . . , rn ∈ R. The real numbers r1, r2, . . . , rn are called the coefficients of
the linear combination.

If we want to leave any of the vectors ~v1, ~v2, . . . , ~vn out of the linear combination,
then we simply set its coefficient to 0. Therefore, the vector ~0 can be written as a
linear combination of any set of vectors. It is also convenient to say that this is true
even if the set in question is empty.

It is easy to pick scalars and take linear combinations of a set of vectors. The more
interesting question is to determine whether a given vector can be written as a linear
combination of a set of vectors. The problem is to find out if coefficients exist, and
if so to determine them.

Example: Determine whether (8,−2,−7) is a linear combination of (1, 1, 1), (−2, 0, 1),
and (−1, 3, 5).

If this is true, then there exist scalars r1, r2 and r3 such that

r1

 1
1
1

+ r2

 −2
0
1

+ r3

 −1
3
5

 =

 8
−2
−7

 .

This is equivalent to the system of equations

r1 −2r2 −r3 = 8
r1 +3r3 = −2
r1 +r2 +5r3 = −7

,

which has the augmented matrix 1 −2 −1 8
1 0 3 −2
1 1 5 −7

 ∼
 1 −2 −1 8

0 2 4 −10
0 3 6 −15

 ∼
 1 0 3 −2

0 1 2 −5
0 0 0 0

 .
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This system of equations is consistent, but the solution is not unique. This means
that the first vector can be written as a linear combination of the other three. In fact,
there are infinitely many different choices of coefficients that will do the job.

The method that we have just used also works in vector spaces other than Rn.

Example: Determine whether the polynomial defined by q(x) = x2 + x + 2 is
a linear combination of the polynomials defined by p1(x) = x2 + 5 and p2(x) =
x2 + 2x− 1.

This means that we have to determine whether there are constants r1 and r2 such
that

x2 + x+ 2 = r1(x
2 + 5) + r2(x

2 + 2x− 1) = (r1 + r2)x
2 + (2r2)x+ (5r1 − r2).

Since these polynomials are equal, the coefficients must also be equal, so

r1 + r2 = 1 2r2 = 1 5r1 − r2 = 2.

The augmented matrix is 1 1 1
0 2 1
5 −1 2

 ∼
 1 1 1

0 2 1
0 −6 −3

 ∼
 1 0 1

2

0 1 1
2

0 0 0

 .

This time there is only one solution, r1 = r2 = 1/2.

Example: Determine whether the exponential function ex is a linear combination
of the functions defined by f(x) = e2x and g(x) = e3x.

If this is true, then there exist constants r1 and r2 such that

ex = r1e
2x + r2e

3x.

This equation must hold for every value of x. Let’s substitute in a few different
values:

x = 0 : 1 = r1 + r2

x = 1 : e = r1e
2 + r2e

3

x = 2 : e2 = r1e
4 + r2e

6

As an augmented matrix, this is 1 1 1
e2 e3 e
e4 e6 e2

 ∼
 1 1 1

0 e3 − e2 e− e2
0 e6 − e4 e2 − e4

 ∼
 1 0 1− 1−e

e2−e
0 1 1−e

e2−e
0 0 e2 − e4 + (e4 − e6) 1−e

e2−e

 .
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In this case, there is no solution. Therefore, ex is not a linear combination of e2x and
e3x.

Section 3.2 Span

Now that we know how to take linear combinations of a set of vectors, we want to
know what we get when we take all linear combinations of a set of vectors.

Definition 20 Let {~v1, ~v2, . . . , ~vn} be a finite set of vectors in a vector space V .
The subset of V spanned by {~v1, ~v2, . . . , ~vn} is the set of all linear combinations of
~v1, ~v2, . . . , ~vn. This set is called the span of {~v1, ~v2, . . . , ~vn} and is denoted by

span{~v1, ~v2, . . . , ~vn}.

We have already seen that the span of of a single vector is a line and that the span
of two nonparallel vectors is a plane. If we take the span of two vectors that are
parallel, we get a line. In R3, the span of three vectors that do not lie in the same
plane gives the whole space R3. If they are in the same plane, then we just get that
plane. If all three vectors are parallel, then we just get a line.

Another example that we have seen before is that the vectors ~e1 = (1, 0) and ~e2 =
(0, 1) span all of R2. In other words, every vector in R2 can be written as a linear
combination of ~e1 and ~e2. The same thing holds true in R3: each vector in R3 can
be written as a linear combination of the vectors ~e1 = (1, 0, 0), ~e2 = (0, 1, 0), and
~e3 = (0, 0, 1).

We are often interested in finding a spanning set for a vector space V . That is, we
want to find vectors {~v1, ~v2, . . . , ~vn} so that V = span{~v1, ~v2, . . . , ~vn}.

Theorem 8 The span of any finite set {~v1, ~v2, . . . , ~vn} of vectors in a vector space
V is a subspace of V .

Proof : We use the subspace theorem. Let S = span{~v1, ~v2, . . . , ~vn}. First, we know
that S is nonempty, since ~0 ∈ S. Let ~u,~v ∈ S. The we can write

~u = a1~v1 + a2~v2 + · · ·+ an~vn

and
~v = b1~v1 + b2~v2 + · · ·+ bn~vn

for some choices of scalars a1, a2, . . . , an and b1, b2, . . . , bn. We have that

~u+ ~v = (a1 + b1)~v1 + (a2 + b2)~v2 + · · ·+ (an + bn)~vn ∈ S.
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Also, if r ∈ R, then

r~u = (ra1)~v1 + (ra2)~v2 + · · ·+ (ran)~vn. ∈ S

Thus S is closed under vector addition and scalar multiplication. By the subspace
theorem, S is a subspace of V .

The obvious question to answer is when a given set spans the whole vector space in
which it lives.

Example: Show that{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
spans the vector space M(2, 2).

We have to show that given an arbitrary element A ∈ M(2, 2) we can find scalars
r1, r2, r3, r4 such that

A =

(
a b
c d

)
= r1

(
1 0
0 0

)
+r2

(
0 1
0 0

)
+r3

(
0 0
1 0

)
+r4

(
0 0
0 1

)
=

(
r1 r2
r3 r4

)
.

It is clear that this problem always has the solution r1 = a, r2 = b, r3 = c, r4 =
d.

Example: Show that the vectors {(1,−2, 3), (1, 0, 1), (0, 1,−2)} span R3.

This means that we must show that every vector (x, y, z) can be written as a linear
combination of these three vectors. In other words, there must exist scalars r1, r2, r3
such that  x

y
z

 = r1

 1
−2
3

+ r2

 1
0
1

+ r3

 0
1
−2

 .

This is equivalent to the system with coefficient matrix

A =

 1 1 0
−2 0 1
3 1 −2


always having a solution, no matter what we put on the other side of the equals sign.
Then in RREF, A cannot have a row of zeros, because if it did, then we could choose
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a right-hand side so that the last column of the augmented matrix was not zero, and
then the system would not have a solution. We have 1 1 0

−2 0 1
3 1 −2

 ∼
 1 1 0

0 2 1
0 −2 −2

 ∼
 1 0 −1

2

0 1 1
2

0 0 −1

 ∼
 1 0 0

0 1 0
0 0 1

 .

Since there are no rows of zeros in the RREF of A, we conclude that the given vectors
span R3.

Generally speaking, if we select three random vectors in R3, they will usually span
all of R3, but this is not always the case.

Example: Write the subspace spanned by {(1, 1, 1), (−2, 0, 1), (−1, 3, 5)} in the form
of a plane in R3.

If these vectors span a plane and not all of R3, then it must be true that one of the
vectors can be written as a linear combination of the other two, meaning that one
of the vectors lies in the plane generated by the other two. So if the span is a plane,
there must be scalars r1 and r2 such that

r1

 1
1
1

+ r2

 −2
0
1

 =

 −1
3
5

 ,

which is equivalent to the augmented system 1 −2 −1
1 0 3
1 1 5

 ∼
 1 −2 −1

0 2 4
0 3 6

 ∼
 1 0 3

0 1 2
0 0 0

 .

Since the last vector lies in the plane generated by the first two, we can write the
plane as

{r1~v1 + r2~v2 : r1, r2 ∈ R} ,
where ~v1 = (1, 1, 1) and ~v2 = (−2, 0, 1).

Example: In a vector space V , suppose that ~v and ~w are both linear combinations
of ~x and ~y. Prove that if {~v, ~w} spans V , then {~x, ~y} spans V .

Let ~u ∈ V . We have to show that there exists scalars r1 and r2 such that ~u = r1~x+r2~y.
Since ~v and ~w are linear combinations of ~x and ~y, we can write

~v = a1~x+ a2~y, ~w = b1~x+~b2~y,
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Since {~v, ~w} spans V , we can write

~u = c1~v + c2 ~w.

Therefore,

~u = c1~v + c2 ~w = c1(a1~x+ a2~y) + c2(b1~x+ b2~y) = (c1a1 + c2b1)~x+ (c1a2 + c2b2)~y,

so it must be that r1 = c1a1 + c2b1 and r2 = c1a2 + c− 2b2.

Section 3.3: Linear Independence

If we take the span of two nonparallel vectors in R3, we get a plane. But if we add
another vector that lies in this plane and take the span, we still just get the same
plane. However, if we add a vector not in the plane, the resulting set spans all of R3.
In this section, we want to make precise this idea some vectors add nothing new to
a span, while others do.

Definition 21 A finite set {~v1, ~v2, . . . , ~vn} of vectors in a vector space is linearly
independent if and only if the equation

r1~v1 + r2~v2 + · · ·+ rn~vn = ~0

implies that r1 = r2 = · · · = rn = 0. If it is possible for the equation to hold when
one or more of the coefficients is nonzero, the set is linearly dependent.

As a special case, we say that an empty set of vectors is linearly independent. This
is the case where n = 0, and this assumption will be convenient when we talk about
dimension.

Example: Show that {(1, 1, 0), (1, 0, 1), (0, 1, 1)} is a linearly independent subset of
R3.

To do this, we have to take the equation

r1

 1
1
0

+ r2

 1
0
1

+ r3

 0
1
1

 =

 0
0
0


and determine whether or not the only solution is r1 = r2 = r3 = 0. But this
equation is the same as the homogeneous equation with coefficient matrix 1 1 0

1 0 1
0 1 1

 ∼
 1 1 0

0 −1 1
0 1 1

 ∼
 1 0 1

0 1 −1
0 0 2

 ∼
 1 0 0

0 1 0
0 0 1

 .
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Since there is a leading one in each column, the homogenous system has only the
trivial solution. This implies that the vectors are linearly independent.

Example: Determine if the set of matrixes{(
1 1
1 −1

)
,

(
1 −1
0 0

)
,

(
0 2
1 −1

)}
is linearly independent.

We have to examine the equation

r1

(
1 1
1 −1

)
+ r2

(
1 −1
0 0

)
+ r3

(
0 2
1 −1

)
=

(
0 0
0 0

)
and determine whether it is possible to satisfy this equation without all the coeffi-
cients equal to zero. Equating coefficients, we see that the matrix equation above is
equivalent to a homogeneous system of equations with coefficient matrix

1 1 0
1 −1 2
1 0 1
−1 0 −1

 ∼


1 1 0
0 −2 2
0 −1 1
0 1 −1

 ∼


1 0 1
0 1 −1
0 0 0
0 0 0

 .

The RREF form of the coefficient matrix has columns that do not contain leading
ones, so there are nontrivial solutions. This implies that the matrices are linearly
dependent. In particular, if we take r1 = −1, r2 = 1 and r3 = 1 the linear combina-
tion is the zero matrix. Notice that if we throw out the last matrix, we will have a
linearly independent set. This would be equivalent to removing the last column of
the coefficient matrix.

If we are trying to determine if a set of polynomials is linearly independent, we can
use their coefficients in the same way that we use the components of vectors in Rn.
But when we deal with other functions, we usually have to resort to plugging in
values of the independent variable to get a homogeneous system to solve. If the
system has only the trivial solution, then the functions are linearly independent. If
we can’t find such a system, then it is likely that the functions are linearly dependent,
and we need to look for an identity that allows a linear combination of the functions
to equal zero.

Example: Determine whether the functions defined by sin2 x, cos 2x, and 1 form a
linearly independent set.
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We have to determine if the equation

r1 sin2 x+ r2 cos 2x+ r3 = 0

has nontrivial solutions. If we evaluate this equation at x = 0, x = π/2, and x = π,
we get

r2 + r3 = 0 r1 − r2 + r3 = 0 r2 + r3 = 0.

This homogeneous system has the coefficient matrix 0 1 1
1 −1 1
0 1 1

 ∼
 1 −1 1

0 1 1
0 1 1

 ∼
 1 0 2

0 1 1
0 0 0

 .

Since this equation has trivial solutions, it might be a good indication that the func-
tions are linearly dependent. Therefore, we look for an identity that combines them.
Since cos 2x = 1− 2 sin2 x, we see that the functions are linearly dependent.

Theorem 9 The set {~v1, ~v2, . . . , ~vn} of vectors in a vector space is linearly dependent
if and only if one of the vectors can be written as a linear combination of the other
vectors in the set.

Proof : (⇒) Suppose that the set {~v1, ~v2, . . . , ~vn} is linearly dependent. That means
that there is a nontrivial solution to the equation

r1~v1 + r2~v2 + · · ·+ rn~vn = ~0.

Suppose that rk 6= 0. Then we can write

r1~v1 + r2~v2 + · · ·+ rk−1~vk + rk+1~vk + · · ·+ rn~vn = −rk~vk

⇒ ~vk =
−r1
rk

~v1 +
−r2
rk

~v2 + · · ·+ −rk−1

rk
~vk−1 +

−rk+1

rk
~vk + · · ·+ −rn

rk
~vn

Therefore, we have written one of the vectors as a linear combination of the oth-
ers.

(⇐) Suppose one of the vectors in the set can be written as a linear combination of
the rest of the vectors in the set, say

~vk = r1~v1 + r2~v2 + · · ·+ rk−1~vk−1 + rk+1~vk+1 + · · ·+ rn~vn.

Then we can rearrange this equation as

r1~v1 + r2~v2 + · · ·+ rk−1~vk−1 − ~vk + rk+1~vk+1 + · · ·+ rn~vn = ~0.
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Since not all of the coefficients on the left are zero, we conclude that the set {~v1, ~v2, . . . , ~vn}
is linearly dependent.

In the case when the set in question contains only two vectors, this theorem implies
that the set is linearly dependent if and only if the vectors are scalar multiples of
one another: {(

3
−2

)
,

(
27
−18

)}
is linearly dependent,

but {(
4
−1

)
,

(
8
−3

)}
is linearly independent.

When there are three or more vectors, things are a little more difficult. The set{(
1
0

)
,

(
0
1

)
,

(
1
1

)}
is linearly dependent, even though none of the vectors is a multiple of the others. In
this case the third vector is the sum of the first two.

Section 3.4: Basis

Now that we have defined spanning sets and linear independence, we are able to
define a basis.

Definition 22 A finite subset {~v1, ~v2, . . . , ~vn} of a vector space V is a basis for V if
and only if the set is linearly independent and spans all of V .

One way to interpret this definition is to say that a basis is a smallest spanning set
for a vector space. If we take a basis for V and add any other vector to the basis,
the result is a linearly dependent set, because the vector that we added was already
in the span of the basis.

Definition 23 A vector space V has dimension n if and only if there is a basis for
V containing exactly n vectors. In this situation, we say that V is n-dimensional
and write

dim(V ) = n.

Example: Show that {x+ 1, x− 1} is a basis for P1.

First, let us show that this set spans P1. To do this, we show that an arbitrary
element of P1, say ax+ b can be written as a linear combination of x+ 1 and x− 1.
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In other words, there must exist scalars r1 and r2 such that

r1(x+ 1) + r2(x− 1) = ax+ b. ⇒ (r1 + r2)x+ (r1 − r2) = ax+ b.

Since these two polynomials are equal, their coefficients are equal. This gives rise to
a system of equations with augmented matrix(

1 1 a
1 −1 b

)
∼
(

1 1 a
0 −2 b− a

)
∼
(

1 0 a− a−b
2

0 1 a−b
2

)
.

Notice that this system of equations always has a solution, since there are leading
ones in all of the rows of the RREF. Thus the set spans all of P1. We must also show
that the set is linearly independent. But we have already done this, since of we let
a = b = 0 above, this shows that the only solution to the equation

r1(x+ 1) + r2(x− 1) = 0

is r1 = r2 = 0. Therefore {x + 1, x − 1} is a basis for P1. This also shows that the
dimension of P1 is 2.

Even though we have been saying it for a while, we can finally show that Rn has
dimension n. We need only find a basis for Rn that has n vectors in it. This is
easy to do, since as we have seen before, the vectors {~e1, ~e2, . . . , ~en}, where ~ej is a
vector with a 1 in the jth position and zeros elsewhere span Rn and are linearly
independent.

Another easy example is to show that the set {1, x, x2, . . . , xn} is a basis for Pn.
Obviously, every polynomial of degree n or less is a linear combination of these
functions. And the functions are linearly independent since the only way to have a
linear combination of them equal to zero (the zero function) is for the coefficients to
be zero (by the fundamental theorem of algebra).

Definition 24 A vector space is finite-dimensional if and only if it contains a finite
basis. Otherwise, the vector space is infinite-dimensional.

