Iwasawa λ invariant and Massey products

Peikai Qi

Michigan State University

Peikai Qi (MSU)

Iwasawa λ invariant and Massey products

November 11, 2023

1/14

Question

number field $K \rightsquigarrow \text{class group } \operatorname{Cl}(K)$

Question

How does the class group $\operatorname{Cl}(K)$ change when the number field K changes under the field extension?

Question

number field $K \rightsquigarrow \text{class group } \operatorname{Cl}(K)$

Question

How does the class group ${\rm Cl}(K)$ change when the number field K changes under the field extension?

We compare two different invariant that control the answer to this question:

- Iwasawa λ invariant (From Iwasawa theory)
- Cup products and Massey products (From Galois cohomology)

Question

number field $K \rightsquigarrow \text{class group } \operatorname{Cl}(K)$

Question

How does the class group $\operatorname{Cl}(K)$ change when the number field K changes under the field extension?

We compare two different invariant that control the answer to this question:

- Iwasawa λ invariant (From Iwasawa theory)
- Cup products and Massey products (From Galois cohomology)

Main theorem

In some cases, the λ invariant can be computed in terms of Massey products.

Let $K \subset K_1 \subset K_2 \subset \cdots \subset K_l \subset \cdots \subset K_\infty$ be a \mathbb{Z}_p extension of number field K,i.e $\operatorname{Gal}(K_l/K) \cong \mathbb{Z}/p^l \mathbb{Z}$ and $\operatorname{Gal}(K_\infty/K) \cong \mathbb{Z}_p$.

Let $K \subset K_1 \subset K_2 \subset \cdots \subset K_l \subset \cdots \subset K_\infty$ be a \mathbb{Z}_p extension of number field K, i.e $\operatorname{Gal}(K_l/K) \cong \mathbb{Z}/p^l \mathbb{Z}$ and $\operatorname{Gal}(K_\infty/K) \cong \mathbb{Z}_p$.

Theorem (Iwasawa[Iwa59])

There are constants μ, λ, ν such that when l is sufficient large,

$$\#\mathrm{Cl}(K_l)[p^{\infty}] = p^{\mu p^l + \lambda l + \nu}$$

Let $K \subset K_1 \subset K_2 \subset \cdots \subset K_l \subset \cdots \subset K_\infty$ be a \mathbb{Z}_p extension of number field K, i.e $\operatorname{Gal}(K_l/K) \cong \mathbb{Z}/p^l \mathbb{Z}$ and $\operatorname{Gal}(K_\infty/K) \cong \mathbb{Z}_p$.

Theorem (Iwasawa[Iwa59])

There are constants μ, λ, ν such that when l is sufficient large,

$$#\mathrm{Cl}(K_l)[p^{\infty}] = p^{\mu p^l + \lambda l + \nu}$$

Remark

In the case of interests of the talk, it is known that $\mu=0,$ so the most interesting invariant is $\lambda.$

• Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.

- Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.
- Assume $p \nmid h_K = \# \mathrm{Cl}(K)$ and p splits in K ,i.e. $p\mathcal{O}_K = \mathfrak{P}_0 \tilde{\mathfrak{P}}_0$

- Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.
- Assume $p \nmid h_K = \# \mathrm{Cl}(K)$ and p splits in K ,i.e. $p\mathcal{O}_K = \mathfrak{P}_0 \tilde{\mathfrak{P}}_0$

Then

$$\lambda \geq 2 \Longleftrightarrow \chi \cup \alpha = 0$$

Here α is a generator of $\mathfrak{P}_0^{h_K}$ and χ is an element in $H^1(\text{Gal}(K_S/K), \mathbb{Z}_p)$.

Let μ_n be the group of n-th roots of unity.

Theorem (McCallum-Sharifi[MS03])

• Let $K = \mathbb{Q}(\mu_p) \subset \mathbb{Q}(\mu_{p^2}) \subset \cdots \subset \mathbb{Q}(\mu_{p^l}) \subset \cdots \subset \mathbb{Q}(\mu_{p^{\infty}})$ be a cyclotomic \mathbb{Z}_p extension.

Let μ_n be the group of n-th roots of unity.

Theorem (McCallum-Sharifi[MS03])

- Let $K = \mathbb{Q}(\mu_p) \subset \mathbb{Q}(\mu_{p^2}) \subset \cdots \subset \mathbb{Q}(\mu_{p^l}) \subset \cdots \subset \mathbb{Q}(\mu_{p^{\infty}})$ be a cyclotomic \mathbb{Z}_p extension.
- Decompose Cl(Q(μ_p))[p[∞]] = ⊕_iε_iCl(Q(μ_p))[p[∞]] as direct sum of eigenspaces (pieces) with respect to the action of Gal(Q(μ_p)/Q).

Let μ_n be the group of n-th roots of unity.

Theorem (McCallum-Sharifi[MS03])

- Let $K = \mathbb{Q}(\mu_p) \subset \mathbb{Q}(\mu_{p^2}) \subset \cdots \subset \mathbb{Q}(\mu_{p^l}) \subset \cdots \subset \mathbb{Q}(\mu_{p^{\infty}})$ be a cyclotomic \mathbb{Z}_p extension.
- Decompose Cl(Q(μ_p))[p[∞]] = ⊕_iε_iCl(Q(μ_p))[p[∞]] as direct sum of eigenspaces (pieces) with respect to the action of Gal(Q(μ_p)/Q).
- Assume conditions. Then

$$\lambda_i \ge 2 \Longleftrightarrow \chi \cup \alpha_i = 0$$

Where α_i is an element K^* constructed from *i*-th piece and λ_i is the Iwasawa invariant that corresponds to the *i*-th piece.

