Λ-modules

Peikai Qi

October 1, 2021

1 Motivation

1.1 Background

Iwasawa considers such field extension tower:Let $K_n = Q(\zeta_{p^{n+1}})$

 $Q \subset K_0 \subset K_1 \subset \cdots \subset K_n \subset \cdots \subset K_\infty = \cup K_n$

We know that $Gal(K_n/Q) = (\mathbb{Z}/p^{n+1}\mathbb{Z})^{\times}$ and

$$
Gal(K_{\infty}/Q) = \mathbb{Z}_p^{\times} \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \oplus \mathbb{Z}_p
$$

$$
Gal(K_n/K_0)=\Gamma/\Gamma^{p^n}\triangleq \Gamma_n
$$

To understand such field extension, it is natural to consider the group $\mathbb{Z}_p[\Gamma_n]$ and how it acts on other stuff.

1.2 Construction

In fact, we do not only consider $\mathbb{Z}_p[\Gamma_n]$, we consider its inverse limit.

Let $\gamma \in \Gamma$ be the topological generator. If $m \geq n \geq 0$ there is a natural map $\phi_{m,n} : \mathbb{Z}_p[\Gamma_m] \to$ $\mathbb{Z}_p[\Gamma_n]$ induced by the map $\Gamma_m \to \Gamma_n$

$$
\mathbb{Z}_p[\Gamma_n] \cong \mathbb{Z}_p[T]/((1+T)^{p^n} - 1)
$$

We take the inverse limit

$$
\mathbb{Z}_p[[\Gamma]] \triangleq \varprojlim \mathbb{Z}_p[\Gamma_n] \cong \varprojlim \mathbb{Z}_p[T]/((1+T)^{p^n} - 1)
$$

Clearly, $\mathbb{Z}_p[\Gamma] \subset \mathbb{Z}_p[[\Gamma]]$, but they are different. In fact, $\mathbb{Z}_p[[\Gamma]]$ is compactification of $\mathbb{Z}_p[\Gamma]$ **Theorem 1** $\mathbb{Z}_p[[\Gamma]] \cong \mathbb{Z}_p[[T]]$ *, the isomorphism being induced by* $\gamma \to 1 + T$

2 Structure of Λ-modules

Let $\Lambda = \mathbb{Z}_p[[T]]$, we first discuss some property of Λ .

Definition 2 $P(T) \in \mathbb{Z}_p[T]$ is called distinguished if $P(T) = T^n + a_{n-1}T^{n-1} + \cdots + a_0$ with $a_i \in p\mathbb{Z}_p$

Theorem 3 *(p-adic Weierstrass preparation theorem)Let*

$$
f(T) = \sum_{i=0}^{\infty} a_i T^i \in \Lambda
$$

and assume for some n we have $a_i \in p\mathbb{Z}_p$, $0 \le i \le n-1$, but $a_i \notin p\mathbb{Z}_p$. Then f can be uniquely *written in the form* $f(T) = P(T)U(T)$ *, where* $U(T) \in \Lambda$ *is a unit and* $P(T)$ *is a distinguished polynomial of degree n.*

More generally, Let f(T) inΛ*, then we may write*

$$
f(T) = p^{\mu} P(T) U(T)
$$

where P *and* U *as above and* µ *is a nonnegative integer.*

Theorem 4 *(Division algorithm) If* $F(T) \in \Lambda$ *and* $P(T)$ *is distinguished then uniquely*

$$
f(T) = q(T)P(T) + r(T)
$$

with $r(T) \in \mathbb{Z}[T]$ *, deg* $r(T) <$ *deg* $P(T)$ *.*

Now, we can conclude that Λ is a UFD. In fact, Λ is a noetherian regular local ring with Krull dimension 2. The height 0 prime is 0, the height 1 prime is (p) and $P(T)$ where $P(T)$ is irreducible and distinguished, the height 2 prime is (p, T) which is the unique maximal ideal.