Example: Show that {(1, 2, 3), (0, 1, 2), (0, 0, 1), } is a basis for R3.

We can show this by examining the matrix that has these vectors as columns. We
have that  1 0 0

2 1 0
3 2 1

 ∼
 1 0 0

0 1 0
0 2 1

 ∼
 1 0 0

0 1 0
0 0 1

 .
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Since the RREF of this matrix has a leading one in each row, any system that has
this coefficient matrix will be consistent. This implies that the given vectors span R3.
Also, they are linearly independent, since any system with this coefficient matrix will
have a unique solution, since the RREF has a leading one in each column. Therefore,
we have a basis for R3.

Section 3.5 Dimension

If you were paying very close attention in the last section, you noticed that we said
that the dimension of a vector space was the number of vectors in a basis for the
space. But conceivably there could be bases that have different numbers of vectors.
The following theorem shows that this is not possible.

Theorem 10 Suppose V is a vector space. If {~w1, ~w2, . . . , ~wn} spans V and {~v1, ~v2, . . . , ~vm}
is a linearly independent subset of V , then n ≥ m.

Proof : Let’s assume that the conclusion of the theorem is false and try to derive a
contradiction. So we assume that n < m. Since the ~w vectors span V , we can write
each one of the ~v vectors as a linear combination of the ~w’s, say

a11 ~w1 + a12 ~w2 + · · ·+ a1n ~wn = ~v1

a21 ~w1 + a22 ~w2 + · · ·+ a2n ~wn = ~v2
...

am1 ~w1 + am2 ~w2 + · · ·+ amn ~wn = ~vm

.

The system of equations

a11c1 + a21c2 + · · ·+ am1cm = 0
a12c1 + a22c2 + · · ·+ am2cm = 0

...
a1nc1 + a2nc2 + · · ·+ amncm = 0

will have nontrivial solutions because it is homogeneous with more columns than
rows. Suppose we have such a nontrivial solution c1, c2, . . . , cm. Then we have
that

c1~v1 + c2~v2 + · · ·+ cn~vn

= c1(a11 ~w1 + a12 ~w2 + · · ·+ a1n ~wn)

+c2(a21 ~w1 + a22 ~w2 + · · ·+ a2n ~wn) + · · ·

+cm(am1 ~w1 + am2 ~w2 + · · ·+ amn ~wn)
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= (c1a11 + c2a21 + · · ·+ cmam1)~w1

+(c1a12 + c2a22 + · · ·+ cmam2)~w2 + · · ·

+(c1a1n + c2a2n + · · ·+ cmamn)~wn

= 0~w1 + 0~w2 + · · ·+ 0~wn = ~0.

This means that we have found a nontrivial linear combination of ~v1, ~v2, . . . , ~vn that
is zero. This contradicts the assumption that the ~vs are linearly independent, so it
must be that the assumption n < m is false.

This theorem was the first step in proving that the number of vectors in a basis is
unique. Here is part two:

Theorem 11 If {~v1, ~v2, . . . , ~vm} and {~w1, ~w2, . . . , ~wn} are bases for a vector space
V , then m = n.

Proof : Since the ~vs span V and the ~ws are linearly independent, it must be that
n ≤ m. Also, since the ~ws span V and the ~vs are linearly independent, we have
m ≤ n. Therefore m = n.

As we have mentioned before, a basis is a smallest possible spanning set. The next
theorem tells us how we can take a spanning set an whittle it down to a basis.

Theorem 12 Supose {~v1, ~v2, . . . , ~vn} spans a vector space V . Then some subset of
{~v1, ~v2, . . . , ~vn} is a basis for V .

Proof : If {~v1, ~v2, . . . , ~vn} is already linearly independent, then we are done. If not,
then there is a vector, say ~vi such that

~vi = r1~v1 + r2~v2 + · · ·+ ri−1~vi−1 + ri+1~vi+1 + · · ·+ rn~vn.

Now we need to show that the subset {~v1, ~v2, . . . , ~vi−1, ~vi+1, . . . , ~vn} still spans V .
This is true since if we take any ~v ∈ V , we can write it as

~v = a1~v1 + a2~v2 + · · ·+ an~vn.

We use the expansion of ~vi in terms of the rest of the vectors to write

~v = a1~v1 + a2~v2 + · · ·+ ai−1~vi−1

+ai(r1~v1 + r2~v2 + · · ·+ ri−1~vi−1 + ri+1~vi+1 + · · ·+ rn~vn) + ai+1~vi+1 + · · ·+ an~vn.

= (a1 + air1)~v1 + · · ·+ (ai−1 + airi−1)~vi−1 + (ai+1 + airi+1)~vi+1 + · · ·+ (an + airn)~vn
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So we can throw out ~vi and still have a spanning set. If the remaining vectors
are linearly independent, then we are done. If not, we can repeat this process to
remove another vector. Eventually we will arrive at a linearly independent set, even
if we have to go all the way to the empty set, which is linearly independent by
convention.

Example: An easy corollary of this result is that a vector space is finite dimensional
if and only if it has a finite spanning set. This is easily seen, since if we start with a
finite spanning set, the theorem above implies that we can reduce it to a basis, which
obviously has a finite number of vectors. On the other hand, if we know the vector
space is finite dimensional, then it has a basis with a finite number of elements, which
is itself a spanning set.

Notice that the proof of the theorem above did more than just prove the theorem, it
actually provided an algorithm for constructing a basis from a spanning set.

Example: Let S = span{(1, 2,−1), (3, 1, 2), (2,−1, 3), (1,−3, 4)}. Find a subset of
this set that is a basis for S.

In the proof of the theorem, we started with a spanning set, and we found vectors
in the spanning set that could be written as a linear combination of the remaining
vectors. Then we removed these vectors. To see how this can be done for our current
example, let’s form the matrix that has the given vectors as columns and row reduce
it:  1 3 2 1

2 1 −1 −3
−1 2 3 4

 ∼
 1 3 2 1

0 −5 −5 −5
0 5 5 5

 ∼
 1 0 −1 −2

0 1 1 1
0 0 0 0

 .

For a moment, ignore the last column and imagine that there is a line before the
third column. Then this is telling us how we can write the third vector as a linear
combination of the first two. If we ignore the third column, then it tells us how
the last vector can be written as a linear combination of the first two. Therefore,
we throw out the last two vectors to get a linearly independent set that still spans
S.

The previous theorem tells us how to take a spanning set and reduce it to a basis.
The next lemma and theorem tell us how to start with a linearly independent subset
of a vector space and expand it to a basis.

Lemma 1 Suppose {~v1, ~v2, . . . , ~vn} is a linearly independent subset of a vector space
V . Consider a vector ~vn+1 ∈ V . If ~vn+1 6∈ span{~v1, ~v2, . . . , ~vn}, then {~v1, ~v2, . . . , ~vn, ~vn+1}
is linearly independent.
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Proof : To determine if the set {~v1, ~v2, . . . , ~vn+1} is linearly independent, we must
consider the equation

r1~v1 + r2~v2 + · · ·+ rn+1~vn+1 = ~0

and decide whether it has a nontrivial solution. If rn+1 6= 0, we can solve for ~vn+1

in the equation above, which would imply that the set {~v1, ~v2, . . . , ~vn+1} is linearly
dependent. If rn+1 = 0, then we end up with the equation

r1~v1 + r2~v2 + · · ·+ rn~vn = ~0,

and since the set {~v1, ~v2, . . . , ~vn} is linearly independent, this implies that r1 = r2 =
· · · = rn = 0. Thus, all of the coefficients must be zero, which implies that the set is
linearly independent.

Theorem 13 Suppose {~v1, ~v2, . . . , ~vm} is a linearly independent subset of a finite-
dimensional vector space V . Then we can adjoin vectors ~vm+1, . . . , ~vm+k so that
{~v1, . . . , ~vm, ~vm+1, . . . , ~vm+k} is a basis for V .

Proof : If the set {~v1, . . . , ~vm} spans V , then we are done. If not, then there
is some vector ~vm+1 ∈ V that is not in span{~v1, . . . , ~vm}. By the lemma, the set
{~v1, . . . , ~vm+1} is linearly independent. If this set does not span all of V , then we
repeat the same process again. Eventually the process will terminate because V is
finite dimensional.

Example: Find a basis for R4 that contains the vectors ~v1 = (1, 1, 1, 1) and ~v2 =
(0, 0, 1, 1).

A simple way to approach this problem is to use the vectors from the standard
basis ~e1, ~e2, ~e3, ~e4 to fill out the basis. We have two vectors for our basis, and since
dim(R4) = 4, we need two more. Consider the matrix

1 0 1 0 0
1 0 0 1 0
1 1 0 0 1
1 1 0 0 0

 ∼


1 0 1 0 0
0 0 −1 1 0
0 1 −1 0 1
0 1 −1 0 0

 ∼


1 0 1 0 0
0 1 −1 0 1
0 0 −1 1 0
0 1 −1 0 0



∼


1 0 1 0 0
0 1 −1 0 1
0 0 −1 1 0
0 0 0 0 −1

 ∼


1 0 0 1 0
0 1 0 −1 1
0 0 1 −1 0
0 0 0 0 1

 .
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When we have a basis, the matrix that is formed using the basis vectors as columns
row reduces to one that has a leading one in each column. In the matrix above, the
fourth column, which corresponds to ~e2 doesn’t have a leading one, so we throw ~e2
out. There is no way to tell which of the vectors ~ej we have to add so that we get a
basis until we do the row reduction, so it is a good idea to add several to the matrix
before we row reduce.

The desired basis is {~v1, ~v2, ~e1, ~e3}.

Theorem 14 A subspace S of a finite-dimensional vector space V is finite dimen-
sional, and dim(S) ≤ dim(V ).

Theorem 15 Suppose V is an n-dimensional vector space. If {~v1, . . . , ~vn} spans V ,
then it is also linearly independent. If {~v1, . . . , ~vn} is linearly independent, then it
spans V .

Section 3.6: Coordinates

Consider the sets

E =

{(
1
0

)
,

(
0
1

)}
and B =

{(
2
1

)
,

(
1
−1

)}
.

These are both bases for R2, and therefore we can express any vector in R2 as a
linear combination of either basis. For example(

6
9

)
= 6

(
1
0

)
+ 9

(
0
1

)
and (

6
9

)
= 5

(
2
1

)
− 4

(
1
−1

)
.

In the first basis, the coefficients are just the entries of the vector. In the second
basis, it is not as easy to see what the coefficients should be.

In this section, for the definition that follows, it is important that the vectors in a
basis be given a certain order.

Definition 25 Let B = {~u1, . . . , ~un} be an ordered basis for a vector space V . For
any ~v ∈ V , write ~v = r1~u1 + · · · + rn~un. The coordinate vector for ~v with respect to
B is the element of Rn denoted [~v]B and defined by

[~v]B =

 r1
...
rn

 .
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If we change the order in which the vectors in the basis are listed, we get a different
coordinate vector.

In our previous example, we have(
6
9

)
E

=

(
6
9

)
and

(
6
9

)
B

=

(
5
−4

)
.

In order to find the coordinates of a vector with respect to a basis, we have to solve
a system of equations. To find a vector given the coordinates and a basis is much
easier. For example, if (

x
y

)
B

=

(
8
3

)
,

then (
x
y

)
= 8

(
2
1

)
+ 3

(
1
−1

)
=

(
19
5

)
.

Theorem 16 Suppose B = {~u1, . . . , ~un} is an ordered basis for a vector space V . For
any ~v ∈ V , there is a unique list of scalars r1, . . . , rn such that ~v = r1~u1 + · · ·+ rn~un.

Proof : Since B is a basis, it spans V , so we can write ~v = r1~u1 + · · ·+ rn~un. This
shows that coordinates with respect to B exist. Suppose there is another expansion
of ~v with respect to B, say

~v = s1~u1 + · · ·+ sn~un.

Then
~0 = ~v − ~v = (r1 − s1)~u1 + · · ·+ (rn − sn)~un.

Because B is linearly independent, we know that r1 − s1 = · · · = rn − sn = 0, so the
expansions are the same and the coordinate vector is unique.

Example: Find the coordinate vector 3
−8
7


B

with respect to the basis

B =


 1

0
0

 ,

 1
1
0

 ,

 1
1
1

 .
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If B = {~u1, ~u2, ~u3}, then we are seeking scalars r1, r2, r3 such that 3
−8
7

 = r1~u1 + r2~u2 + r3~u3.

As an augmented matrix, this is 1 1 1 3
0 1 1 −8
0 0 1 7

 ∼
 1 0 0 11

0 1 1 −8
0 0 1 7

 ∼
 1 0 0 11

0 1 0 −15
0 0 1 7

 .

This implies that  3
−8
7


B

=

 11
−15

7

 .

Example: Find the coordinate vector for x2 − x+ 4 with respect to the basis

B = {x2 + 1, 2x2 + x− 1, x2 + x}

for P2.

We seek scalars r1, r2, r3 such that

r1(x
2 + 1) + r2(2x

2 + x− 1) + r3(x
2 + x) = x2 − x+ 4.

Gathering like terms, we find

(r1 + 2r2 + r3)x
2 + (r2 + r3)x+ (r1 − r2) = x2 − x+ 4.

Upon equating the coefficients, we arrive at the system of equations

r1 +2r2 +r3 = 1
r2 r3 = −1

r1 −r2 = 4
.

As an augmented system, this is 1 2 1 1
0 1 1 −1
1 −1 0 4

 ∼
 1 2 1 1

0 1 1 −1
0 −3 −1 3

 ∼
 1 0 −1 3

0 1 1 −1
0 0 2 0
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∼

 1 0 0 3
0 1 0 −1
0 0 1 0

 .

Therefore,

[x2 − x+ 4]B =

 3
−1
0

 .

Example: Write the coordinates of sinh with respect to the basisB = {ex, e−x}.

Since sinh(x) = (ex − e−x)/2, we have that

[sinhx]B =

(
1
2

−1
2

)
.

Chapter 5: Matrices

Section 5.1: Matrix Algebra

How should we multiply matrices together?

We could multiply them together element-wise, just like we add them. But it ends
up that if we use a different (and unfortunately more complicated) definition, matrix
multiplication becomes a very useful modeling tool.

Example: A trucking company has the following tables which show the number of
routes between different citites:

Jackson Battle Creek
Albion 3 2
Homer 2 0
Parma 1 1

Chicago Detroit Indianapolis Cleveland
Jackson 2 1 1 3
Battle Creek 4 2 1 1

The number of ways to ship from Albion to Chicago is 3 · 2 + 2 · 4 = 14. The number
of ways to ship from Homer to Chicago is 2 · 2 + 0 · 4 = 4. By the same reasoning, we
can find the number of ways to get from any of the small cities to any of the large
cities.
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Chicago Detroit Indianapolis Cleveland
Albion 14 7 5 11
Homer 4 2 2 6
Parma 6 3 2 4

Before we re-formulate this in terms of matrices, let’s recall a definition that you
might have seen in multivariable calculus:

Definition 26 Given two vectors ~x and ~y from Rn, their dot product is defined by

~x · ~y =
n∑
k=1

xkyk = x1y1 + x2y2 + · · ·+ xnyn.

The matrix representation of the tables are

A =

 3 2
2 0
1 1

 , B =

(
2 1 1 3
4 2 1 1

)
, and C =

 14 7 5 11
4 2 2 6
6 3 2 4

 .

Notice that to get the i, j entry of C, we take the dot product of the ith row of A
with the jth column of B.

Definition 27 The matrix product of an m×n matrix A = [aij] with an n×p matrix
B = [bjk] is the m× p matrix, denoted AB, whose ik entry is the dot product

n∑
j=1

aijbjk

of the ith row of A with the kth column of B.

Notice: The matrix product is only defined when the inner dimensions of the matrices
agree. If we multiply an m× n matrix with an n× p matrix, the result is m× p–it
inherits its number of rows from the first matrix and its number of columns from the
second matrix.

Example: 
3 −1 1
0 2 4
5 1 −1
−2 0 0


 2 1

0 1
1 1

 =


7 3
4 6
9 5
−4 −2

 .
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(
2 0 1
1 1 1

)(
3 −1
0 2

)
= undefined.

Notice that we are able to compute the matrix product column by column. Suppose
that A is n×m and B is m× p, and the columns of B are the vectors ~b1,~b2, . . . ,~bp.
Then

AB = A
(
~b1 ~b2 · · · ~bp

)
=
(
A~b1 A~b2 · · · A~bp

)
.

Each of the matrix-vector products are defined since A is n×n and the columns are
m× 1.

Example: Compute the second row and the third column of the product 7 1 2
3 −2 1
−1 2 0

 4 2 −1
2 5 2
3 1 3

 .

The second row of the product is (3 − 2 1) ·

 4
2
3

 (3 − 2 1) ·

 2
5
1

 (3 − 2 1) ·

 −1
2
3

 = (11 − 3 − 4),

and the third column is 7 1 2
3 −2 1
−1 2 0

 −1
2
3

 =

 1
−4
5

 .

We can use the definition of matrix multiplication to write systems of linear equations
as matrix equations. If A = [aij] is the coefficient matrix and ~x is the vector of
unknowns for a system of linear equations, then

A~x =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
am1 am2 · · · amn




x1

x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


Therefore, if the right-hand sides of the equations are b1, b2, . . . , bn, we can write our
system of equations as

A~x = ~b.
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Notice that usually when the product AB is defined, the product BA is not. The
only time when both products is defined is when A is m × n and B is n × m. A
special case is when the number of rows and columns is equal.

