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Chapter 5

Underlying Notions in Set Theory

c� ScienceCartoonsPlus.com. Reprinted with permission.

the ones in the above picture; for example, you might think of friends of yours that
could be grouped according to certain characteristics—those younger than 20, those
who are female, etc. Carefully label your picture. Make your example rich enough
that all of the regions in the picture have members.
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1)*%2.2(*3(4%#5%647#8)#!(4/%9(48&70#:;<#=>"=>>?@A?BC=CDD=AC?>EFC?GH0##



48 5 Underlying Notions in Set Theory

5.1 Subsets and Set Equality

A set is a collection of “things” usually called elements or members. The notationPay attention to the

difference between an

element of a set S and a

subset of a set S. A subset of

S is a set, while an element

of S is one of the things that

is in the set S.

x ∈ A means that x is a member of (an element of) the set A. The negation of x ∈ A is
written x /∈ A. It means that x is not a member of A.

As we saw in Chapter 2, we write A⊆ B (A is a subset of B) when every member of
A is a member of B, i.e.,

x ∈ A ⇒ x ∈ B .

The symbol ⊇ is also used when we want to read from right to left: B ⊇ A means
A⊆ B.

Proposition 5.1. Let A,B,C be sets.

(i) A⊆ A.

(ii) If A⊆ B and B⊆C then A⊆C.

Proof. (i) A⊆ A means “if x ∈ A then x ∈ A,” which is a true statement.

(ii) Assume A⊆ B and B⊆C. We need to show that if x ∈ A then x ∈C. Given x ∈ A,
A⊆ B implies that x ∈ B. Since B⊆C, this implies that x ∈C. ��

Another concept, already introduced in Chapter 2, is set equality: We write A = B
when A and B are the same set, i.e., when A and B have precisely the same members,
i.e., when

A⊆ B and B⊆ A . (5.1)

Note that equality of sets has a different flavor from equality of numbers. To prove
that two sets are equal often involves hard work—we have to establish the two subset
relations in (5.1).

Sometimes the same set can be described in two apparently different ways. For
example, let A be the set of all integers of the form 7m+1, where m ∈ Z, and let B
be the set of all integers of the form 7n−6, where n ∈ Z. We write this as

A = {7m+1 : m ∈ Z} and B = {7n−6 : n ∈ Z} .

Proposition 5.2. {7m+1 : m ∈ Z} = {7n−6 : n ∈ Z} .This proposition might be

too simple to be interesting.

We have included it to

illustrate how one proves

that two sets are equal.

Proof. We must prove that A⊆ B and B⊆ A.

The first statement means x ∈ A ⇒ x ∈ B. So let x ∈ A. Then, for some m ∈ Z,
x = 7m+1. But 7m+1 = 7(m+1)−6, and so we can set n = m+1, which gives
x = 7n−6; thus x ∈ B. This proves A⊆ B.
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Conversely, let x ∈ B. Then, for some n ∈ Z, x = 7n−6. But 7n−6 = 7(n−1)+1;
setting m = n−1 gives x = 7m+1, and so x ∈ A. This proves B⊆ A and establishes
our desired set equality. ��

Template for proving A = B. Prove that A⊆ B and B⊆ A.

Project 5.3. Define the following sets:

A := {3x : x ∈ N} ,

B := {3x+21 : x ∈ N} ,

C := {x+7 : x ∈ N} ,

D := {3x : x ∈ N and x > 7} ,

E := {x : x ∈ N} ,

F := {3x−21 : x ∈ N} ,

G := {x : x ∈ N and x > 7} .

Determine which of the following set equalities are true. If a statement is true, prove
it. If it is false, explain why this set equality does not hold.

(i) D = E. The sets A and F will make

an appearance in

Project 5.11.(ii) C = G.

(iii) D = B.

Here are some facts about equality of sets:

Proposition 5.4. Let A,B,C be sets.

(i) A = A.

(ii) If A = B then B = A.

(iii) If A = B and B = C then A = C.

These three properties should look familiar—we mentioned them already in Section We will see these properties

again in Section 6.1.1.1 when we talked about equality of two integers. We called the properties reflexivity,
symmetry, and transitivity, respectively.

Project 5.5. When reading or writing a set definition, pay attention to what is a
variable inside the set definition and what is not a variable. As examples, how do the
following pairs of sets differ?

The subscripts on

Tm,Vm,Wm are not necessary,

but this notation is often

useful to emphasize the fact

that m is a constant.

