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1 Motivation

1.1 Background

Iwasawa considers such field extension tower:Let K, = Q((yn+1)
QCKyCK,C---CK,C--CKy=UK,

We know that Gal(K,,/Q) = (Z/p"*Z)* and

Gal(Keo/Q) = 2, = (Z/pL)" © Ly

Gal(K,/K,) =T/I?" 2T,

To understand such field extension, it is natural to consider the group Z,[I',,] and how it acts on
other stuff.



1.2 Construction

In fact, we do not only consider Z,[I',,], we consider its inverse limit.
Let v € I be the topological generator. If m > n > 0 there is a natural map ¢, ,, : Z,[L',] —
Z,[I',] induced by the map I',,, — I,

Zy[Tn) 2 Z,[T]/((1 + )" - 1)

We take the inverse limit

Z,|[T]] £ §mZ,[T,] = UmZ, [T]/((1 + T)"" — 1)
Clearly, Z,[I'] C Z,[[I']], but they are different. In fact, Z,[[[']] is compactification of Z,[I']

Theorem 1 Z,[[I']] = Z,|[[T]], the isomorphism being induced by v — 1+ T



2 Structure of A-modules
Let A = Z,[[T]], we first discuss some property of A.

Definition 2 P(T) € Z,[T)] is called distinguished if P(T) = T™ + a,_1T" ' + -+ + ag with
a; € pZy,

Theorem 3 (p-adic Weierstrass preparation theorem)Let
F(T)=> aT €A
=0

and assume for some n we have a; € pZ,,0 < i1 <n — 1, but a; ¢ pZ,. Then f can be uniquely
written in the form f(T) = P(T)U(T), whereU(T') € A is a unit and P(T) is a distinguished
polynomial of degree n.

More generally, Let f(T) inA, then we may write

f(T) =p"P(T)U(T)
where P and U as above and |1 is a nonnegative integer.
Theorem 4 (Division algorithm) If F(T) € A and P(T) is distinguished then uniquely
(T) = q(T)P(T) +r(T)
withr(T) € Z{T), deg r(T') <degP(T).

Now, we can conclude that A is a UFD. In fact, A is a noetherian regular local ring with Krull
dimension 2. The height O prime is 0, the height 1 prime is (p) and P(T") where P(T) is irreducible
and distinguished, the height 2 prime is (p, 7") which is the unique maximal ideal.

Lemma 5 Suppose f, g € A are relatively prime. Then the ideal (f,g) is of finite index in A

Lemma 6 Suppose f,qg € A are relatively prime. Then

* the natural map
A/(fg) = A(f) @ A/(g)

is an injection with finite cokernel

* there is an injection
A/(f) @ A/(g) = A/(fg)

with finite cokernel



Definition 7 Two A modules M and M’ are said to be pseudo-isomorphic, written
M~ M
if there is an exact sequence of A\ modules
0A—-M-—->M —B—0
Warning: M ~ M’ does not imply M’ ~ M. For example, (p,T) ~ A
Remark 8 For finitely generated A modules,
M~M &M ~M

Theorem 9 Let M be a finitely generated A module. Then

M~A® (@ AJ(p™)) @ (EB AJ(f(T)™))

wherer, s, t,n;, m; € Z, and f; is distingushied and irreducible.

Proof. Localization or row and column operation m

It is first proved by Iwasawa in terms of the group ring Z,[[I']]. Serre observed that the group
ring is isomorphic to A and deduced the structure theorem from some general results in commuta-
tive algebra.Paul Cohen showed that one could give a proof via row and column operation.



3 Adjoints

Let X be a finitely generated torsion A module. We know X will be pseudo-isomorphic to an
“elementary’ A module
E = oM/ (™)

where f; can be p or an irreducible distinguished polynomial. we define the characteristic polyno-
mial of X to be

char(X) = H i

We want to show such E is uniquely determined by X

Lemma 10 Ler X ~ @A /(f™) as above. Then
X @a Ny = B)=p o/ [ Ay

where p is height prime

Corollary 11 X is finite if and only if X @ A, = 0 for all height one prime

Lemma 12 Let ) : X — @,(X ® A,) be the natural map. Then Keri is finite and is the maximal
finite submodule of X

Now we know how to characterize the keri, how about C'okeriy? Before we describe Cokeri,
we define the adjoint of X



Definition 13 Define
&(X) = Homg,(Cokery, Q,/Z,)

the action of A is given by (vf)(x) = f(y'x) for v € T and x € Cokert. Hence,(g(T)f)(z) =
flg((M+T)~" = 1)x) for g(T) € A
Inspired by such action, for any A module X, we can define a new action of A on X by
Y*xT = ”y_lx

Let X be X with the new action. Then the adjoint of X is

Now we will compute the adjoint of X. First, we need to describe C'okery
Define an admissible sequence to be a sequence o, oy, - - - of elements of A such that o,, and
Char(X) are relatively prime, and 0,41 /0, € (p,T') for all n > 0. Note that

1 1 1
—AC—AC—AC---
(o) 01 02

and

Proposition 14 The map
1
¢ X ®n (UU—A) — Bp(X @ Ay)

1 1
x®——>(--~,x®—,-~~)

On On
is an isomorphism of A modules( the direct sum is over any set of p containing all (height one)
prime divisors of char(X) and such that o,, € A, for all n and p)

Applying X®, to the exact sequence
1 1
0—>A—->U—A— (U—A)/A—=0
On On

yields

1
X = @p(X @A) > X ® (UU—A)/A — 0

n

Therefore 1
Cokeryp = X @5 (U—A)/A
o

n

6



In fact, we can choose special o,, to make this more explicitly. For example, let o,, = (17" — 7)"
with 7 € pZ,then

1 1
U—A = A

On T—m

]

which is the ring of Laurent series.

Theorem 15 Assume f € A, 7 € pZ, and f(7) # 0. Then

P

AJ(F) = Homa, (A (f) © Alz—1/A, @y/2,) = a(A/ ()

Proof. For g = >"° \ a;(T — m)" with a; € Q,, define Resy_,g = a_;. Define a pairing

1=—

M) % M () @ Al 1/A] = ©,/Z,

abe

(a,b®c) = ResT:ﬂ(T)(mode)
|
Lemma 16 Suppose A and B are Z, modules with A = 7. Assume there is a nondegenerate

pairing

Ax B—Q,/Z,
then A= Homg, (B, Q,/Z,)

Corollary 17 If E is an elementary torsion A module, then E = o(E).

Proposition 18 Let X and Y be finitely generated torsion A modules with X ~ Y, then a(Y') ~
a(X)

Corollary 19 X ~ a(X), so a(X) us also finitely generated torsion A module.
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