Definition 28 A square matrix is a matrix in which the number of rows equals the
number of columns.

When we defined vector spaces, one of the important properties was that there be an
additive identity (zero vector), which had the property that whenever it was added
to another vector, the result was the other vector. For matrix multiplication, we
have a multiplicative identity that has a similar property.

Definition 29 For any positive integer n, the n× n identity matrix is the matrix

In =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 ,

whose entries are ones along the diagonal running from upper left to lower right and
zeros elsewhere. If the size of the matrix is understood, such a matrix is denoted
simply by I.

Theorem 17 Suppose A,A′ ∈ M(m,n), B,B′ ∈ M(n, p), C ∈ M(p, q), and r ∈ R.
Then
(a) (AB)C = A(BC) (associative)
(b) (A+ A′)B = AB + A′B (right distributive law)
(c) A(B +B′) = AB + AB′ (left distributive law)
(d) (rA)B = r(AB) = A(rB) (associativity of scalar/matrix multiplication)
(e) AIn − A = ImA (multiplicative identity)

Proof : (of (b)) Using the compact matrix notation introduced before, we have

(A+A′)B = ([aij]+[a′ij])[bjk] = [aij+a
′
ij][bjk] =

[
n∑
j=1

(aij + a′ij)bjk

]
=

[
n∑
j=1

(aijbjk + a′ijbjk)

]

=

[
n∑
j=1

aijbjk +
n∑
j=1

a′ijbjk

]
=

[
n∑
j=1

aijbjk

]
+

[
n∑
j=1

a′ijbjk

]
= [aij][bjk]+[a′ij][bjk] = AB+A′B.
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Notice that there is no commutative law for matrix multiplication. For exam-
ple, (

1 0
0 0

)(
0 1
0 0

)
=

(
0 1
0 0

)
but

(
0 1
0 0

)(
1 0
0 0

)
=

(
0 0
0 0

)
.

From this example we also see that in matrix multiplication it is possible to multiply
together two nonzero matrices to get the zero matrix.

When it is possible to switch the order in matrix multiplication and still get the same
matrix as a result, we say that the two matrices commute. One easy example of this
is when taking powers of a matrix:

A0 = I, A1 = A, A2 = AA, A3 = AAA, etc.

Then AmAn = AnAm = An+m.

Theorem 18 Suppose that A is an m× n matrix and B is a n× q matrix. Let A′

be the result of applying an elementary row operation to A. Then A′B is the result
of applying the same elementary row operation to AB.

Proof : (for a row interchange) The rows of A and A′ are the same, they are just
in a different order. Therefore, the rows of AB and A′B are the rows of A′B are
rearranged in the same manner as those in A′.

Section 5.2: Inverses

As we saw in the last section, a system of linear equations can be written in the
form

A~x = ~b.

If A, ~x, and ~b were real numbers and not matrices/vectors, then we would solve
this equation by dividing both sides of the equation by A, or equivalently, we would
multiply both sides by the multiplicative inverse of A:

A~x = ~b ⇒ A−1A~x = A−1~b ⇒ ~x = A−1~b.

Definition 30 Let A ∈ M(m,n). The matrix B ∈ M(n,m) is a multiplicative
inverse of A if and only if AB = Im and BA = In. If the first equation holds, we say
that B is a right inverse of A. If the second holds, we say that B is a left inverse of
A. If A has an inverse, we say that A is invertible or nonsingular.
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Example:(
3 −5
−1 2

)(
2 5
1 3

)
=

(
1 0
0 1

)
,

(
2 5
1 3

)(
3 −5
−1 2

)
=

(
1 0
0 1

)
.

Thus, the inverse of (
3 −5
−1 2

)
is

(
2 5
1 3

)
and vice-versa.

Theorem 19 An invertible matrix has a unique inverse.

Proof : Suppose that A has two inverses, B, and C. Then

B = BI = BAC = IC = C.

Theorem 20 If a matrix A is invertible, then A−1 is also invertible. In this case,
(A−1)−1 = A.

Proof : Since A−1 is the inverse of A, we have that AA−1 = I and A−1A = I. But
these are exactly the conditions necessary for A to be the inverse of A−1.

Theorem 21 Suppose A,B ∈ M(n, n). If A and B are invertible, then so is AB,
and (AB)−1 = B−1A−1.

Proof : We have that

ABB−1A−1 = AIA−1 = AA−1 = I and B−1A−1AB = B−1IB = B−1B = I,

so (AB)−1 = B−1A−1.

So far we have defined the inverse of a matrix, but we haven’t said anything about
how to find it. For simplicity of notation, let’s write C = A−1. Then we want to
find C such that AC = I. By our previous remarks about matrix multiplication, we
have that

AC = A(~c1 ~c2 · · ·~cn) = (A~c1 A~c2 · · · A~cn).

So if AC = I, then the columns of C satisfy

A~c1 = ~e1, A~c2 = ~e2, . . . , A~cn = ~en.

This means that we can find the columns of C by solving these n systems of lin-
ear equations. Since each of the systems has the same coefficient matrix, we can
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solve them all at the same time by row reducing the augmented matrix (A|I) ∼
(I|A−1).

Example: Find the inverse of

A =

 1 1 1
−1 3 2
2 1 1

 .

 1 1 1 1 0 0
−1 3 2 0 1 0
2 1 1 0 0 1

 ∼
 1 1 1 1 0 0

0 4 3 1 1 0
0 −1 −1 −2 0 1

 ∼
 1 0 0 −1 0 1

0 1 1 2 0 −1
0 0 −1 −7 1 4


∼

 1 0 0 −1 0 1
0 1 0 −5 1 3
0 0 1 7 −1 −4

 ⇒ A−1 =

 −1 0 1
−5 1 3
7 −1 −4


Definition 31 The rank of a matrix A, denoted rank(A), is the number of leading
ones in the reduced row-echelon form of the matrix.

Example: Find the ranks of the m× n zero matrix, In, and

A =


1 3 1 1 −2
2 6 2 5 1
0 0 0 3 2
−3 −9 −3 1 4

 .

The zero matrix and In are already in RREF, so it is clear that rank(0) = 0 and
rank(In) = n. For A, we have

A =


1 3 1 1 −2
2 6 2 5 1
0 0 0 3 2
−3 −9 −3 1 4

 ∼


1 3 1 1 −2
0 0 0 3 5
0 0 0 3 2
0 0 0 4 −2

 ∼


1 3 1 0 −1
6

0 0 0 1 5
3

0 0 0 0 −3
0 0 0 0 −26

3

 .

At this point it is clear thatA will have three columns with leading ones, so rank(A) =
3.

Suppose that A ∈M(m,n) has rank r. Let S be the solution set to the homogeneous
system of equations A~x = ~0. Then S is a subspace of Rn, since it is nonempty
(~0 ∈ S), closed under vector addition:

~x, ~y ∈ S ⇒ A(~x+ ~y) = A~x+ A~y = ~0 +~0 = ~0,
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and closed under scalar multiplication:

r ∈ R ⇒ A(r~x) = rA~x = r~0 = ~0.

We can find a basis for this subspace easily. We just solve the homogeneous system
by row reduction and determine which are the free variables. Then we write the
solution as a linear combination using the free variables as coefficients. The vectors
in the linear combination are a basis for S. Obviously they span S, and they are
also linearly independent (to see this, look at the last rows of the matrix formed by
using these vectors as columns).

We get a basis element for S for each column of the RREF of A that doesn’t have a
leading one, and each column that does have a leading one contributes to the rank.
Therefore,

dim(S) + rank(A) = n.

Theorem 22 An n× n matrix A has a right inverse C if and only if rank(A) = n.
In this case the right inverse is unique.

Proof : (⇐) Suppose rank(A) = n. Then A ∼ In, and using the same sequence of
elementary row operations, we have (A|I) ∼ (I|C) for some n × n matrix C. Let
C = (~c1 ~c2 · · · ~cn). Then

AC = A(~c1 ~c2 · · · ~cn) = (A~c1 A~c2 · · · A~cn) = (~e1 ~e2 · · · ~en) = I.

(⇒) Suppose that rank(A) 6= n. Then we need to show that there is no C such
that AC = I. Since rank(A) < n, the RREF of A must have rows of zeros. If we
row-reduce the augmented matrix (A|I), the result will be a matrix that has some
rows that start with n zeros. But there are no rows that are all zeros, for otherwise
we would have rank(I) < n. But this implies that some systems A~x = ~ej have no
solution, so there can be no matrix C such that AC = I.

Theorem 23 An n× n matrix A has an inverse C if and only if rank(A) = n.

Proof : (⇐) Suppose rank(A) = n. Then, as proved in the last theorem, (A|I) ∼
(I|C). Reversing the sequence of elementary row operations, we find that (C|I) ∼
(I|A), which implies that CA = I, and therefore C is the inverse of A.

(⇐) Suppose A has inverse C. Then, in particular, C is a right inverse of A, so
rank(A) = n by the previous theorem.

Theorem 24 If A and C are n× n matrices with AC = I, then CA = I.
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Proof : If AC = I, then A has a right inverse, and therefore its rank is n. Since
rank(A) = n, A has a two-sided inverse, which is a right inverse in particular, and
the right inverse is unique, so it must be C. Therefore, C is a two-sided inverse for
A.

Before moving on, let’s take a closer look at matrix/vector multiplication. If A ∈
M(m,n), then the product A~x is defined for any vector ~x ∈ Rn. Consider the
set

R(A) = {~y : ~y = A~x for ~x ∈ Rn}.

This is the range of the matrix A. Since A~0 = ~0, we see that~0 ∈ R(A). If ~x, ~y ∈ R(A),
then there are vectors ~u and ~v such that ~x = A~u and ~y = A~v. Then A(~u + ~v) =
A~u+A~v = ~x+ ~y, which implies that R(A) is closed under vector addition. If r ∈ R,
then A(r~u) = rA~u = r~x, so R(A) is also closed under scalar multiplication. Therefore
R(A) is a subspace of Rm. Since it is a subspace, it has a basis. As we discussed
previously in the chapter, one way to find a basis is to start with a spanning set
and throw out unnecessary vectors until we have a basis. Notice that if we write
A = (~a1 ~a2 · · · ~an) and given a vector ~x ∈ Rn, we have

A~x =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 =


a11x1

a21x1
...

am1x1

+


a12x2

a22x2
...

am2x2

+· · ·+


a1nxn
a2nxn

...
amnxn


= x1~a1 + x2~a2 + · · ·+ xn~an.

This shows that whenever we form the matrix product A~x, we are actually taking
a linear combination of the columns of A using the entries of ~x as the coefficients.
This means that R(A) can also be thought of as the span of the columns of A. If we
need to find a basis for R(A), then we can do so by reducing the spanning set (the
columns of A) to a linearly independent set that still spans R(A). As seen before, we
accomplish this by row reducing A and finding out which columns have leading ones
in RREF. We then use the corresponding columns from A as our basis for R(A)

Section 5.3 Markov Chains

Example: A simple migration problem: Suppose the population of a closed society
is composed of a rural segment (initially 60%) and an urban segment (initially 40%).
Suppose that each year 2/10 of the people on farms move to cities, with the remaining
8/10 staying on farms, and 1/10 of the people in cities move to farms, with the
remaining 9/10 staying in cities.
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As a table:
From farm From city

To farm 8/10 1/10
To city 2/10 9/10

As a matrix:

P =

(
.8 .1
.2 .9

)
.

The initial distribution of the population is given by the vector

~v0 =

(
.6
.4

)
.

The population distribution after one year is

~v1 = P~v0 =

(
.8 .1
.2 .9

)(
.6
.4

)
=

(
.52
.48

)
.

Similarly,

~v2 = P~v1 =

(
.8 .1
.2 .9

)(
.52
.48

)
=

(
.464
.536

)
.

On the other hand, we can write

~v2 = P~v1 = PP~v0 = P 2~v0,

and in general, we have

~vn = P~vn−1 = P 2~vn−2 = · · · = P n~v0.

See the text for a table that shows the evolution of the population distribution.
Eventually it approaches the distribution of 2/3 urban, 1/3 rural.

In the example, we can think of the percentages as probabilities that a randomly
chosen individual lives in a rural or urban area.

Definition 32 A Markov chain consists of
1. A list of a finite number r of states,
2. A transition matrix P = [pij] ∈M(r, r), and
3. An initial distribution vector ~v0 ∈ Rr.
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In our example, r = 2 with the states being rural and urban,

P =

(
.8 .1
.2 .9

)
and ~v0 =

(
.6
.4

)
.

Example: A community access television station has four sponsors: a clothing store,
a hardware store, and two grocery stores. The station starts the day with an ad for
one of the grocery stores (chosen by the flip of a coin). At the end of each program
it runs an add for one of the sponsors. Although the station never runs an and for
the same type of store twice in a row, all other sequences of ads are equally likely.
Set up a Markov chain to model this situation.

The states are the adds for the different types of stores. Let’s call them C, H, G1

and G2. The transition matrix is

P =


0 1

3
1
2

1
2

1
3

0 1
2

1
2

1
3

1
3

0 0
1
3

1
3

0 0

 and ~v0 =


0
0
1
2
1
2

 .

Each of the entries of the transition matrix is a probability, so 0 ≤ pij ≤ 1. The jth
column contains the probabilities for all possible states of the system, so

r∑
i=1

pij = 1, j = 1, . . . , r.

Also, the entries of the initial distribution vector must add up to 1.

Theorem 25 Suppose a Markov chain with r states has transition matrix P and
initial distribution vector ~v0. The probability of moving from the jth state to the ith
state in n steps is the ij-entry of P n. The probability taht the system is in the ith
state after n steps is the ith entry of the probability distribution vector P n~v0.

An equilibrium of a Markov chain is a vector whose entries specify a probability
distribution that will not change as the system evolves. If ~s is an equilibrium, then
P~s = ~s. Given our experience with the demographic model, it seems reasonable to
expect that the distribution vectors might approach an equilibrium, that is ~vn = P~v0

converges to ~s for any initial distribution vector ~v0. In particular, this holds true for
the standard basis vectors ~ej and the columns of P .

In order to be sure that a Markov chain converges to an equilibrium, there is one
condition.
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Definition 33 A Markov chain is regular if and only if some power of the transition
matrix has only positive entries.

This means that after n steps, it is possible to enter any state from any starting
state.

Theorem 26 Suppose P is the transition matrix for a regular Markov chain. Then
there is a unique vector ~s whose components add up to 1 and that satisfies P~s = ~s.
The entries of the columns of P n converge to the corresponding entries of s as n
increases to infinity.

We can find the equilibrium by solving the system of equations P~s = ~s.

Example: In the demographic model developed in this section, determine the equi-
librium vector and the limiting matrix for P n as n increases to infinity.

The system of equations P~s = ~s is equivalent to the system with augmented ma-
trix (

.8− 1 .1
.2 .9− 1

)
=

(
−.2 .1
.2 −.1

)
∼
(
−2 1
2 −1

)
∼
(

1 −1
2

0 0

)
.

This implies that s1 = 1
2
s2. We also have the constraint that s1 + s2 = 1. Therefore,

we end up with s1 = 1
2
(1−s1) ⇒ s1 = 1

3
and s2 = 2

3
. This implies that P n converges

to (
1
3

1
3

1
3

1
3

)
.

Chapter 6: Linearity

We have defined many different vector spaces, and we have made particular use of
the vector spaces Rn. In this chapter we will talk about functions that relate different
vector spaces while still preserving the vector space properties and operations that
are important.

Section 6.1 Linear Functions

Definition 34 A function T : V → W from a vector space V to a vector space W
is linear if and only if for all ~v, ~w ∈ V and r ∈ R, we have

T (~v + ~w) = T (~v) + T (~w) and T (r~v) = rT (~v).

These two conditions are known as additivity and homogeneity. The domain and
range of a linear function are assumed to be vector spaces, although this is not
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always made explicit. Other names for a linear function are linear map and linear
transformation. A linear function whose domain and range are the same is sometimes
called a linear operator.

The ultimate example of a linear function is a matrix acting on column vectors.
Let

A =

(
3 0 1
0 1 −1

)
.

We define a mapping by T : R3 → R2 by T (~v) = Av, then

T

 v1

v2

v3

 =

(
3 0 1
0 1 −1

) v1

v2

v3

 =

(
3v1 + v3

v2 − v3

)
.

We have actually already shown that matrix multiplication is linear in Chapter 5. If
A ∈M(m,n), ~u,~v ∈ Rn, and r ∈ R, then

A(~u+ ~v) = A~u+ A~v

and
A(r~u) = rA~u.

Another example of a linear transformation that we have seen before is the mapping
from a vector to its coordinate vector with respect to an ordered basis. Let B =
{~u1, ~u2, . . . , ~un} be an ordered basis for a vector space V . Then if we define C(~v) =
[~v]B. Then if ~v, ~u ∈ V , we can write

~v = r1~u1 + r2~u2 + · · ·+ rn~un and ~u = c1~u1 + c2~u2 + · · ·+ cn~un.

⇒ [~v]B =


r1
r2
...
rn

 , [~u]B =


c1
c2
...
cn

 .