(i) S := {m : m ∈ N} and Tm := {m} for a specified m ∈ N.

(ii) U := {my : y ∈ Z, m ∈N, my > 0} and Vm := {my : y ∈ Z, my > 0} for a speci-
fied m ∈ N.
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(iii) Vm and Wm := {my : y ∈ Z, y > 0} for a specified m ∈ Z.

Find the simplest possible way of writing each of these sets.

The empty set, denoted by ∅, has the feature that x ∈ ∅ is never true. We allow
ourselves to say the empty set because there is only one set with this property:

Proposition 5.6. If the sets ∅1 and ∅2 have the property that x ∈∅1 is never trueProposition 5.6 asserts the

uniqueness of ∅. The

existence of ∅ is one of the

hidden assumptions

mentioned in Section 1.4.

and x ∈∅2 is never true, then ∅1 = ∅2.

Proof. Assume that the sets ∅1 and ∅2 have the property that x ∈∅1 is never true
and x ∈∅2 is never true. Suppose (by means of contradiction) that ∅1 �= ∅2, that is,
either ∅1 �⊆∅2 or ∅1 �⊇∅2. We first consider the case ∅1 �⊆∅2. This means there
is some x ∈∅1 such that x /∈∅2. But that cannot be, since there is no x ∈∅1. The
other case, ∅1 �⊇∅2, is dealt with similarly. ��

Proposition 5.7. The empty set is a subset of every set, that is, for every set S, ∅⊆ S.

Project 5.8. Read through the proof of Proposition 5.1 having in mind that A is
empty. Then there exists no x that is in A. Do you see why the proof still holds?

5.2 Intersections and Unions

The intersection of two sets A and B is

A∩B = {x : x ∈ A and x ∈ B} .

The union of A and B is

A∪B = {x : x ∈ A or x ∈ B} .

The set operations ∩ and ∪ give us alternative ways of writing certain sets. Here are
two examples:

Example 5.9. {3x+1 : x ∈ Z}∩{3x+2 : x ∈ Z} = ∅ .When two sets A and B
satisfy A∩B = ∅, we say

that A and B are disjoint. Example 5.10.
{2x : x ∈ Z, 3≤ x} = {x ∈ Z : 5≤ x}∩{x ∈ Z : x is even} .

Project 5.11. This is a continuation of Project 5.3, and so the following names
refer to the sets defined in Project 5.3. Again, determine which of the following set
equalities are true. If a statement is true, prove it. If it is false, explain why this set
equality does not hold.
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(i) A∩E = B.

(ii) A∩C = B.

(iii) E ∩F = A.

Project 5.12. Determine which of the following statements are true for all sets A,
B, and C. If a double implication fails, determine whether one or the other of the
possible implications holds. If a statement is true, prove it. If it is false, provide a “Providing a counterexample”

here means coming up with

a specific example of a set

triple A,B,C that violates

the statement.

counterexample.

(i) C ⊆ A and C ⊆ B ⇐⇒ C ⊆ (A∪B) .

(ii) C ⊆ A or C ⊆ B ⇐⇒ C ⊆ (A∪B) .

(iii) C ⊆ A and C ⊆ B ⇐⇒ C ⊆ (A∩B) .

(iv) C ⊆ A or C ⊆ B ⇐⇒ C ⊆ (A∩B) .

For two sets A and B, we define the set difference Another commonly used

notation for set difference is

A\B.A−B = {x : x ∈ A and x �∈ B} .

Given a set A⊆ X , we define the complement of A in X to be X −A. If the bigger
set X is clear from the context, one often writes Ac for the complement of A (in X).

Example 5.13. Recall that the even integers are those integers that are divisible by 2.
The odd integers are defined to be those integers that are not even. Thus the set of
odd integers is the complement of the set of even integers.

Proposition 5.14. Let A,B⊆ X.

A⊆ B if and only if Bc ⊆ Ac.

Theorem 5.15 (De Morgan’s laws). Given two subsets A,B⊆ X,

Here are two pictures of De

Morgan’s equalities.

(A∩B)c = Ac∪Bc and (A∪B)c = Ac∩Bc.

In words: the complement of the intersection is the union of the complements and the
complement of the union is the intersection of the complements.

Project 5.16. Someone tells you that the following equalities are true for all sets
A,B,C. In each case, either prove the claim or provide a counterexample.

(i) A− (B∪C) = (A−B)∪ (A−C) .