Lemma 5 *Suppose* $f, g \in \Lambda$ *are relatively prime. Then the ideal (f,g) is of finite index in* Λ

Lemma 6 *Suppose* $f, g \in \Lambda$ *are relatively prime. Then*

• *the natural map*

$$
\Lambda/(fg) \to \Lambda/(f) \oplus \Lambda/(g)
$$

is an injection with finite cokernel

• *there is an injection*

$$
\Lambda/(f) \oplus \Lambda/(g) \to \Lambda/(fg)
$$

with finite cokernel

Definition 7 *Two* Λ *modules M and M' are said to be pseudo-isomorphic, written*

 $M \sim M'$

if there is an exact sequence of Λ *modules*

$$
0\to A\to M\to M'\to B\to 0
$$

Warning: $M \sim M'$ does not imply $M' \sim M$. For example, $(p, T) \sim \Lambda$

Remark 8 *For finitely generated* Λ *modules,*

$$
M\sim M'\Leftrightarrow M'\sim M
$$

Theorem 9 *Let* M *be a finitely generated* Λ *module. Then*

$$
M \sim \Lambda^r \oplus \left(\bigoplus_{i=1}^s \Lambda/(p^{n_i})\right) \oplus \left(\bigoplus_{j=1}^t \Lambda/(f_j(T)^{m_j})\right)
$$

where $r, s, t, n_i, m_j \in \mathbb{Z}$, and f_j is distingushied and irreducible.

Proof. Localization or row and column operation

It is first proved by Iwasawa in terms of the group ring $\mathbb{Z}_p[[\Gamma]]$. Serre observed that the group ring is isomorphic to Λ and deduced the structure theorem from some general results in commutative algebra.Paul Cohen showed that one could give a proof via row and column operation.

3 Adjoints

Let X be a finitely generated torsion Λ module. We know X will be pseudo-isomorphic to an "elementary' Λ module

$$
E=\oplus_i\Lambda/(f_i^{m_i})
$$

where f_i can be p or an irreducible distinguished polynomial. we define the characteristic polynomial of X to be

$$
char(X) = \prod f_i^{m_i}
$$

We want to show such E is uniquely determined by X

Lemma 10 Let $X \sim \bigoplus \Lambda/(f_i^{m_i})$ as above. Then

$$
X\otimes_\Lambda \Lambda_{\mathfrak{p}}=\oplus_{(f_i)={\mathfrak{p}}}\Lambda_{\mathfrak{p}}/f_i^{m_i}\Lambda_{\mathfrak{p}}
$$

where p *is height prime*

Corollary 11 X is finite if and only if $X \otimes \Lambda_p = 0$ for all height one prime

Lemma 12 Let $\psi: X \to \bigoplus_{\mathfrak{p}} (X \otimes \Lambda_{\mathfrak{p}})$ be the natural map. Then $Ker\psi$ is finite and is the maximal *finite submodule of* X

Now we know how to characterize the $ker\psi$, how about $Coker\psi$? Before we describe $Coker\psi$, we define the adjoint of X

Definition 13 *Define*

$$
\tilde{\alpha}(X) = Hom_{\mathbb{Z}_p}(Coker \psi, \mathbb{Q}_p/\mathbb{Z}_p)
$$

the action of Λ *is given by* $(\gamma f)(x) = f(\gamma^{-1}x)$ *for* $\gamma \in \Gamma$ *and* $x \in Coker \psi$ *. Hence*, $(g(T)f)(x) =$ $f(g((1+T)^{-1}-1)x)$ for $g(T) \in \Lambda$

Inspired by such action, for any Λ module X, we can define a new action of Λ on X by