Therefore
~v + ~u = (r1 + c1)~u1 + (r2 + c2)~u2 + · · ·+ (rn + cn)~un,

which implies that

[~v + ~u]B =


r1 + c1
r2 + c2

...
rn + cn

 =


r1
r2
...
rn

+


c1
c2
...
cn

 = [~v]B + [~u]B
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Also if c ∈ R, then

c~v = cr1~u1 + cr2~u2 + · · ·+ crn~un ⇒ [c~v]B =


cr1
cr2
...
crn

 = c


r1
r2
...
rn

 = c[~v]B.

Also, the inverse of this process is a linear operation. If we define a mapping L :
Rn → v by

L




r1
r2
...
rn


 = r1~u1 + r2~u2 + · · ·+ rn~un,

Then L is linear. In fact, we can write

L(~r) = r1~u1 + r2~u2 + · · ·+ rn~un = (~u1 ~u2 · · · ~un)~r = U~r,

where U is the matrix whose columns are the vectors ~u1, ~u2, . . . , ~un. Since this oper-
ation is just matrix/vector multiplication, it is linear.

Theorem 27 Suppose T : V → W is linear. Then
(a) T (~0V ) = ~0W ,
(b) T (−~v) = −T (~v) for any ~v ∈ V .
(c) T (r1~v1+r2~v2+· · ·+rn~vn) = r1T (~v1)+r2T (~v2)+· · ·+rnT (~vn) for any ~v1, ~v2, . . . , ~vn ∈
V and r1, r2, . . . , rn ∈ R.

Proof : (a) We have

T (~0v) = T (0~0V ) = 0T (~0V ) = ~0W .

(b)
T (−~v) = T ((−1)~v) = (−1)T (~v) = −T (~v).

(c) This follows from repeated use of the additivity and homogeneity assumptions:

T (r1~v1 + r2~v2 + · · ·+ rn~vn) = T (r1~v1) + T (r2~v3) + · · ·+ T (rn~vn)

= r1T (~v1) + r2T (~v2) + · · ·+ rnT (~vn).

The next theorem tells us that the action of a linear map is completely determined
by its action on a spanning set. This means that if we want to prove something
about a linear map, we can most likely prove it by just showing that it works for the
spanning set.
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Theorem 28 Suppose {~v1, ~v2, . . . , ~vn} spans a vector space V . Suppose T : V → W
and T ′ : V → W are linear maps such that T (~vi) = T ′(~vi) for i = 1, 2, . . . n. Then
T = T ′.

Proof : To show that two functions are equal, we must show that their values
are equal at every point in their common domain. Let ~v ∈ V . Since the set
{~v1, ~v2, . . . , ~vn} spans V , there are constants r1, r2, . . . , rn such that

~v = r1~v1 + r2~v2 + · · ·+ rn~vn.

Then

T (~v) = T (r1~v1 + r2~v2 + · · ·+ rn~vn) = r1T (~v1) + r2T (~v2) + · · ·+ rnT (~vn)

= r1T
′(~v1) + r2T

′(~v2) + · · ·+ rnT
′(~vn) = T ′(r1~v1 + r2~v2 + · · ·+ rn~vn) = T ′(v).

Example: Suppose that the linear map T : R3 → R4 satisfies

T (0, 0, 1) = ~0, T (0, 1, 1) = ~0, T (1, 1, 1) = ~0.

Show that T (~v) = ~0 for all vectors ~v ∈ R3.

By the theorem just proved, we only have to show that
 0

0
1

 ,

 0
1
1

 ,

 1
1
1


is a spanning set. This is clear, since 0 0 1

0 1 1
1 1 1

 ∼
 1 1 1

0 1 1
0 0 1

 ∼
 1 0 0

0 1 1
0 0 1

 ∼
 1 0 0

0 1 0
0 0 1


implies that any system of equations with this coefficient matrix will have a solution.
Therefore, since T agrees with the zero function on the spanning set, it agrees with
it on all of V = R3.

Section 6.2: Compositions and Inverses

Definition 35 Suppose f : X → Y is a function from the set X to the set Y . The
function f is one-to-one if and only if for any x1, x2 ∈ X,

f(x1) = f(x2) implies x1 = x2.

The function f is onto if and only if for every y ∈ Y there is x ∈ X with f(x) = y.
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The idea of a function being one-to-one means that the output of the function being
the same at two points means that the two points must be the same. A logically
equivalent way of saying this is

x1 6= x1 ⇒ f(x1) 6= f(x2).

If f : X → Y is a function, then Y is the range. The image of f is the subset

y ∈ Y : f(x) = y for some x ∈ X}

of Y . For f to be onto, these two sets must be equal.

Example: Consider the linear function T : R2 → R2 defined by

T

((
x
y

))
=

(
2x+ y
−3x

)
.

Show that T is one-to-one and onto.

First, note that

T

((
x
y

))
=

(
2 1
−3 0

)(
x
y

)
.

Let’s call this matrix A.

T being one-to-one is the same as saying that the equation

A~x = ~b

has a unique solution whenever it has a solution. Since(
2 1
−3 0

)
∼
(

1 1
2

0 3
2

)
∼
(

1 0
0 1

)
,

we see that there are no free variables in this system, so the solution is unique. To
show that T is onto, we must show that the equation A~x = ~b has a solution regardless
of how we choose ~b. But this is true since there are no rows of zeros in the RREF of
A.

Note: When the linear mapping T is defined by multiplication with a matrix, we can
reformulate the questions about T being one-to-one and onto by asking if A~x = ~b
always has a solution, and if that solution is unique.
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Definition 36 Consider two functions f : X → Y and g : Y → Z. The composition
of f followed by the function g is the function g ◦ f : X → Z defined by (g ◦ f)(x) =
g(f(x)). The identity function on any set X is the function idX : X → X defined by
idX(x) = x. A function g : Y → X is an inverse of the function f : X → Y if

g ◦ f = idX and f ◦ g = idY .

Note: Even when both compositions are defined, the functions g ◦ f and f ◦ g need
not be equal. For example,

sin(x2) 6= sin2 x.

If a function f has an inverse, that inverse must be unique. The inverse of a function
f is denoted by f−1.

Theorem 29 A function f : X → Y has an inverse if and only if f is one-to-one
and onto.

Proof : (⇒) Suppose that g is an inverse of f . If f(x1) = f(x2), then

x1 = g(f(x1)) = g(f(x2)) = x2,

which implies that f is one-to-one. Let y ∈ Y . Then g(y) is mapped to Y , since

f(g(y)) = y.

(⇐) Suppose that f is one-to-one and onto. Then we can define a function g : Y → X
by g(y) = x if and only if f(x) = y. Because f is one-to-one and onto, no matter
how y is chosen, there is a unique x such that f(x) = y, so g is well defined.

Theorem 30 Suppose S : U → V and T : V → W are linear maps. Then the
composition T ◦ S : U → W is linear.

Proof : Let ~x, ~y ∈ U . Then

(T ◦ S)(~x+ ~y) = T (S((~x+ ~y)) = T (S(~x) + S(~y))

= T (S(~x)) + T (S(~y)) = (T ◦ S)(~x) + (T ◦ S)(~y).

Also, if r ∈ R, then

(T ◦ S)(r~x) = T (S(r~x)) = T (rS(~x)) = rT (S(~x)) = r(T ◦ S)(~x).

Thus T ◦ S is linear.
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Theorem 31 Suppose the linear function T : V → W has an inverse function.
Then T−1 : W → V is linear.

Proof : Let ~w1, ~w2 ∈ W and r ∈ R. Define ~v1 = T−1(~w1) and v2 = T−1(~w2).
Then

T (~v1) = T (T−1(~w1) = ~w1 and T (~v2) = T (T−1(~w2)) = ~w2.

Therefore,

T−1(~w1 + ~w2) = T−1(T (~v1) + T (~v2)) = T−1(T (~v1 + ~v2))

= ~v1 + ~v2 = T−1(~w1) + T−1(~w2)

and
T−1(r ~w1) = T−1(rT (~v1)) = T−1(T (r~v1)) = r~v1 = rT−1(~w1).

Theorem 32 Suppose B = {~v1, ~v2, . . . , ~vn} is a basis for a vector space V . Then
for any elements ~w1, ~w2, . . . , ~wn of a vector space W , there is a unique linear map
T : V → W such that T (~vi) = ~wi for i = 1, 2, . . . , n.

Proof : Define a function T : V → W by

T (~v) = r1 ~w1 + r2 ~w2 + · · ·+ rn ~wn,

where r1, r2, . . . , rn are the coordinates of ~v with respect to the basis B. Define
B′ = {~w1, ~w2, . . . , ~wn}. Then T (~v) = LB′([~v]B), where LB′ was defined in Section
6.1. Since T is a composition of linear functions, it is linear. Also,

T (~vi) = LB′([~vi]B) = LB′(ei) = 0~w1 + · · ·+ 1~wi + · · ·+ 0~wn = ~wi.

We proved previously that a linear map’s action on a spanning set is unique.

Section 6.3: Matrix of a Linear Function

Example: Suppose T : R2 → R2 is a linear map with

T

((
1
0

))
=

(
9
4

)
and T

((
0
1

))
=

(
2
−5

)
.

Compute T ((5, 6)) and give a formula for T ((a, b)) in terms of matrix multiplica-
tion.

We have

T

((
5
6

))
= T

(
5

(
1
0

)
+ 6

(
0
1

))
= 5T

((
1
0

))
+ 6T

((
0
1

))
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= 5

(
9
4

)
+ 6

(
2
−5

)
=

(
57
−10

)
.

In general,

T

((
a
b

))
= T

(
a

(
1
0

)
+ b

(
0
1

))
= aT

((
1
0

))
+ bT

((
0
1

))

= a

(
9
4

)
+ b

(
2
−5

)
=

(
9a+ 2b
4a− 5b

)
.

In terms of matrix multiplication, we can write

T

((
a
b

))
=

(
9 2
4 −5

)(
a
b

)
.

Example: Let Rθ : R2 → R2 be the function that rotates each point in R2 counter-
clockwise about the origin through an angle of θ. Compute Rθ((1, 0)) and Rθ((0, 1)).
Find a formula for Rθ((a, b)) in terms of matrix multiplication.

Simple geometry tells us that

Rθ

((
1
0

))
=

(
cos θ
sin θ

)
and Rθ

((
0
1

))
=

(
− sin θ
cos θ

)
.

Therefore,

Rθ

((
a
b

))
= Rθ

(
a

(
1
0

)
+ b

(
0
1

))
= aRθ

((
1
0

))
+ bRθ

((
0
1

))

= a

(
cos θ
sin θ

)
+ b

(
− sin θ
cos θ

)
=

(
a cos θ − b sin θ
a sin θ + b cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
a
b

)
Theorem 33 Suppose T : Rn → Rm is linear. Let {~e1, ~e2, . . . , ~en} be the standard
basis for Rn. There is a unique m×n matrix A such that T (~v) = A~v for all ~v ∈ Rn.
The columns of this matrix are the m-tuples T (~e1), T (~e2), . . . , T (~en) in that order.
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Proof : Since {~e1, ~e2, . . . , ~en} is a basis, there are constants r1, r2, . . . , rn such
that

~v = r1~e1 + r2~e2 + · · ·+ rn~en.

Therefore,

T (~v) = T (r1~e1 + r2~e2 + · · ·+ rn~en) = r1T (~e1) + r2T (~e2) + · · ·+ rnT (~en)

= (T (~e1) T (~e2) · · · T (~en))


r1
r2
...
rn

 .

Therefore, the columns of A are the vectors T (~e1), T (~e2), . . . , T (~en).

It is nice to know that we can represent linear functions between Euclidean spaces
as a matrix, but where this becomes especially useful is when we are working with
finite dimensional subspaces of vector spaces that are not Euclidean spaces. As we
have seen, we can represent vectors in these spaces in terms of a coordinate vector
once we have specified a basis.

Example: The function T : P2 → P3 defined by T (ax2 + bx+ c) = a(x− 1)2 + b(x−
1) + c is linear. B = {1, x, x2} is a basis for P2 and B′ = {1, x, x2, x3} is a basis for
P3. We want a matrix A such that for any p ∈ P2 we have

[T (p)]B′ = A[p]B.

A~e1 = A[1]B = [T (1)]B′ = [1]B′ =


1
0
0
0

 ,

A~e2 = A[x]B = [T (x)]B′ = [x− 1]B′ =


−1
1
0
0

 ,

A~e3 = A[x2]B = [T (x2)]B′ = [(x− 1)2]B′ = [x2 − 2x+ 1]B′ =


1
−2
1
0

 .
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This shows that

A =


1 −1 1
0 1 −2
0 0 1
0 0 0

 .

Theorem 34 Suppose B = {~u1, ~u2, · · · , ~un} is a basis for a vector space V and
B′ = {~u′1, ~u′2, . . . , u′m} is a basis for a vector space V ′. Suppose T : V → V ′ is
linear. There is a unique m× n matrix A such that [T (~v)]B′ = A[~v]B for all ~v ∈ V .
The columns of this matrix are the m-tuples [T (~u1)]B′ , [T (~u2)]B′ , . . . , [T (~un)]B′ in that
order.

Proof : We have that
A~ej = A[~uj]B = [T (~uj)]B′ ,

so the matrix A is determined uniquely. Let A be the matrix

A = ([T (~u1)]B′ [T (~u2)]B′ · · · [T (~un)]B′) .

Then
[T (~uj)]B′ = A~ej = A[~uj]B, j = 1, 2, . . . , n.

This means that the two linear functions [T (·)]B′ and A[·]B agree on the basis B.
Therefore, they must be equal.

Definition 37 With the notation as in the previous theorem, A is the matrix of T
relative to the bases B and B′.

Section 6.4: Matrices of Compositions and Inverses

We know that functions that are the composition of linear functions are linear and
that the inverse of a linear function is linear. The next question we need to answer
is how the matrices representing composites and inverses are related to the matrices
representing the functions from which they are built.

Theorem 35 Suppose B = {~u1, ~u2, . . . , ~un} is a basis for a vector space V , and B′ =
{~u′1, ~u′2, . . . , ~u′m} is a basis for a vector space V ′, and B′′ = {~u′′1, ~u′′2, . . . , ~u′′l } is a basis
for a vector space V ′′. Suppose A′ is the matrix of a linear map T : V → V ′ relative
to the bases B and B′. Suppose A′ is the matrix of a linear map T ′ : V ′ → V ′′ relative
to the bases B′ and B′′. Then A′A is the matrix of the linear map T ◦ T : V → V ′′

relative to the bases B and B′′.
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Proof : We know that

[T (~v)]b′ = A[~v]B for all v ∈ V

and
[T ′(~v′)]B′′ = A′[~v′]B′ for all v′ ∈ V ′.

Therefore,

[(T ′ ◦ T )(~v)]B′′ = [T ′(T (~v))]B′′ = A′[T (~v)]B′ = A′(A[~v]B) = A′A[~v]B.

This shows why matrix multiplication is defined the way that it is–because when
defined this way, it represents a composition of linear functions.

Example: Relative to the bases {1, x, x2} for P2 and {1, x, x2, x3} for P3, we know
from work in the previous section that T : P2 → P3 defined by T (ax2 + bx + c) =
a(x− 1)2 + b(x− 1) + c has matrix

A =


1 −1 1
0 1 −2
0 0 1
0 0 0


and the differentiation operator D : P3 → P3 has matrix

A′ =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

Compute the matrix for the composition D ◦ T directly and verify that it equals the
product A′A.

First, we’ll compute the matrix of the composition. We do this by computing its
action on each of the vectors in the basis {1, x, x2}, and then find the coordinate
vector of the result with respect to the basis B = {1, x, x2, x3}. We have that

D(T (1)) = D(1) = 0, [0]B =


0
0
0
0

 ,
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D(T (x)) = D(x− 1) = 1, [1]B =


1
0
0
0

 ,

and

D(T (x2)) = D((x− 1)2) = D(x2 − 2x+ 1) = 2x− 2, [2x− 2]B =


−2
2
0
0

 .

Therefore, the matrix is

A′′ =


0 1 −2
0 0 2
0 0 0
0 0 0

 .

Also, we see that

A′′ = A′A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0




1 −1 1
0 1 −2
0 0 1
0 0 0

 =


0 1 −2
0 0 2
0 0 0
0 0 0

 .

It should be clear that we can reverse this process, and we can construct a mapping
between any vector spaces V of dimension n and V ′′ of dimension m using a m× n
matrix A by the formula

T (~v) = LB′(A[~v]B),

where B = {~u1, ~u2, . . . , ~un} is a basis for V , B′ = {~u′1, ~u′2, . . . , ~u′m} is a basis for V ′

and LB′ is the function that uses the entries of an element of Rm as the coefficients
of the elements of B′. Because each of the maps in the composition is linear, L is
linear. Since LB′ is the inverse of the coordinate vector function [·]B′ ,

[T (~v)]B′ = [LB′A([~v]B)]B′ = A[~v]B.

This shows that A is the matrix of T relative to the bases B and B′.

Theorem 36 Suppose B = {~u1, ~u2, . . . , ~un} is a basis for a vector space V and

B′ = {~u′1, ~u′2, . . . , ~u′m} is a basis for a vector space ~V ′. Suppose A is the matrix of
a linear map T : V → V ′ relative to the bases B and B′. Then T has an inverse
function if and only if A is an invertible matrix. In this case, A−1 is the matrix of
T−1 relative to the bases B′ and B.
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Proof : (⇒) Suppose that T has an inverse, and let A′ ∈ M(n,m) be the matrix
of T−1 relative to the bases B′ and B. Then A′A is the matrix of T−1 ◦ T = idV
relative to B, and therefore, A′A = I. Similarly, the matrix for T ◦ T−1 is AA′ = I.
This shows that A is invertible and A−1 = A′.