(ii) A∩ (B−C) = (A∩B)− (A∩C) .
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As another example of a recursive construction, we invite you to explore unions and
intersections of an arbitrary number of sets.

Project 5.17 (Unions and intersections). Given sets A1,A2,A3, . . . , develop recur-
sive definitions for

k�

j=1
A j and

k�

j=1
A j .

Find and prove an extension of De Morgan’s laws (Theorem 5.15) for these unions
and intersections.

Proposition 5.7 says that the empty set ∅ is “extreme” in that it is the smallestLogical paradoxes arise

when one treats the “set of

all sets” as a set. The “set” R
in Project 5.18 is an

indication of the problem.

These logical issues do not

cause difficulties in the

mathematics discussed in

this book.

possible set. Thus S �= ∅ if and only if there exists an x such that x ∈ S. One would
like to go to the other extreme and define a set that contains “everything”; however,
there is no such set.

Project 5.18. Let R = {X : X is a set and X �∈ X}. Is the statement R ∈ R true or
false?

5.3 Cartesian Products

Let A and B be sets. From them we obtain a new set

A×B := {(a,b) : a ∈ A and b ∈ B} .

We call (a,b) an ordered pair. The set A×B is called the (Cartesian) product of ACartesian products are

named after René Descartes

(1596–1650), who used this

concept in his development

of analytic geometry.

and B. It is the set of all ordered pairs whose first entry is a member of A and whose
second entry is a member of B.

Example 5.19. (3,−2) is an ordered pair of integers, and Z×Z denotes the set of all
ordered pairs of integers. (Draw a picture.)

Notice that when A �= B, A×B and B×A are different sets.

Proposition 5.20. Let A,B,C be sets.

(i) A× (B∪C) = (A×B)∪ (A×C).

(ii) A× (B∩C) = (A×B)∩ (A×C).

Project 5.21. Let A,B,C,D be sets. Decide whether each of the following statements
is true or false; in each case prove the statement or give a counterexample.
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(i) (A×B)∪ (C×D) = (A∪C)× (B∪D).

(ii) (A×B)∩ (C×D) = (A∩C)× (B∩D).

5.4 Functions

We come to one of the most important ideas in mathematics. There is an informal
definition and a more abstract definition of the concept of a function. We give both.

First Definition. A function consists of

• a set A called the domain of the function;

• a set B called the codomain of the function;

• a rule f that assigns to each a ∈ A an element f (a) ∈ B.

A useful shorthand for this is f : A→ B. This notation suggests that

the function f picks up each

a ∈ A and carries it over to

B, placing it precisely on top

of an element f (a) ∈ B.

Example 5.22. f : Z→ Z given by f (n) = n3 +1.

Example 5.23. Every sequence (x j)∞
j=1 is a function with domain N, where we write

x j instead of f ( j).

The graph of f : A→ B is Sometimes mathematicians

ask whether a function is

well defined. What they

mean is this: “Does the rule

you propose really assign to

each element of the domain

one and only one value in

the codomain?”

Γ ( f ) = {(a,b) ∈ A×B : b = f (a)} .

Project 5.24. Discuss how much of this concept coincides with the notion of the
graph of f (x) in your calculus courses.

A possible objection to our first definition is that we used the undefined words rule
and assigns. To avoid this, we offer the following alternative definition of a function
through its graph:

Second Definition. A function with domain A and codomain B is a subset Γ of
A×B such that for each a ∈ A there is one and only one element of Γ whose first
entry is a. If (a,b) ∈ Γ , we write b = f (a).

Project 5.25. Discuss our two definitions of function. What are the advantages and
disadvantages of each? Compare them with the definition you learned in calculus.
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Example 5.26. A binary operation on a set A is a function f : A×A→A. For example,
Axiom 1.1 could be restated as follows: There are two functions plus: Z×Z→ Z
and times: Z×Z→ Z such that for all integers m, n, and p,

plus(m,n) = plus(n,m)
plus(plus(m,n), p) = plus(m,plus(n, p))

times(m,plus(n, p)) = plus(times(m,n), times(m, p))
times(m,n) = times(n,m)

times(times(m,n), p) = times(m, times(n, p)) .

Review Question. Do you understand the difference between ∈ and ⊆?

Weekly reminder: Reading mathematics is not like reading novels or history. You need to think
slowly about every sentence. Usually, you will need to reread the same material later, often more
than one rereading.

This is a short book. Its core material occupies about 140 pages. Yet it takes a semester for most
students to master this material. In summary: read line by line, not page by page.


