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Question

number field K ⇝ class group Cl(K)

Question

How does the class group Cl(K) change when the number field K
changes under the field extension?

We compare two different invariant that control the answer to this
question:

Iwasawa λ invariant (From Iwasawa theory)

Cup products and Massey products (From Galois cohomology)

Main theorem

In some cases, the λ invariant can be computed in terms of Massey
products.
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Iwasawa theory

Let K ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kl ⊂ · · · ⊂ K∞ be a Zp extension of number
field K,i.e Gal(Kl/K) ∼= Z/plZ and Gal(K∞/K) ∼= Zp.

Theorem (Iwasawa[Iwa59])

There are constants µ, λ, ν such that when l is sufficient large,

#Cl(Kl)[p
∞] = pµp

l+λl+ν

Remark

In the case of interests of the talk, it is known that µ = 0, so the most
interesting invariant is λ.
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Gold’s criterion

Theorem (Gold’s criterion[Gol74])

Let K be an imaginary quadratic field and K∞/K is the cyclotomic
Zp extension.

Assume p ∤ hK = #Cl(K) and p splits in K ,i.e. pOK = P0P̃0

Then
λ ≥ 2⇐⇒ χ ∪ α = 0

Here α is a generator of PhK
0 and χ is an element in

H1(Gal(KS/K),Zp).
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McCallum-Sharifi’s result

Let µn be the group of n-th roots of unity.

Theorem (McCallum-Sharifi[MS03])

Let K = Q(µp) ⊂ Q(µp2) ⊂ · · · ⊂ Q(µpl) ⊂ · · · ⊂ Q(µp∞) be a
cyclotomic Zp extension.

Decompose Cl(Q(µp))[p
∞] = ⊕iεiCl(Q(µp))[p

∞] as direct sum of
eigenspaces (pieces) with respect to the action of Gal(Q(µp)/Q).

Assume conditions. Then

λi ≥ 2⇐⇒ χ ∪ αi = 0

Where αi is an element K∗ constructed from i-th piece and λi is the
Iwasawa invariant that corresponds to the i-th piece.
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Comparing

Theorem (Gold’s criterion[Gol74])

Let K be an imaginary quadratic field. For cyclotomic Zp extensions,
under some conditions:

λ ≥ 2⇐⇒ χ ∪ α = 0

Theorem (McCallum-Sharifi[MS03])

Let K be a cyclotomic field Q(µp). For cyclotomic Zp extensions, under
some conditions:

λi ≥ 2⇐⇒ χ ∪ αi = 0

for odd i > 1.

Remark

Both theorems has the form ”λ ≥ 2⇐⇒ χ ∪ α = 0 ”, which motivates us
to find the deep reason behind it.
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Cup product is obstruction for us to glue

Slogan

Massey product is a generalization of cup products.

Given χ1, χ2 ∈ H1(G,Fp) ∼= Hom(G,Fp), we can form two
representations G→ GL2(Fp):

ρχ1(g) =

(
1 χ1(g)
0 1

)
, ρχ2(g) =

(
1 χ2(g)
0 1

)

Try to glue the two representations together:1 χ1 ∗
0 1 χ2

0 0 1


We want to fill ∗ spot a cochain ϕ ∈ C1(G,Fp) such that the above is
a representation.
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Cup product is obstruction for us to glue

1 χ1 ∗
0 1 χ2

0 0 1



We can fill ∗ spot a cochain ϕ ∈ C1(G,Fp) s.t. the above is a
representation ⇐⇒ χ1 ∪ χ2 = −dϕ in C.(G,Fp) ⇐⇒ χ1 ∪ χ2 = 0 in
H2(G,Fp).

Cup product χ1 ∪ χ2 is the obstruction for us to glue.

Generally if we have higher dimensional representations derived from
elements in H1(G,Fp) and they are compatible in a certain way,
Massey products are the obstruction for us to glue them.
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Massey products and knots

Massey products were first introduced by considering the following
knots.

Analogy between knots and primes:

knot S1 ↪→ R3 ←→ prime Spec(Fp) ↪→ Spec(Z)

Figure: Borromean Rings
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Main result

Theorem (Q.)

Let K ⊂ K1 ⊂ K2 ⊂ · · · ⊂ K∞ be a Zp extension of K

Let S be the set of primes above p for K

K∞/K is totally ramified for all primes in S.

Let X = lim←−ClS(Kl) and µ, λ be the Iwasawa invariant of X.

Assume X has no torsion element and H2(GK,S , µp) ∼= Fp.

Then µ = 0 if and only if there exists k such that the generalized Bockstein
map Ψ(k) ̸= 0 for some k. If µ = 0, then λ = min{n|Ψ(n) ̸= 0} −#S + 1

Peikai Qi (MSU) Iwasawa λ invariant and Massey products November 11, 2023 10 / 14



Applying to the previous cases

Corollary (Q.)

Let K be an imaginary quadratic field and the same setting up as
Gold’s criterion.

Then
λ = min{n|n fold ”Massey product” (χ, χ, · · · , χ, α) is nonzero}.

Corollary (Q.)

Let K = Q(µp) and the same setting up as McCallum-Sharifi’s result.

Then
λi = min{n|n fold ”Massey product” εi(χ, χ, · · · , χ, αi) is nonzero}.
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Summary

Iwasawa λ invariant can control the growth of the size of class group.

Some classical results tells us ”λ ≥ 2⇐⇒ certain cup product
vanishes” under some conditions.

Massey product is a generalization of cup products.

Main results: ” Assume λ ≥ n− 1, then λ ≥ n⇐⇒ certain Massey
product vanishes” under some conditions.
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THANK YOU!
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