(⇐) Suppose A is invertible. Let T ′ : V ′ → V be the map with matrix A−1. For
v ∈ V ,

[T ′(T (~v))]B = A−1[T (~v)]B′ = A−1A[~v]B = [~v]B,

and for any ~v′ ∈ V ′ we have

[T (T ′(~v′))]B′ = A[T ′(~v′)]B = AA−1[~v′]B′ = [~v′]B′ .

The coordinate functions [·]B and [·]B′ are one-to-one, so T ′(T (~v)) = ~v for all ~v ∈ V
and T (T ′(~v′)) = ~v′ for all ~v′ ∈ V ′.

Example: The matrix of the linear function T : P3 → P3 defined by T (p(x)) =
p(2x+ 1) with respect to the basis B = {1, x, x2, x3} is

A =


1 1 1 1
0 2 4 6
0 0 5 12
0 0 0 8

 .

The inverse of T is defined by T−1(p(x)) = p(1
2
(x − 1)). Find the matrix A′ of T−1

relative to B and show that this matrix is the inverse of A.

To find A′, we calculate the action of T−1 on each of the elements of B, then compute
the coordinates of the results relative to B. We have that

T−1(1) = 1, T−1(x) =
1

2
(x−1), T−1(x2) =

(
1

2
(x− 1)

)2

=
1

4
(x2−2x+1) =

1

4
x2−1

2
x+

1

4
,

T−1(x3) =

(
1

2
(x− 1)

)3

=
1

8
(x3 − 3x2 + 3x− 1) =

1

8
x3 − 3

8
x2 +

3

8
x− 1

8
.

Therefore,

[T−1(1)]B =


1
0
0
0

 , [T−1(x)]B =


−1

2
1
2

0
0

 , [T−1(x2)]B =


1
4

−1
2

1
4

0

 , [T−1(x3)]B =


−1

8
3
8

−3
8

1
8

 ,
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which implies that

A′ =


1 −1

2
1
4
−1

8

0 1
2
−1

2
3
8

0 0 1
4
−3

8

0 0 0 1
8

 .

Simple calculation shows that

AA′ =


1 1 1 1
0 2 4 6
0 0 5 12
0 0 0 8




1 −1
2

1
4
−1

8

0 1
2
−1

2
3
8

0 0 1
4
−3

8

0 0 0 1
8

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

This shows that A′ = A−1.

Section 6.5: Change of Basis

At this point, it should be clear that when we find the matrix that represents a linear
function, the result that we get depends on the bases that we use to represent the
vectors in the domain and range spaces of the linear function.

In the special case where T : V → V , i.e., the domain and range spaces are the same,
it is convenient to use the same basis to represent V as both the domain and range
space.

The obvious question to ask is, given two bases B and B′ for V , how are the matrices
representing T with respect to these two bases related?

Theorem 37 Suppose B = {~u1, ~u2, . . . , ~un} and B′ = {~u′1, ~u′2, . . . , ~u′n} are bases for
a vector space V . There is a unique n × n matrix P such that [~v]B = P [~v]B′ for
all ~v ∈ V . The columns of this matrix are the n-tuples [~u′1]B, [~u

′
2]B, . . . , [~u

′
n]B in that

order.

Proof : Let P be the matrix of the identity map idV : V → V relative to the bases
B′ and B. Then the jth column of P is [idV (~u′j)]B = [~u′j]B. As we proved before, P
is the unique matrix satisfying [~v]B = [idV (~v)]B = P [~v]B′ for all ~v ∈ V .

Definition 38 The matrix P as described in the previous theorem is the change of
basis matrix from the basis B′ to the basis B.

Example: Find the change of basis matrix P for changing from the basis

B′ =

{(
2
2

)
,

(
4
−1

)}
to the basis B =

{(
2
0

)
,

(
0
−1

)}
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in R2. Verify directly that

P

(
3
−2

)
B′

=

(
3
−2

)
B

.

As directed in the theorem, we compute(
2
2

)
B

and

(
4
−1

)
B

.

These are the solutions to the systems of equations(
2 0 2 4
0 −1 2 −1

)
∼
(

1 0 1 2
0 1 2 1

)
⇒

(
2
2

)
B

=

(
1
−2

)

and

(
4
−1

)
B

=

(
2
1

)
.

Therefore,

P =

(
1 2
−2 1

)
.

We have that(
2 4 3
2 −1 −2

)
∼
(

1 2 3
2

0 −5 −5

)
∼
(

1 0 −1
2

0 1 1

)
⇒
(

3
−2

)
B′

=

(
−1

2

1

)
and (

2 0 3
0 −1 −2

)
∼
(

1 0 3
2

0 1 2

)
⇒

(
3
−2

)
B

=

(
3
2

2

)
.

We see that

P

(
3
−2

)
B′

=

(
1 2
−2 1

)(
−1

2

1

)
=

(
3
2

2

)
=

(
3
−2

)
B

.

Theorem 38 Suppose P is the change of basis matrix for changing from a basis
B′ to a basis B. Then P is invertible, and P−1 is the change of basis matrix for
changing from the basis B to the basis B′.

Proof : Suppose we have a linear function T : R2 → R2 whose matrix relative to
a basis B is given. If we want to find the matrix of T relative to another basis B′,
then we can think of T as

idV ◦ T ◦ idV .
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Recall that if P is the matrix representation of the identity function relative to the
bases B′ and B, then P−1 is the matrix of idV relative to B and B′. Since composition
of functions corresponds to matrix multiplication of their matrix representations, we
have that P−1AP is the representation of T relative to the bases B′ and B.

Example: Suppose the matrix of a linear function T relative to the basis B from
the last example is

A =

(
1 −4
3 2

)
.

Verify that [
T

((
3
−2

))]
B′

= P−1AP

(
3
−2

)
B′
.

First, we compute(
1 2 1 0
−2 1 0 1

)
∼
(

1 2 1 0
0 5 2 1

)
∼
(

1 0 1
5
−2

5

0 1 2
5

1
5

)
,

so

P−1 =

(
1
5
−2

5
2
5

1
5

)
.

Therefore,

P−1AP

(
3
−2

)
B′

=

(
1
5
−2

5
2
5

1
5

)(
1 −4
3 2

)(
1 2
−2 1

)(
−1

2

1

)
=

(
1
5
−2

5
2
5

1
5

)(
1 4
3 2

)(
3
2

2

)
=

(
1
5
−2

5
2
5

1
5

)(
−13

2
17
2

)
=

(
−47

10

− 9
10

)
.

We also have that[
T

((
3
−2

))]
B

=

(
1 −4
3 2

)(
3
2

2

)
=

(
−13

2
17
2

)
,

and therefore,

T

((
3
2

))
= −13

2

(
2
0

)
− 17

2

(
0
−1

)
=

(
−13
−17

2

)
.

Since

−47

10

(
2
2

)
− 9

10

(
4
−1

)
=

(
−13
−17

2

)
we see that [

T

((
3
−2

))]
B′

=

(
−47

10

− 9
10

)
.
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Theorem 39 Suppose B = {~u1, . . . , ~un} and B′ = {~u′1, . . . , ~u′n} are bases for a
vector space V . Let P be the change of basis matrix from B′ to B. Suppose A is
the matrix of a linear map T : V → V relative to the basis B. Then P−1AP is the
matrix of T relative to the basis B′.

Proof : By the definitions of the matrix of T and the change of basis matrix P , we
know that

[T (~v)]B = A[~v]B and [~v]B = P [~v]B′

for all ~v ∈ V . From these two equations, we find that

[T (~v)]B′ = P−1[T (~v)]B.

Therefore,
[T (~v)]B′ = P−1[T (~v)]B = P−1A[~v]B = P−1AP [~v]B′ ,

as desired.

Section 6.6: Image and Kernel

We spent a lot of time in Chapter 3 studying vector spaces and subspaces. In
this chapter, we will study two important subspaces associated with every linear
function.

Definition 39 Suppose T : V → W is linear. The kernel (or null space) of T is
denoted ker(T ) and is defined by

ker(T ) = {~v ∈ V : T (~v) = ~0}.

The image of T is denoted im(T ) and is defined by

im(T ) = {~w ∈ W : ~w = T (~v) for some ~v ∈ V }.

Theorem 40 Suppose T : V → W is linear. Then ker(T ) is a subspace of V and
im(T ) is a subspace of W .

The proof of this theorem is a straightforward application of the subspace theo-
rem.

Example: Consider the matrix

A =

 1 1 1
2 4 5
1 3 4

 .
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Find bases for the kernel and image of the associated linear map µ(~x) = A~x.

At this point, it should not be surprising that we can find out all the information
that we need to know about the matrix A by looking at its reduced row echelon
form:

A =

 1 1 1
2 4 5
1 3 4

 ∼
 1 1 1

0 2 3
0 2 3

 ∼
 1 0 −1

2

0 1 3
2

0 0 0

 .

Let’s tackle the image first. Recall that by the definition of matrix-vector multiplica-
tion, the product A~x is a linear combination of the columns of A using the elements
of ~x as the coefficients. Therefore, the image of A is the same as the span of the
columns of A. A theorem that we have previously proved gave us an algorithm for
finding a basis from a spanning set: we throw out the vectors that can be written as
a linear combination of the other vectors. In the case of A, the RREF tells us that
the third column can be written as a linear combination of the first two, but that
the first two columns are not linear combinations of one another. Therefore, a basis
for im(µ) is 

 1
2
1

 ,

 1
4
3

 .

Notice that ker(A) is exactly the solution set to the homogeneous equation A~x = ~0.
The RREF of A tells us that x3 is a free variable. If we let x3 = r, then the solution
to A~x = ~0 is  x1

x2

x3

 =

 1
2
r
−3

2
r

r

 = r

 1
2

−3
2

1

 .

In other words, ker(A) = span{(1/2,−3/2, 1)}. Since this spanning set consists of
only one vector, it is also linearly independent, so {(1/2,−3/2, 1)} is a basis for
ker(A).

Definition 40 The column space of an m×n matrix A is the subspace of Rm spanned
by the n columns of A considered as elements of Rm.

Definition 41 The row space of an n × n matrix A is the subspace of Rn spanned
by the m rows of A considered as elements of Rn.

Theorem 41 Row operations do not change the row space of a matrix.
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Proof : Let ~v1, . . . , ~vm be the rows of an m× n matrix A. Then any element of the
row space of A can be expressed as

r1~v1 + · · ·+ rm~vm

for some choice of scalars r1, . . . , rm ∈ R. If we interchange two rows of A, then all
that does is change the order in which the columns of A are written; it does not
change the span. If row i is multiplied by a nonzero constant c, then

r1~v1 + · · ·+ ri~vi + · · ·+ rm~vm = r1~v1 + · · ·+ ri
c

(c~vi) + · · ·+ rm~vm,

so any vector that was in span{~v1, . . . , ~vn} is in span{~v1, . . . , c~vi, . . . , ~vm}. If we add
c times row i to row j, then

r1~v1+· · ·+ri~vi+· · ·+rj~vj+· · ·+rm~vm = r1~v1+· · ·+(ri−crj)~vi+· · ·+rj(c~vi+~vj)+· · ·+rm~vm,

so span{~v1, . . . , ~vm} = span{~v1, . . . , ~v1, . . . , (c~vi + ~vj), . . . , ~vm}. This shows that if a
matrix B can be obtained from A by elementary row operations, then the row spaces
are the same.

This gives us a simple method for finding a basis for the row space of a matrix. We
reduce the matrix to RREF. In doing so, we do not change the row space. But it is
easy to find a basis for the row space of a matrix in RREF. Either the rows are all
zero, or there is a leading one. The rows with leading ones are linearly independent,
since the entries above and below each leading one are zero. Therefore, we obtain
a basis for the row space of a matrix from the nonzero rows of the RREF of the
matrix.

Example: Find bases for the row space and the column space of the matrix

A =


2 −2 −1 −2 8
−4 4 −1 −3 −8
1 −1 −1 −2 5
3 −3 −2 1 3

 .

First, we row reduce A:
2 −2 −1 −2 8
−4 4 −1 −3 −8
1 −1 −1 −2 5
3 −3 −2 1 3

 ∼


1 −1 −1 −2 5
0 0 1 2 −2
0 0 −5 −11 12
0 0 1 7 −12

 ∼


1 −1 0 0 3
0 0 1 2 −2
0 0 0 −1 2
0 0 0 5 −10
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∼


1 −1 0 0 3
0 0 1 0 2
0 0 0 1 −2
0 0 0 0 0

 .

Therefore, a basis for im(A) is


2
−4
1
3

 ,


−1
−1
−1
−2

 ,


−2
−3
−2
1


 ,

and a basis for the row space of A is

{(1,−1, 0, 0, 3), (0, 0, 1, 0, 2), (0, 0, 0, 1,−2)}.

Theorem 42 The dimension of the row space of any matrix is equal to the dimension
of its column space.

Proof : Both are determined by the number of leading ones in the RREF of the
matrix.

Section 6.7: Rank and Nullity

Definition 42 Suppose T : V → W is linear. If ker(T ) is a finite-dimensional
subspace of V , then the dimension of ker(T ) is called the nullity of T . If im(T ) is a
finite-dimensional subspace of W , then the dimension of im(T ) is called the rank of
T .

Notice that the rank of a matrix was defined previously to be the number of leading
ones in the RREF of the matrix. In the case that the linear transformation is defined
by matrix-vector multiplication, these two ideas of rank agree.

Theorem 43 (Dimension Theorem) Suppose T : V → W is a linear map whose
domain V is a finite-dimensional vector space. Then

rank(T ) + nullity(T ) = dim(V ).

Proof : Since ker(T ) is finite dimensional, it has a basis, say {~v1, . . . , ~vm}. By the
expansion theorem, there are vectors ~vm+1, . . . , ~vm+k in V so that

{~v1, . . . , ~vm+k}
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is a basis for V . We claim that {T (~vm+1, . . . , T (~vm+k)} is a basis for im(T ). Let
~w ∈ im(T ). Then there is a ~v ∈ V such that ~w = T (~v). There are coefficients
r1, . . . , rm+k such that

~v = r1~v1 + · · ·+ rm+k~vm+k.

Therefore,

~w = T (~v) = r1T (~v1) + · · ·+ rm+kT (~vm+k) = rm+1T (~vm+1) + · · ·+ rm+kT (~vm+k).

This shows that {T (~vm+1), . . . , T (~vm+k)} spans im(T ). Suppose that

rm+1T (~vm+1) + · · ·+ rm+kT (~vm+k) = ~0 ⇒ T (rm+1~vm+1 + · · ·+ rm+k~vm+k) = ~0

⇒ rm+1~vm+1 + · · ·+ rm+k~vm+k ∈ ker(T ).

This implies that there exists scalars r1, . . . , rm so that

rm+1~vm+1 + · · ·+ rm+k~vm+k = r1~v1 + · · ·+ rm~vm,

or in other words,

−r1~v1 − · · · − rm~vm + rm+1~vm+1 + · · ·+ rm+k~vm+k = ~0.

Since the vectors in the linear combination above are linearly independent, rm+1 =
· · · = rm+k = 0, which implies that the set {T (~vm+1), . . . , T (~vm+k)} is linearly in-
dependent, and therefore the rank of T is k and the nullity is m, and k + m is the
dimension of V . In other words,

rank(T ) + nullity(T ) = k +m = dim(V ).

Theorem 44 A linear map T : V → W is one-to-one if and only if ker(T ) = {~0}.

Proof : (⇒) Assume T is one-to-one, and let ~v ∈ ker(T ). Then T (~v) = ~0, but we
also know that T (~0) = ~0, and therefore ~0 = ~v.

(⇐) Suppose that ker(T ) = {~0}. Take two vectors ~v1, ~v2 ∈ V such that T (~v1) =
T (~v2). Then T (~v1 − ~v2) = ~0, which implies that ~v1 − ~v2 ∈ ker(T ), so it must be that
~v1 − ~v2 = ~0, or ~v1 = ~v2. This shows that T is one-to-one.

Example: Prove that a linear map T : R3 → R2 cannot be one-to-one.

If T is one-to-one, then nullity(T ) = 0, which means that rank(T ) = 3. In other
words, im(T ) is a 3-dimensional subspace of a 2-dimensional vector space (R2). But
since this is impossible, it must be that T is not one-to-one.
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Example: Prove that a linear map T : M(2, 2)→ P4 cannot be onto.

For T to be onto would mean that im(T ) = P4, which has dimension 5. The dimen-
sion of M(2, 2) is 4, so we must have that

nullity(T ) + 5 = 4,

which is impossible.

Example: Suppose a linear function T : P4 → R5 is onto. Prove that T is one-to-
one.

If T is onto, then rank(T ) = 5. Therefore,

nullity(T ) + 5 = dim(P4) = 5,

so nullity(T ) = 0, or in other words, ker(T ) = {~0}, which implies that T is one-to-
one.

A good approach to showing that a linear function T is one-to-one and onto is to
first show that ker(T ) = {~0} (which involves solving the homogeneous equation
T (~v) = ~0), and then using the rank-nullity theorem.