 $\gamma * x = \gamma^{-1}x$

Let \tilde{X} be X with the new action. Then the adjoint of X is

$$
\alpha(X) = \tilde{\;} (X)
$$

Now we will compute the adjoint of X. First, we need to describe $Coker\psi$

Define an admissible sequence to be a sequence $\sigma_0, \sigma_1, \cdots$ of elements of Λ such that σ_n and Char(X) are relatively prime, and $\sigma_{n+1}/\sigma_n \in (p, T)$ for all $n \geq 0$. Note that

$$
\frac{1}{\sigma_0} \Lambda \subset \frac{1}{\sigma_1} \Lambda \subset \frac{1}{\sigma_2} \Lambda \subset \cdots
$$

and

$$
\varinjlim \frac{1}{\sigma_n} \Lambda = \cup \frac{1}{\sigma_n} \Lambda
$$

Proposition 14 *The map*

$$
\phi: X \otimes_{\Lambda} (\cup_{\sigma_n} \Lambda) \to \oplus_{\mathfrak{p}} (X \otimes_{\Lambda} \Lambda_{\mathfrak{p}})
$$

$$
x \otimes \frac{1}{\sigma_n} \to (\cdots, x \otimes \frac{1}{\sigma_n}, \cdots)
$$

is an isomorphism of Λ *modules(the direct sum is over any set of* p *containing all (height one) prime divisors of char(X) and such that* $\sigma_n \in \Lambda_{\mathfrak{p}}^{\times}$ *for all n and* \mathfrak{p} *)*

Applying $X \otimes_{\Lambda}$ to the exact sequence

$$
0 \to \Lambda \to \cup_{\sigma_n}^{\mathcal{A}} \Lambda \to (\cup_{\sigma_n}^{\mathcal{A}} \Lambda)/\Lambda \to 0
$$

yields

$$
X \to \bigoplus_{\mathfrak{p}} (X \otimes_{\Lambda} \Lambda_{\mathfrak{p}}) \to X \otimes (\cup \frac{1}{\sigma_n} \Lambda)/\Lambda \to 0
$$

Therefore

$$
Coker \psi \cong X \otimes_{\Lambda} (\cup_{\sigma_n}^{\Lambda} \Lambda)/\Lambda
$$

In fact, we can choose special σ_n to make this more explicitly. For example, let $\sigma_n = (T - \pi)^n$ with $\pi \in p\mathbb{Z}_p$ then

$$
\cup \frac{1}{\sigma_n} \Lambda = \Lambda[\frac{1}{T-\pi}]
$$

which is the ring of Laurent series.

Theorem 15 *Assume* $f \in \Lambda$, $\pi \in p\mathbb{Z}_p$ *and* $f(\pi) \neq 0$ *. Then*

$$
\Lambda/(f) \cong Hom_{\mathbb{Z}_p}(\Lambda/(f) \otimes \widetilde{\Lambda[\frac{1}{T-\pi}]}/\Lambda, \mathbb{Q}_p/\mathbb{Z}_p) \cong \alpha(\Lambda/(f))
$$

Proof. For $g = \sum_{i=-N}^{\infty} a_i (T - \pi)^i$ with $a_i \in \mathbb{Q}_p$, define $Res_{T=\pi} g = a_{-1}$. Define a pairing

$$
\Lambda/(f) \times [\Lambda/(f) \otimes \Lambda[\frac{1}{T - \pi}]/\Lambda] \to \mathbb{Q}_p/\mathbb{Z}_p
$$

$$
(a, b \otimes c) = Res_{T = \pi}(\frac{abc}{f})(mod \mathbb{Z}_p)
$$

 \blacksquare

Lemma 16 Suppose A and B are \mathbb{Z}_p modules with $A \cong \mathbb{Z}_p^n$. Assume there is a nondegenerate *pairing*

$$
A \times B \to \mathbb{Q}_p/\mathbb{Z}_p
$$

then $A \cong Hom_{\mathbb{Z}_p}(B, \mathbb{Q}_p/\mathbb{Z}_p)$

Corollary 17 *If E is an elementary torsion* Λ *module, then* $E \cong \alpha(E)$ *.*

Proposition 18 Let X and Y be finitely generated torsion Λ modules with $X \sim Y$, then $\alpha(Y) \sim Y$ $\alpha(X)$

Corollary 19 $X \sim \alpha(X)$ *, so* $\alpha(X)$ *us also finitely generated torsion* Λ *module.*