Section 6.8: Isomorphism

We have now seen several examples of situations where two vector spaces are essen-
tially the same, such as the set

{~x ∈ R3 : x3 = 0}

and R2. Another example is a finite dimensional vector space V and its image under
the coordinate transformation relative to a given basis.

Consider the example where we pair the matrix(
a b
c d

)
∈M(2, 2)

with the polynomial ax3 + bx2 + cx+ d ∈ P3. Let’s call this mapping T . Then

1. T is a well-defined function.

2. T is defined on all of M(2, 2).

3. T is one-to-one.
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4. T is onto.

5. T is additive.

6. T is homogeneous.

Therefore, T is one-to-one, onto, and linear. This means that T preserves the vector
space structure between these two spaces, and puts them in a one-to-one correspon-
dence.

Definition 43 An isomorphism is a linear map between vector spaces that is one-
to-one and onto. A vector space V is isomorphic to a vector space W if and only if
there is an isomorphism from V to W .

Example: Show that R2 is isomorphic to the subspace P = {~v ∈ R3 : (2, 3, 5)·~v = 0}
of R3.

If (2, 3, 5) · ~v = 0, then
2~v1 + 3~v2 + 5~v3 = 0.

In other words,

v1 = −3

2
v2 + 5v3,

so  v1

v2

v3

 =

 −3
2
v2 − 5

2
v3

v2

v3

 = v2

 −3
2

1
0

+ v3

 −5
2

0
1

 .

These two vectors form a basis for P . One mapping from P to R2 is the coordinate
transformation relative to this basis. The coordinate transformation is clearly one-
to-one, onto, and linear.

Isomorphism allows us to say when two vector spaces are essentially the same. In
fact, we can say that the only distinguishing characteristic of finite dimensional
vector spaces is their dimension, since all vector spaces of a given dimension are
isomorphic.

Theorem 45 Suppose V and V ′ are finite dimensional vector spaces. Then V is
isomorphic to V ′ if and only if dim(V ) = dim(V ′).

Proof : (⇒) Suppose that V and V ′ are isomorphic, and let T : V → V ′ be
an isomorphism. Because T is one-to-one, nullity(T ) = 0, and since T is onto,
rank(T ) = dim(V ′). Therefore,

dim(V ) = rank(T ) + nullity(T ) = dim(V ′).
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(⇐) Suppose that dim(V ) = dim(V ′). Let V = {~u1, . . . , ~un} be a basis for V , and
let V ′ = {~u′1, . . . , ~u′n} be a basis for V ′. We proved in a previous theorem that there
is a unique linear map T : V → V ′ that satisfies T (~ui) = ~u′i for i = 1, . . . , n. Any
element of V can be written as r1~u1 + · · ·+ rn~un for some scalars r1, . . . , rn. We have
that

T (r1~u1 + · · ·+ rn~un) = r1T (~u1) + · · ·+ rnT (~un) = r1~u
′
1 + · · ·+ rn~u

′
n.

This shows that T is onto. Also,

nullity(T ) = dim(V )− rank(T ) = dim(V )− dim(V ′) = 0,

which shows that T is one-to-one. Therefore, T is an isomorphism.

Example: Use the classification theorem for finite dimensional vector spaces to show
that R2 is isomorphic to the subspace P = {~v ∈ R3 : (2, 3, 5) · ~v = 0} of R3.

We showed that dim(P ) = 2, and dim(R2) = 2, so they are isomorphic.

Chapter 7: Determinants

Section 7.2: Definition

One of our past homework problems was to show that the matrix

A =

(
a b
c d

)
is row equivalent to I2 if and only if ad − bc 6= 0. If A ∼ I2, then A is invertible,
which also means that the system A~x = ~b has a unique solution for every choice of ~b.
The next definition generalizes this idea to square matrices of arbitrary size.

Definition 44 The determinant of an n × n matrix A, denoted det(A), is defined
inductively as follows:

• For a 1× 1 matrix A = [a11], det(A) = a11.

• For an n×n matrix A with n > 1, let Aij denote the (n−1)×(n−1) submatrix
obtained from A by deleting the ith row and the jth column. Then

det(A) =
n∑
j=1

(−1)i+ja1jdet(A1j).
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What this means is that we compute a determinant by “expanding” along the top
row. Notice that to compute the determinant of an n×n matrix, we have to be able
to compute determinants of (n− 1)× (n− 1) matrices, which in turn means that we
have to be able to compute (n− 2)× (n− 2) determinants, etc. Eventually, we get
down to 1× 1 determinants, which are easy to compute.

For a 2× 2 matrix,

det

((
a b
c d

))
= a det(d)− b det(c) = ad− bc,

just as we expected.

For a 3× 3 matrix, we have

det

 a b c
d e f
g h i

 = a det

(
e f
h i

)
− b det

(
d f
g i

)
+ c det

(
d e
g h

)
= a[ei− fh]− b[di− fg] + c[dh− eg] = aei− afh− bdi+ bfy + cdh− ceg.

Example: Compute

det


2 1 3 4
0 1 1 0
1 0 1 1
4 2 1 −1

 .

det


2 1 3 4
0 1 1 0
1 0 1 1
4 2 1 −1

 = 2 det

 1 1 0
0 1 1
2 1 −1

−det

 0 1 0
1 1 1
4 1 −1

+3 det

 0 1 0
1 0 1
4 2 −1



−4 det

 0 1 1
1 0 1
4 2 1

 = 2

[
det

(
1 1
1 −1

)
− det

(
0 1
2 −1

)]
−
[
−det

(
1 1
4 −1

)]

+3

[
−det

(
1 1
4 −1

)]
− 4

[
−det

(
1 1
4 1

)
+ det

(
1 0
4 2

)]
= 2[−2 + 2]− [5] + 3[5]− 4[3 + 2] = 10− 20 = −10.

Hopefully this example makes clear that the amount of work necessary to compute
an n×n determinant grows very quickly with n. However, there are some properties
of determinants that can help simplify things a little.
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Theorem 46 Suppose A is an n× n matrix.

1. If A has a row of zeros, then det(A) = 0.

2. If two rows of A are interchanged, then the determinant of the resulting matrix
is −det(A).

3. If one row of A is multiplied by a constant c, then the determinant of the
resulting matrix is c det(A).

4. If two rows of A are identical, then det(A) = 0.

5. If a multiple of one row of A is added to another row of A, the determinant of
the resulting matrix is det(A).

6. det(In) = 1.

Example: Compute

det


2 1 3 4
0 1 1 0
1 0 1 1
4 2 1 −1

 .

We have that

det


2 1 3 4
0 1 1 0
1 0 1 1
4 2 1 −1

 = −det


1 0 1 1
0 1 1 0
2 1 3 4
4 2 1 −1

 = −det


1 0 1 1
0 1 1 0
0 1 1 2
0 2 −3 −5



= −det


1 0 1 1
0 1 1 0
0 0 0 2
0 0 −5 −5

 = −5 det


1 0 1 1
0 1 1 0
0 0 1 1
0 0 0 2

 = −5 det


1 0 0 0
0 1 0 −1
0 0 1 1
0 0 0 2



= −10 det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = −10.

Section 7.3: Properties of Determinants

If you think a little about the definition of a determinant that we gave in the last
section, you will probably ask yourself why it is so important that we expand around
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the first row of a matrix when we find the determinant. The answer is that it is not
important at all. In fact, we can expand around any row or any column of the matrix.
This is very nice, in that it lets us pick the row or column that contains the most
zeros, thus reducing the amount of work we have to do to find the determinant.

In the last section we showed how the determinant works with the elementary row
operations. In this section we’ll show how it works with the other operations we have
defined between matrices, such as matrix multiplication and transpose.

Notation: Recall from the last section that if A is an n× n matrix, then Aij is the
(n−1)× (n−1) matrix obtained by deleting the ith row and jth column of A. Also,
let Aij,rk denote the (n− 2)× (n− 2) matrix obtained by deleting rows i and r and
columns j and k from A. See page 278 in the text for a useful diagram describing
how the indexing in A changes after deleting rows and columns.

Theorem 47 The determinant of a square matrix can be computed by expansion
along any row. That is, if A is an n× n matrix, and r ∈ {1, . . . , n}, then

det(A) =
n∑
k=1

(−1)r+karkdet(Ark).

Proof : We finally use induction. For our base case, we check that this is true for
a 2× 2 matrix. Expanding along the first row, we have that

det

(
a11 a12

a21 a22

)
= a11a22 − a12a21.

Expansion along the second row gives

det

(
a11 a12

a21 a22

)
= −a21a12 + a22a11,

so the result holds for 2× 2 matrices. Suppose that the result holds for matrices of
size (n− 1)× (n− 1), and let A be of size n× n. We can assume that r 6= 1 (since
that is the definition). We expand the determinant of A along the first row, but then
in the determinants of A1k, we can expand along row r − 1 (which corresponds to
row r of A). Therefore,

det(A) =
n∑
j=1

(−1)1+ja1j det(A1j) =
n∑
j=1

(−1)1+ja1j

(
j−1∑
k=1

(−1)(r−1)+kark det(A1j,rk)
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+
n∑

k=j+1

(−1)(r−1)+(k−1)arkdet(A1j,rk)

)
=
∑
k<j

(−1)j+r+ka1jark det(A1j,rk)

+
∑
k>j

(−1)j+r+k−1a1jark det(A1j,rk).

Now let’s start working from the right-hand side of the equation in the statement of
the theorem. We have

n∑
k=1

(−1)r+kark det(Ark) =
n∑
k=1

(−1)r+kark

(
k−1∑
j=1

(−1)1+ja1j det(Ark,1j)

+
n∑

j=k+1

(−1)1+(j−1)a1j det(Ark,1j)

)
=
∑
j<k

(−1)r+k+j+1arkaijdet(Ark,1j)

+
∑
j>k

(−1)r+k+jarka1j det(Ark,1i).

Since A1j,rk = Ark,1l, these expressions are the same.

The following result is proved (somewhat) similarly:

Theorem 48 The determinant of a square matrix can be computed by expansion
along any column. That is, if A is an n× n matrix and c ∈ {1, . . . , n}, then

det(A) =
n∑
i=1

(−1)i+caic det(Aic).

Theorem 49 Suppose A and B are n× n matrices. Then

det(AB) = det(A) det(B).

Proof : There is some sequence of elementary row operations that transforms A to
A′, which is the RREF of A. By our previous theorem, we know that

det(A) = K det(A′),

where K is some constant. If we apply the same sequence of row operations to AB,
we’ll get A′B (we proved this in Chapter 5). Therefore,

det(AB) = K det(A′B).
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Because A is a square matrix, A′ is either the identity matrix, or it has a row of
zeros. In the first case det(A) = K det(I) = K, so

det(AB) = K det(A′B) = K det(IB) = K det(B) = det(A)det(B).

In the second case, A′B will have at least one row of zeros, so

det(AB) = Kdet(A′B) = K · 0 = 0 = 0 · det(B) = det(A)det(B).

Definition 45 The transpose of an m × n matrix A = [aij] is the n × m matrix,
denoted AT , whose i, j entry is Aji. That is,

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


T

=


a11 a21 · · · am1

a12 a22 · · · am2
...

...
...

a1n a2n · · · amn

 .

Theorem 50 Suppose A,A′ ∈M(m,n), B ∈M(n, p), and r ∈ R. Then
a. (AT )T = A
b. (rA)T = r(AT )
c. (A+ A′)T = AT + (A′)T

d. (AB)T = BTAT

e. If A is a square invertible matrix, then (A−1)T = (AT )−1

Proof : (of part d) The i, j entry of (AB)T is the dot product of row j of A with
column i of B. The i, j entry of BTAT is the dot product of the ith row of BT

with the jth column of AT . But since the ith row of BT is the ith column of B
and The jth column of AT is the jth row of A, this is the same as the i, j entry of
(AB)T .

Theorem 51 Suppose A is an n× n matrix. Then det(A) = det(AT ).

Proof : Easy.

Section 7.4: Cramer’s Rule

Theorem 52 For an n× n matrix A, the following conditions are equivalent:
a. A is nonsingular
b. A has a right inverse
c. A has a left inverse
d. rank(A) = n
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e. A can be row reduced to I. f. For any ~b ∈ Rn, the equation A~v = ~b has a unique
solution ~v ∈ Rn.
g. det(A) 6= 0.

Let’s consider the problem of finding the inverse of the 2× 2 matrix

A =

(
a b
c d

)
,

where a 6= 0:(
a b 1 0
c d 0 1

)
∼
(

1 b
a

1
a

0
0 d− bc

a
− c
a

1

)
∼
(

1 0 d
ad−bc − b

ad−bc
0 1 − c

ad−bc
a

ad−bc

)
.

This means that (
a b
c d

)−1

=
1

det(A)

(
d −b
−c a

)
,

or in other words, we can write the inverse of this matrix as one over the determinant
times a new matrix. Questions we should ask ourselves are:

• Is this the case for any invertible square matrix?

• How do we find the “new matrix” to be able to write down the inverse?

Trying to do the same thing for a 3×3 or larger matrix to see if there is a pattern gets
out of hand very quickly (trust me), so instead we’ll write down what the answer
to the second question is, and then we’ll verify that it gives us a formula for the
inverse.

Definition 46 Suppose A is an n× n matrix. Then for integers i and j between 1
and n, the ij-cofactor of A is the real number

(−1)i+jdet(Aij).

The adjoint of A is the n × n matrix, denoted adj(A), whose i, j-entry is the ji-
cofactor of A.

Let’s go back to our 2 × 2 example and see if this definition tells us where the new
matrix comes from. It ends up that

adj(A) =

(
d −b
−c a

)
.
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Theorem 53 Suppose the square matrix A is nonsingular. Then

A−1 =
1

det(A)
adj(A).

Proof : Let cij be the ij-cofactor of A. If we take det(A) by expanding along row
i, we get

det(A) =
n∑
k=1

(−1)i+kaikdet(Aik) =
n∑
k=1

aikcik.

For i 6= j, let B be the matrix obtained from A by replacing row j by row i. Since
B has two identical rows, we know that det(B) = 0. But, if we calculate det(B) by
expanding along row j, we get

0 = det(B) =
n∑
k=1

(−1)j+kaikdet(Ajk) =
n∑
k=1

aikcjk.

We can think of these two sums as being the entries of a matrix product, and what
they tell us is that if C = [cij], then

ACT = det(A)I.

But cij is just the ji-entry of adj(A), or in other words, CT = adj(A). Therefore, we
can rearrange to find that

A

(
1

det(A)
adj(A)

)
= I.

Before you get too excited about this formula for the inverse of an invertible matrix,
you should realize that it involves a lot of computation. For example, to use this
formula for a 3 × 3 matrix means computing one 3 × 3 determinant and nine 2 × 2
determinant. And things get quickly worse as the size increases.

Example: Use the cofactor formula to compute the inverse if the matrix

A =

 1 0 2
−1 3 0
0 3 1

 .

First, let’s compute the determinants of the submatrices:

det(A11) = det

(
3 0
3 1

)
= 3 det(A12) = det

(
−1 0
0 1

)
= −1 det(A13) = det

(
−1 3
0 3

)
= −3
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det(A21) = det

(
0 2
3 1

)
= −6 det(A22) = det

(
1 2
0 1

)
= 1 det(A23) = det

(
1 0
0 3

)
= 3

det(A31) = det

(
0 2
3 0

)
= −6 det(A32) = det

(
1 2
−1 0

)
= 2 det(A33) = det

(
1 0
−1 3

)
= 3.

Therefore,

adj(A) =

 3 6 −6
1 1 −2
−3 −3 3

 .

Also we have that

det(A) = det

 1 0 2
0 3 2
0 0 −1

 = −3.

This gives us

A−1 − 1

−3

 3 6 −6
1 1 −2
−3 −3 3

 =

 −1 −2 2
−1

3
−1

3
2
3

1 1 −1

 .

As you might imagine, having a formula for the inverse of an invertible matrix leads
to a new method for solving a system of linear equations.

Theorem 54 (Cramer’s Rule) Suppose A is a nonsingular n × n matrix, and
~b = (b1, . . . , bn)T ∈ Rn. Then the solution ~x = (x1, . . . , xn)T ∈ Rn of the system

A~x = ~b is given by

xj =
1

det(A)
det(Aj),

where Aj is the matrix obtained by replacing the jth column of A with ~b.

Proof : Let C = [cij] be equal to adj(A)T . Then

~x = A−1~b =
1

det(A)
CT~b

and therefore

xj =
1

det(A)

n∑
i=1

cijbi =
1

det(A)

n∑
i=1

(−1)i+jbidet(Aij) =
1

det(A)
det(Aj).
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Example: Use Cramer’s rule to find the solution to the system

3x +y = 4
2x −2y = 1

.

The coefficient matrix is

A =

(
3 1
2 −2

)
,

so detA = −8. Cramer’s rule says that

x = −1

8
det

(
4 1
1 −2

)
= −1

8
(−9) =

9

8
,

and

y = −1

8
det

(
3 4
2 1

)
= −1

8
(−5) =

5

8
.

As has been mentioned, the drawback of this method is that it takes a lot of compu-
tation, but another problem is that it only applies to systems of equations that have
a square coefficient matrix. However, if for some reason you need an explicit formula
for one of the unknowns in a square system, Cramer’s rule can give you that.

Example: Estimate the error in the solution x of the following system if the coef-
ficient a is known to be within .01 of 6.8. What if a is known to be within .01 of
−6.8?

4x +y −2z = 3
−x +z = 2
ax −3y z = 0

The coefficient matrix of the system is

A =

 4 1 −2
−1 0 1
a −3 1

 ⇒ det(A) = det

 4 1 −2
−1 0 1

a+ 12 0 7

 = −det

(
−1 1

a+ 12 −5

)
= −5 + a+ 12 = a+ 7.

We must also find the determinant of the matrix that we get when we replace the
first column of A with the right-hand side:

det

 3 1 −2
2 0 1
0 −3 1

 = det

 3 1 −2
2 0 1
9 0 −5

 = −det

(
2 1
9 −5

)
= 10 + 9 = 19.
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Therefore,

x =
19

a+ 7
⇒ dx

da
=
−19

(a+ 7)2
.

In other words, if we make a small change in a, say ∆a, then we can expect ∆x to
be approximately

∆x ≈ dx

da
∆a =

−19

(a+ 7)2
∆a.

in our problem, a = 6.8 with variation ∆a = .01, so

∆x =
−19

(6.8 + 7)2
(.01) ≈ −.000998.

If a is within .01 of −6.8, then

∆x ≈ −19

(−6.8 + 7)2
(.01) ≈ −4.75.

Section 7.5: Cross Product

In this section, we will use the notation

~i =

 1
0
0

 , ~j =

 0
1
0

 , ~k =

 0
0
1

 ,

which is standard in Calculus and Physics classes.

Definition 47 Suppose ~v = (v1, v2, v3) and ~w = (w1, w2, w3) are vectors in R3. The
cross product of ~v with ~w is the vector in R3 denoted ~v × ~w and defined by

~v × ~w = (v2w3 − v3w2)~i− (v1w3 − v3w1)~j + (v1w2 − v2w1)~k.

This definition is easy to remember if we think of it as a determinant:

det

 ~i ~j ~k
v1 v2 v3

w1 w2 w3

 =~i det

(
v2 v3

w2 w3

)
−~j det

(
v1 v3

w1 w3

)
+ ~k det

(
v1 v2

w1 w2

)

= (v2w3 − v3w2)~i− (v1w3 − v3w1)~j + (v1w2 − v2w1)~k

Some of the familiar laws, like the associative law, don’t hold for the cross product.
Here’s a list of some important properties that do hold:
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Theorem 55 Suppose ~v = (v1, v2, v3) and ~w = (w1, w2, w3), and ~x = (x1, x2, x3) are
elements of R3, and r is a real number. Then
a. ~v × ~w = −(~w × ~v).
b. ~v × (~w + ~x) = (~v × ~w) + (~v × ~x)
c. (~v + ~w)× ~x = (~v × ~x) + (~w × ~x)
d. r(~v + ~w) = (r~v)× ~w = ~v × (r ~w)
e. ~v ×~0 = ~0× ~v = ~0
f. ~v × ~v = ~0

g. ~v · (~w × ~x) = (~v × ~w) · x = det

 v1 v2 v3

w1 w2 w3

x1 x2 x3


Proof : (of a)

~v × ~w = det

(
v2 v3

w2 w3

)
~i− det

(
v1 v3

w1 w3

)
~j + det

(
v1 v2

w1 w2

)
~k.

= −det

(
w2 w3

v2 v3

)
~i+ det

(
w1 w3

v1 v3

)
~j − det

(
w1 w2

v1 v2

)
= −(~w × ~v).

Even more important than these algebraic properties of the cross product are the
geometric properties:

Theorem 56 Suppose ~v and ~w are vectors is R3. Let θ be the angle between ~v and
~w. Then
a. ~v · (~v × ~w) = 0
b. ~w · (~v × ~w) = 0
c. ‖~v × ~w‖2 = ‖~v‖2‖~w‖2 − (~v · ~w)2

d. ‖~v × ~w‖ = ‖~v‖‖~w‖ sin θ

If you’re familiar with the properties of the dot product, you know that the first
two properties say that the result of a cross product is orthogonal (at a 90◦ angle
to) the original vectors. The last two parts deal with the magnitude of vectors. If
~u = (u1, u2), then

‖~u‖ =
√
u2

1 + u2
2.

Section 7.6: Orientation

Definition 48 An ordered basis {~u1, ~u2, ~u3} for R3 is right-handed if and only if
det(~u1 ~u2 ~u3) > 0. It is left-handed if and only if det(~u1 ~u2 ~u3) < 0. An orientation
of R3 is the selection of a right-handed or a left-handed ordered basis.
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Example: Show that the standard basis {~i,~j,~k} for R3 is right-handed.

Let ~v and ~w be any vectors in R3 with ~v × ~w 6= 0. Show that {~v, ~w,~v × ~w} is
right-handed.

The first part is clear, since

det(~i ~j ~k) = det(I3) = 1 > 0.

Also, it is not difficult to verify that

det(~v ~w ~v × ~w) = (~v × ~w) · (~v × ~w) > 0.

Chapter 8: Eigenvalues and Eigenvectors

Section 8.1: Definitions

Example: Consider the transformation T : R2 → R2 defined by

T

(
x
y

)
=

(
23 −12
40 −21

)(
x
y

)
.

It is hard to get an idea of what this transformation does to vectors by looking at
this formula. However, note that

T

(
3
5

)
=

(
9
15

)
= 3

(
3
5

)
and T

(
1
2

)
=

(
−1
−2

)
= −1

(
1
2

)
.

In other words, the linear transformation T acts like scalar multiplication on these
vectors.

If you’re paying close attention, you’ll notice that the set

B =

{(
3
5

)
,

(
1
2

)}
is a basis for R2. Let’s look at the matrix of T relative to the basis B. Since we
already know what we get when we apply T to the basis vectors, we just have to
find the coordinates of the results with respect to B. In this case, it is easy to see
that [

T

(
3
5

)]
B

=

(
3
0

)
and

[
T

(
1
2

)]
B

=

(
0
−1

)
.
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Therefore, the matrix of T relative to the the basis B is(
3 0
0 −1

)
.

What this is saying is that if we represent the vectors in R2 with in the basis B, the
action of T is greatly simplified–it becomes a diagonal matrix.

So we were able to do this for T , but can it always be done? That is one of the
questions that we will answer as we go throughout this chapter.

Definition 49 Suppose T : V → V is a linear operator. Suppose λ is a real number
and ~v ∈ V is a nonzero vector such that

T (~v) = λ~v.

Then λ is an eigenvalue of T , and ~v is an eigenvector of T associated with λ. The
set ET (λ) = {~v ∈ V : T (~v) = λ~v} is the eigenspace of T associated with λ.

In the example above, T has an eigenvalue 3 with eigenvector (3, 5)T and another
eigenvalue −1 with eigenvector (1, 2)T .

Theorem 57 Suppose A is an n× n matrix and T : Rn → Rn is defined by T (~v) =
A~v. Then the real number λ is an eigenvalue of T if and only if det(λI − A) = 0.

Proof : In this case, we can handle both “directions” at the same time: λ is an
eigenvalue of T ⇔ T (~v) = λ~v for some nonzero ~v ∈ Rn ⇔ A~v = λ~v ⇔ λ~v − A~v = ~0
⇔ (λI −A)~v = ~0. This last statement is equivalent to saying that there is a nonzero
vector in ker(λI − A), which means this matrix is singular, which is equivalent to
det(λI − A) = 0.

What this is saying is that if the linear operator in question is defined by matrix
multiplication (T (~v) = A~v), then we can find its eigenvalues by solving the equation
det(λI −A) = 0. It ends up that det(λI −A) is a nth degree polynomial in λ.

Definition 50 Suppose A is an n × n matrix. The nth degree polynomial in the
variable λ defined by

det(λI − A)

is the characteristic polynomial of A. The real zeros of the characteristic polynomial
(real numbers that are solutions of the characteristic equation det(λI − A) = 0)
are called the eigenvalues of the matrix A. A nonzero vector ~v ∈ Rn such that
(λI − A)~v = ~0 is an eigenvector of A associated with λ. The solution space

EA(λ) = {~v ∈ Rn : (λI − A)~v = ~0}
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of this homogeneous system is the eigenspace of A associated with λ.

This is the definition that we’ll use for this class, but please be aware that this defi-
nition is not standard. Most people are perfectly happy to say that a matrix has
complex eigenvalues. However, in this book, a matrix that has only complex conju-
gate solutions to the characteristic equation will be said to have no eigenvalues.

Example: If

A =

(
0 −1
1 0

)
,

then the characteristic polynomial is

det

(
λ 1
−1 λ

)
= λ2 + 1,

which has solution λ = ±i. Therefore, we say that A has no eigenvalues (even though
most of the rest of the world would say that A has eigenvalues ±i with corresponding
complex eigenvectors).

Example: Find the eigenvalues of the matrix

A =

 1 2 −1
1 0 1
4 −4 5

 .

For each eigenvalue, find a basis for the associated eigenspace.

To find the eigenvalues, we solve the characteristic equation

0 = det

 λ− 1 −2 1
−1 λ −1
−4 4 λ− 5

 = (λ− 1)det

(
λ −1
4 λ− 5

)
+ 2 det

(
−1 −1
−4 λ− 5

)

+det

(
−1 λ
−4 4

)
= (λ− 1)(λ(λ− 5) + 4) + 2(−(λ− 5)− 4) + (−4 + 4λ)

= (λ−1)(λ2−5λ+4)+2(−λ+1)+(−4+4λ) = λ3−5λ2+4λ−λ2+5λ−4−2λ+2−4+4λ

= λ3 − 6λ2 + 11λ− 6.

Our best bet here is to try to find a root of the characteristic polynomial by trying
the factors of the first and last coefficients (use the rational roots theorem). If we
try λ = 1, we find

(1)3 − 6(1) + 11(1)− 6 = 1− 6 + 11− 6 = 0.
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Thus (λ− 1) is a factor of the characteristic polynomial, and upon performing long
division, we find

λ2 − 5λ+ 6

λ− 1 )λ3 − 6λ2 + 11λ− 6
−λ3 + λ2

−5λ2 + 11λ− 6
5λ2 − 5λ
6λ− 6
−6λ+ 6
0

.

If λ2 − 5λ+ 6 = 0, then

λ2− 5λ+
25

4
= −6

25

4
⇒

(
λ− 5

2

)2

=
1

4
⇒ λ− 5

2
= ±1

2
⇒ λ =

5

2
± 1

2
= 3 or 2.

Thus A has three eigenvalues 3, 1, and 2. If λ = 1, then

λI − A =

 0 −2 1
−1 1 −1
−4 4 −4

 ∼
 1 −1 1

0 −2 1
0 0 0

 ∼
 1 0 1

2

0 1 −1
2

0 0 0

 .

This implies that in the homogeneous system of equations (λI − A)~x = ~0, there is
only one free variable. Therefore, a basis for the null space of the matrix (λI − A)
with λ = 1 is any nonzero solution to the homogeneous system. One such solution
is 

 −1
1
2


For λ = 2, we have

λI − A =

 1 −2 1
−1 2 −1
−4 4 −3

 ∼
 1 −2 1

0 0 0
0 −4 1

 ∼
 1 0 1

2

0 1 −1
4

0 0 0

 .

In this case, a basis for the null space is
 −2

1
4

 .
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If λ = 3, then

λI − A =

 2 −2 1
−1 3 −1
−4 4 −2

 ∼
 1 −3 1

0 4 −1
0 −8 2

 ∼
 1 0 1

4

0 1 −1
4

0 0 0

 .

Thus, a basis for this eigenspace is
 −1

1
4

 .

Section 8.2: Similarity

As we saw in the last chapter, we can find a matrix representation for any linear
operator T : V → V . Also, we can construct the change of basis matrix so that we
can start with the representation with respect to one basis and find the representation
with respect to another basis.

One question that we might ask ourselves is that if we are given such an operator T ,
which basis should we choose to represent it?

Definition 51 An n × n matrix A is similar to an n × n matrix B if and only if
A = P−1BP for some nonsingular n× n matrix P . This relation is denoted

A ∼ B.

Here are some simple properties of this relation:

Theorem 58 For any n× n matrices A, B, and C,
a. A ∼ A (reflexivity)
b. if A ∼ B, then B ∼ A (symmetry)
c. if A ∼ B and B ∼ C, then A ∼ C (transitivity)

For a given n × n matrix A, we call the set of all matrices that are similar to A its
similarity class. The properties above show that any two matrices in the similarity
class of a given matrix must be similar to each other.

It is easy to take a matrix A and a nonsingular matrix P and use these to create
a matrix that is similar to A: we just find P−1AP . But it is generally much more
difficult to take two square matrices of the same size and determine whether or not
they are similar.
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One test for similarity is to take the determinant. Suppose that A is n× n and P is
n× n and nonsingular such that B = P−1AP . Then

P−1P = I ⇒ 1 = det(I) = det(P−1P ) = det(P−1)det(P ).

Therefore,

det(B) = det(P−1AP ) = det(P−1)det(A)det(P ) = det(A).

This tells us that if two matrices are similar, they must have the same determinant.
Another way of saying this is that if we take the determinants of two n×n matrices
and we do not get the same result, we know that they are not similar.

Definition 52 The main diagonal of an n × n matrix A = [aij] consists of those
positions where the row index is equal to the column index. The trace of A, denoted
by tr(A), is the sum of the entries on the main diagonal of A. That is,

tr(A) =
n∑
k=1

akk.

Theorem 59 Suppose A and B are n×n matrices, P is an invertible n×n matrix,
and r is a real number. Then
a. tr(A+B) = tr(A) + tr(B)
b. tr(rA) = r tr(A)
c. tr(AB) = tr(BA)
d. tr(A) = tr(P−1AP )

One of the things that this theorem says is that the trace is a linear function. Another
thing that the theorem says is that if two matrices are similar, they have the same
trace. However, even if two matrices have the same determinant and the same trace,
that is not enough to say that they are similar. An even better test for similarity
is

Theorem 60 If two matrices are similar, then they have the same characteristic
polynomial.

Proof : If A is a square matrix and B = P−1AP , then

det(λI −B) = det(λI − P−1AP ) = det(P−1(λI)P − P−1AP )

= det(P−1(λI − A)P ) = det(λI − A).
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Note that this is another way to test that two matrices are not similar, but it is still
possible to find matrices that share the same characteristic polynomial but are not
similar.

We can use the idea of a matrix representation to extend the idea of a characteristic
polynomial to any linear operator T : V → V operating on a finite dimensional
vector space V .

Definition 53 Suppose T : V → V is a linear operator on a finite-dimensional
vector space V . The characteristic polynomial of T is the characteristic polynomial
of a matrix that represents T relative to some basis for V .

Definition 54 A diagonal matrix is a square matrix whose only nonzero entries
occur on the main diagonal of the matrix.

Definition 55 An n×n matrix A is diagonalizable if and only if there is a diagonal
matrix D with D ∼ A.

We will continue to study which matrices are diagonalizable and how this relates to
the eigenvalues and eigenvectors of the matrix. Of course, if an n × n matrix A is
diagonalizable, then so is every matrix that is similar to A.

Section 8.3: Diagonalization

Recall that our goal is, given a matrix A, find an invertible matrix P such that
P−1AP is invertible. The next two theorems give the answer.

Theorem 61 Suppose B = {~u1, . . . , ~un} is an ordered basis for a vector space V
and T : V → V is a linear operator. Let A be the matrix of T relative to B. Then
~uj is an eigenvector of T if and only if the jth column of A is equal to λ~ej for some
real number λ. In this case, λ is the eigenvalue that ~uj is associated with.

Proof : (⇒) Suppose that ~uj is an eigenvector of T associated with the eigenvalue
λ. Since A is the matrix of T ,

[T (~v)]B = A[~v]B

for all ~v ∈ V . The jth column of A is

A~ej = A[~uj]B = [T (~uj)]B = [λ~uj]B = λ~ej.

(⇐) Suppose that the jth column of A is λ~ej for some λ ∈ R. Then

[T (~uj)]B = A[~uj]B = A~ej = λ~ej = [λuj]B.
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Since the coordinate mapping [·]B is one-to-one, we have that

T (~uj) = λuj.

Theorem 62 A linear operator T : V → V defined on a finite dimensional vector
space V can be represented by a diagonal matrix if and only if V has an ordered basis
{~u1, . . . , ~un} with all elements being eigenvectors of T . In this situation, the entries
on the main diagonal of the matrix are the eigenvalues of T and ~uj is an eigenvector
associated with the jj-entry of the matrix.

Proof : (⇒) Suppose that T can be represented by a diagonal matrixD = diag(λ1, . . . , λn)
relative to a basis B = {~u1, . . . , ~un}. Then

[T (~v)]B = D[~v]B for all ~v ∈ V.

Then
[T (~uj)]B = D[~uj]B = D~ej = λj~ej = λj[~uj]B.

Again, since [·]B is one-to-one, we must have T (~uj) = λ~uj.

(⇐) Suppose that B = {~u1, . . . , ~un} are eigenvectors of T corresponding to eigenval-
ues λ1, . . . , λn, and B is a basis for V . Suppose also that A is the matrix represen-
tation of T with respect to the basis B. Then

A~ej = A[~uj]B = [T (~uj)]B = [λj~uj]B = λj~ej.

Therefore, the jth column of A is the jth column of the identity matrix multiplied
by λj, or in other words A = diag(λ1, . . . , λn).

Notice that a set of eigenvectors that is a basis cannot always be found. Sometimes
a matrix/operator does not have enough linearly independent eigenvectors to form
a basis.

We can be assured that we can find a basis of eigenvectors for an n-dimensional
space V if the characteristic polynomial has n real roots, and if for each distinct
root, the dimension of the corresponding eigenspace is equal to the multiplicity of
the root.

Theorem 63 Suppose λ1, . . . , λn are distinct eigenvalues of a linear operator T :
V → V . For i = 1, . . . , n, suppose {~ui1, . . . , ~uiri} is a linearly independent subset of
ET (λi). Then

{~u11, . . . , ~u1r1 , ~u21, . . . , ~u2r2 , . . . , ~un1, . . . , ~unrn}
is a linearly independent set.
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Proof : First let’s do the special case where we have one eigenvector ~ui associated
with each eigenvalue λi. We will use mathematical induction on n, the number of
distinct eigenvalues. For the base case n = 1, then {u1} is a linearly independent
set, so we’re done. Suppose that for some n ≥ 1, the set {~u1, . . . , ~un} is linearly inde-
pendent. We want to show that the set {~u1, . . . , ~un+1} is also linearly independent.
Suppose that

a1~u1 + · · ·+ an+1~un+1 = ~0.

Applying T to both sides of this equation, we get

~0 = T (~0) = T (a1~u1 + · · ·+ an+1~un+1) = a1T (~u1) + · · ·+ an+1T (~un+1)

= a1λ1~u1 + · · ·+ an+1λn+1~un+1.

Now we multiply our first equation by λn+1 to obtain

~0 = λn+1
~0 = λn+1(a1~u1 + · · ·+ an+1~un+1) = a1λn+1~u1 + · · ·+ an+1λn+1~un+1.

Subtracting the last two equations, we get

~0 = a1(λ1 − λn+1)~u1 + · · ·+ an(λn − λn+1)~un + an+1(λn+1 − λn+1)~un+1

= a1(λ1 − λn+1)~u1 + · · ·+ an(λn − λn+1)~un.

Since {~u1, . . . , ~un} is linearly independent, we must have

a1(λ1 − λn+1) = · · · = an(λn − λn+1) = 0.

Because we have distinct eigenvalues, this implies that

a1 = . . . = an = 0,

so our original equation becomes

an+1~un+1 = ~0.

The vector ~un+1 is nonzero (because it is an eigenvector), so an+1 = 0 as well.
Therefore, {~u1, . . . , ~un+1} is linearly independent.

Now let’s assume that for each i = 1, . . . , n we have a linearly independent subset
{~ui1, . . . , ~uiri} of ET (λi). As usual, we take a linear combination of all the vectors
and set it equal to zero:

(a11~u11 + · · ·+ a1r1~u1r1) + · · ·+ (an1~un1 + · · ·+ anrn~unrn) = ~0.
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Let’s define
~uj := aj1~uj1 + · · ·+ ajrj~ujrj , j = 1, . . . , n.

Then ~uj ∈ ET (λj). With this notation, our linear combination above can be written
as

1~u1 + · · ·+ 1~un = ~0.

In this equation, we will drop any terms where ~ui = ~0. Then with the remaining
terms we have a linear combination of eigenvectors of T corresponding to distinct
eigenvalues, where all of the coefficients are equal to one. The first part of our proof
shows that these eigenvectors are linearly independent. Therefore, when we were
dropping zero terms, we must have dropped all the terms. In other words,

~0 = ~uj = aj1~uj1 + · · ·+ ajrj~ujrj , j = 1, . . . , n,

and the assumption that each of these sets of vectors is linearly independent shows
that all of the coefficients must be zero. Therefore, the set

{~u11, . . . , ~u1r1 , ~u21, . . . , ~u2r2 , . . . , ~un1, . . . , ~unrn}

is linearly independent.

Example: Which of the following matrices can be diagonalized?

A =

 4 1 1
0 7 1
0 0 2

 , B =

 4 1 1
0 7 1
0 0 7

 , C =

 4 1 1
0 7 0
0 0 7

 .

It is easy to see that the characteristic polynomial of A is

det(λI − A) = (λ− 4)(λ− 7)(λ− 2),

so the eigenvalues of A are 4, 7, and 2. As we have seen, eigenvectors corresponding to
distinct eigenvalues form a linearly independent set, so A can be diagonalized.

For B, the characteristic polynomial is

det(λI −B) = (λ− 4)(λ− 7)(λ− 7),

so we can’t use our result about eigenvectors corresponding to distinct eigenvalues.
We have to see if the eigenspace corresponding to λ = 7 has dimension one or
dimension two. Since

7I −B =

 −3 −1 −1
0 0 −1
0 0 0

 ∼
 1 1

3
0

0 0 1
0 0 0

 ,
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the eigenspace, which is just the solution space of the homogeneous equation with
coefficient matrix (7I − B). Since there is only one free variable, there is only one
linearly independent vector in this set. Therefore B cannot be diagonalized.

For matrix C, we get the same characteristic polynomial as we did with B, so the
eigenvalues are the same. However, in this case

7I − C =

 −3 −1 −1
0 0 0
0 0 0

 ,

so there will be two free variables this time. Therefore, we can come up with a basis
for R3 by taking two linearly independent vectors from the eigenspace for λ = 7 and
one from the eigenspace for λ = 4. Thus C can be diagonalized.

Theorem 64 A linear operator T : V → V defined on a finite dimensional vec-
tor space V can be represented by a diagonal matrix if and only if the sum of the
dimensions of all the eigenspaces is equal to dim(V ).

Proof : (⇒) Suppose that T can be represented by diagonal matrix, and that the
unique diagonal entries are λ1, . . . , λr. As we have proved previously, this implies
that λ1, . . . , λr are eigenvalues of T , and there exists a basis for V that consists of
eigenvectors corresponding to these eigenvalues. The eigenvectors in this basis that
correspond to λi must span ET (λi), for otherwise we can add more vectors from
ET (λi) until we had a basis for that subspace. But then we could add the same
vectors to our basis, and we would have a linearly independent set with more vectors
than dim(V ). Hence,

r∑
i=1

dim(ET (λi)) = dim(V ).

By following the same reasoning, we conclude that there cannot be any other eigenspaces.
Therefore, the sum of all the dimensions of the eigenspaces of T is equal to the di-
mension of V .

(⇐) Suppose that the sum of all the eigenspaces is equal to dim(V ). Then we can
find a basis for each eigenspace, and the union of all these bases will be linearly
independent, since each basis corresponds to a distinct eigenvalue. Since this set is
linearly independent and contains dim(V ) elements, it is a basis for V . Since V has
a basis of consisting of eigenvectors of T , T can be diagonalized.

Corollary 1 Suppose T : V → V is a linear operator defined on an n-dimensional
vector space V . If T has n distinct eigenvalues, then T can be represented by a
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diagonal matrix.

Section 8.4: Symmetric Matrices

Definition 56 A matrix is symmetric if and only if it equals its transpose.

Most of the results in this section will use the dot product on Rn. Recall

Definition 57 Given two vectors ~x and ~y from Rn, their dot product is defined by

~x · ~y =
n∑
k=1

xkyk = x1y1 + x2y2 + · · ·+ xnyn.

In terms of matrix multiplication, we can write the dot product between two column
vectors in Rn as

~x · ~y = xTy.

Definition 58 Vectors ~x and ~y from Rn are said to be orthogonal if

~x · ~y = 0

Definition 59 A set of vectors {~u1, . . . , ~uk} ⊂ Rn is said to be orthogonal if

~ui · ~uj = 0

whenever i 6= j. The set of vectors is orthonormal if it is orthogonal and

~ui · ~ui = 1

for i = 1, . . . , k.

Theorem 65 Suppose A is an n× n matrix. For any vectors ~v and ~w in Rn,

(A~v) · ~w = ~v · (AT ~w).

Proof : We have that

(A~v) · ~w = (A~v)T ~w = ~vTAT ~w = ~vT (AT ~w) = ~v · (AT ~w).

Theorem 66 An n× n matrix A is symmetric if and only if

(A~v) · ~w = ~v · (A~w)

for all vectors ~v, ~w ∈ Rn.
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Proof : (⇒) Since A is symmetric, AT = A, and therefore,

(A~v) · ~w = ~v · (AT ~w) = ~v · (A~w).

(⇐) Suppose (A~v) · ~w = ~v · (A~w) holds for all vectors in Rn. Write the i, j-element
of A as (A~ej) · ei. Then

aij = (A~ej) · ~ei = ~ej · (A~ei) = aji,

so A is symmetric.

Definition 60 A matrix P is orthogonal if and only if P TP = I.

This means that the inverse of an orthogonal matrix is its transpose. This is especially
useful when a change of basis matrix is orthogonal. If we have a symmetric matrix
A and we change basis with an orthogonal matrix P , then

(P−1AP )T = P TAT (P T )T = P TAP = P−1AP,

so the matrix with respect to the new basis is symmetric also.

For the next result, we will need to recall something about complex numbers. If
a, b ∈ R, then the conjugate of the complex number z = a + bi is z̄ = a − bi. In
particular, note that zz̄ = a2 +b2 is a real number. For a vector ~v containing complex
entries, ~v will be the vector obtained by conjugating each entry.

Theorem 67 The characteristic polynomial of a n×n symmetric matrix has n real
roots.

Proof : Suppose A is an n× n symmetric matrix. We know that the characteristic
polynomial of A has degree n, so the fundamental theorem of algebra tells us that it
must have n complex roots, counting multiplicity. We have to show that these roots
are all real. Suppose that λ is a root of the characteristic polynomial, meaning that
λ is an eigenvalue of A. Suppose that ~v is the corresponding eigenvector (which may
have nonreal entries if λ is not real). Recall that A has real entries, so we have

λ~v
T
~v = ~v

T
(λv) = ~v

T
(A~v) = (A~v)T~v = (A~v)T~v = (λ~v)T~v = λ̄~v

T
~v.

Since ~v
T
~v is not zero, we must have that λ̄ = λ, which implies that the imaginary

part of λ is zero.

Theorem 68 Suppose A symmetric matrix A has eigenvectors ~v1 and ~v2 associated
with distinct eigenvalues λ1 and λ2, respectively. Then ~v1 and ~v2 are orthogonal.
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Proof : We have that

λ1~v
T
1 ~v2 = (λ1~v1)

T~v2 = (A~v1)
T~v2 = vT1 (A~v2) = ~vT1 (λ2~v2) = λ2~v

T
1 ~v2.

Since λ1 6= λ2, we must conclude that ~vT1 ~v2 = 0.

Theorem 69 If A is a symmetric n × n matrix, then there exists and orthogonal
matrix P such that P−1AP = D, and diagonal matrix. The eigenvalues of A lie on
the main diagonal of D.

Proof : Omitted.

Section 8.5: Systems of Differential Equations

You have probably had some experience already with differential equations. In gen-
eral, first order ordinary differential equation has the form

y′ = f(x, y),

where y = y(x) is an unknown function that we wish to solve for. A simple example
is the equation

y′ = ay.

What this says is that we are looking for a function whose derivative is a constant
times the original function. It is easy to see that the function y(x) = Ceax is a
solution for any choice of the constant C, since

y′ = aCeax = ay.

In a constant coefficient system of linear ordinary differential equations, instead of
one unknown function, we have unknown functions y1, . . . , yn, and the derivative
of the unknown functions is a linear combination of itself and the other unknown
functions. In other words, each unknown function yi satisfies and equation of the
form

y′i = ai1y1 + · · ·+ ainyn.

If we think of each of the unknown functions as being an entry of a vector ~y(x), then
we can write our equations as

d

dx

 y1
...
yn

 =

 a11y1 + · · ·+ a1nyn
...

an1y1 + · · ·+ annyn

 =

 a11 · · · a1n
...

...
...

an1 · · · ann


 y1

...
yn

 .
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Therefore, if we consider the coefficients in the equations as the entries of a matrix
A, then we can write our system of differential equations as

~y′ = A~y,

where

~y′ =

 y′1
...
y′n

 .

Notice that this looks a lot like our simple example y′ = ay, except that now we have
vectors of functions and matrices instead of functions and scalars. In that case, we
were able to solve the equation by guessing that an exponential solution would work
because of the form. Let’s try the same thing here. We’ll assume that our solution
has the form

~y(x) = erx~v,

where ~v ∈ Rn is a constant vector. Then ~y′(x) = rerx~v, and if this guess is indeed a
solution, we must have

rerx~v = Aerx~v.

Canceling the term erx from both sides, we find that

A~v = r~v.

Of course we recognize this as the equation for ~v 6= ~0 to be an eigenvector of A
corresponding to the eigenvalue r. Therefore, the vector function ~y(x) = erx~v will
be a solution to the equation ~y(x) = A~y provided that r is an eigenvalue of A with
eigenvector ~v. But notice that r could be any eigenvalue. of A. Also, any constant
multiple of a solution is a solution. In fact, if ~y1, . . . , ~yn satisfy ~yj = A~yj and c1, . . . , cn
are constants, then

d

dx
(c1~y1 + · · ·+ cn~yn) = c1~y1 + · · ·+ cn~yn = c1A~y1 + · · ·+ cnA~yn = A(c1~y1 + · · · cn~yn),

so a linear combination of solutions to our equation is again a solution.

As it is, the problem ~y = A~y doesn’t have a unique solution, but we can make the
problem have a unique solution if we add another requirement. If we know the value
of all the unknown ~y(x) at a certain point x0, say ~y(x0) = ~y0, and if we have found
solutions ~y1(x), . . . , ~yn(x), then we can find a solution that satisfies this initial value
by taking a linear combination of these solutions and solving the problem

c1~y1(x0) + · · ·+ cn~yn(x0) = ~y0.
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By now, we easily recognize this as a system of linear equations whose coefficient
matrix has the columns ~y1(x0), . . . , ~yn(x0), and we know that this problem will have
a unique solution provided that these columns are linearly independent.

Since the solutions we are using in this linear combination were found from eigen-
values and eigenvectors of the matrix n× n matrix A, we need to be able to find n
linearly independent eigenvectors to be able to find our unique solution to the initial
value problem

~y′(x) = A~y(x), ~y(x0) = ~y0.

(Actually, this condition can be relaxed, but we’ll leave the details of that for an
actual class on ODE.)

Example: Solve the initial value problem

~y′ =

(
−3 4
6 −5

)
~y, ~y(0) =

(
2
4

)
.

First, we must find the eigenvalues and corresponding eigenvectors of the matrix.
Then we can use them to construct solutions to the equation. The characteristic
polynomial is

0 = det(λI − A) = det

(
λ+ 3 −4
−6 λ+ 5

)
= (λ+ 3)(λ+ 5)− 24 = λ2 + 8λ− 9.

Completing the square gives us

λ2 + 8λ+ 16 = 9 + 16 ⇒ (λ+ 4)2 = 25 ⇒ λ+ 4 = ±5 ⇒ λ = −4± 5 = 1 or − 9.

To find an eigenvector corresponding to λ = 1:(
4 −4
−6 6

)
∼
(

1 −1
0 0

)
⇒ v1 = v2 ⇒ ~v1 =

(
1
1

)
.

To find an eigenvector corresponding to λ = −9:(
−6 −4
−6 −4

)
∼
(

1 2
3

0 0

)
⇒ v1 = −2

3
v2 ⇒ ~v2 =

(
−2
3

)
.

Therefore, two solutions to our equation are

~y1(x) = ex
(

1
1

)
and ~y2(x) = e−9x

(
−2
3

)
.
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In order to find a solution that satisfies our initial condition, we solve

c1~y1(0) + c2~y2(0) =

(
2
4

)
⇒

(
1 −2
1 3

)(
c1
c2

)
=

(
2
4

)
(

1 −2 2
1 3 4

)
∼
(

1 −2 2
0 5 2

)
∼
(

1 0 12
5

0 1 2
5

)
.

Therefore, the solution to our initial value problem is

~y(x) =
12

5
ex
(

1
1

)
+

2

5
e−9x

(
−2
3

)
.

Example: Solve the initial value problem

~y′ =

(
9 5
−6 −2

)
~y, ~y(0) =

(
1
0

)
.

The characteristic polynomial of the matrix is

0 = det

(
λ− 9 −5

6 λ+ 2

)
= (λ− 9)(λ+ 2) + 30 = λ2 − 7λ+ 12.

Completing the square, we have

λ2−7λ+
49

4
= −12+

49

4
⇒
(
λ− 7

2

)2

=
1

4
⇒ λ− 7

2
= ±1

2
⇒ λ =

7

2
± 1

2
= 4 or 3.

We find an eigenvector corresponding to λ = 4(
−5 −5
6 6

)
∼
(

1 1
0 0

)
⇒ v1 = −v2 ⇒ ~v1 =

(
−1
1

)
and λ = 3 (

−6 −5
6 5

)
∼
(

1 5
6

0 0

)
⇒ v1 = −5

6
v2 ⇒ ~v2 =

(
−5
6

)
.

Therefore,

~y(x) = c1e
4x

(
−1
1

)
+ c2e

3x

(
−5
6

)
.
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The initial condition implies a system of equations with augmented matrix(
−1 −5 1
1 6 0

)
∼
(

1 5 −1
0 1 1

)
∼
(

1 0 −6
0 1 1

)
,

so the solution to the initial value problem is

~y(x) = −6e4x
(
−1
1

)
+ e3x

(
−5
6

)
.
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