Let K be an imaginary quadratic field. For cyclotomic \mathbb{Z}_p extensions, under some conditions:

$$\lambda \geq 2 \Longleftrightarrow \chi \cup \alpha = 0$$

Theorem (McCallum-Sharifi[MS03])

Let K be a cyclotomic field $\mathbb{Q}(\mu_p)$. For cyclotomic \mathbb{Z}_p extensions, under some conditions:

$$\lambda_i \ge 2 \Longleftrightarrow \chi \cup \alpha_i = 0$$

for odd i > 1.

Remark

Both theorems has the form " $\lambda\geq 2 \Longleftrightarrow \chi\cup \alpha=0$ ", which motivates us to find the deep reason behind it.

Peikai Qi (MSU)

6/14

Slogan

Massey product is a generalization of cup products.

• Given $\chi_1, \chi_2 \in H^1(G, \mathbb{F}_p) \cong \text{Hom}(G, \mathbb{F}_p)$, we can form two representations $G \to GL_2(\mathbb{F}_p)$:

$$\rho_{\chi_1}(g) = \begin{pmatrix} 1 & \chi_1(g) \\ 0 & 1 \end{pmatrix}, \rho_{\chi_2}(g) = \begin{pmatrix} 1 & \chi_2(g) \\ 0 & 1 \end{pmatrix}$$

Slogan

Massey product is a generalization of cup products.

• Given $\chi_1, \chi_2 \in H^1(G, \mathbb{F}_p) \cong \text{Hom}(G, \mathbb{F}_p)$, we can form two representations $G \to GL_2(\mathbb{F}_p)$:

$$\rho_{\chi_1}(g) = \begin{pmatrix} 1 & \chi_1(g) \\ 0 & 1 \end{pmatrix}, \rho_{\chi_2}(g) = \begin{pmatrix} 1 & \chi_2(g) \\ 0 & 1 \end{pmatrix}$$

• Try to glue the two representations together:

$$\begin{pmatrix} 1 & \chi_1 & * \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Slogan

Massey product is a generalization of cup products.

• Given $\chi_1, \chi_2 \in H^1(G, \mathbb{F}_p) \cong \text{Hom}(G, \mathbb{F}_p)$, we can form two representations $G \to GL_2(\mathbb{F}_p)$:

$$\rho_{\chi_1}(g) = \begin{pmatrix} 1 & \chi_1(g) \\ 0 & 1 \end{pmatrix}, \rho_{\chi_2}(g) = \begin{pmatrix} 1 & \chi_2(g) \\ 0 & 1 \end{pmatrix}$$

• Try to glue the two representations together:

$$\begin{pmatrix} 1 & \chi_1 & * \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}$$

• We want to fill * spot a cochain $\phi \in C^1(G, \mathbb{F}_p)$ such that the above is a representation.

Peikai Qi (MSU)

$$\begin{pmatrix} 1 & \chi_1 & * \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}$$

۲

э

۲

$$\begin{pmatrix} 1 & \chi_1 & * \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}$$

• We can fill * spot a cochain $\phi \in C^1(G, \mathbb{F}_p)$ s.t. the above is a representation $\iff \chi_1 \cup \chi_2 = -d\phi$ in $C^{\cdot}(G, \mathbb{F}_p) \iff \chi_1 \cup \chi_2 = 0$ in $H^2(G, \mathbb{F}_p)$.

۲

$$\begin{pmatrix} 1 & \chi_1 & * \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}$$

- We can fill * spot a cochain $\phi \in C^1(G, \mathbb{F}_p)$ s.t. the above is a representation $\iff \chi_1 \cup \chi_2 = -d\phi$ in $C^{\cdot}(G, \mathbb{F}_p) \iff \chi_1 \cup \chi_2 = 0$ in $H^2(G, \mathbb{F}_p)$.
- Cup product $\chi_1 \cup \chi_2$ is the obstruction for us to glue.

۲

$$\begin{pmatrix} 1 & \chi_1 & * \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}$$

- We can fill * spot a cochain $\phi \in C^1(G, \mathbb{F}_p)$ s.t. the above is a representation $\iff \chi_1 \cup \chi_2 = -d\phi$ in $C^{\cdot}(G, \mathbb{F}_p) \iff \chi_1 \cup \chi_2 = 0$ in $H^2(G, \mathbb{F}_p)$.
- Cup product $\chi_1 \cup \chi_2$ is the obstruction for us to glue.
- Generally if we have higher dimensional representations derived from elements in $H^1(G, \mathbb{F}_p)$ and they are compatible in a certain way, Massey products are the obstruction for us to glue them.

Massey products and knots

- Massey products were first introduced by considering the following knots.
- Analogy between knots and primes:

knot $S^1 \hookrightarrow \mathbb{R}^3 \longleftrightarrow$ prime $\operatorname{Spec}(\mathbb{F}_p) \hookrightarrow \operatorname{Spec}(\mathbb{Z})$

Figure: Borromean Rings

Theorem (Q.)

- Let $K \subset K_1 \subset K_2 \subset \cdots \subset K_\infty$ be a \mathbb{Z}_p extension of K
- Let S be the set of primes above p for K
- K_{∞}/K is totally ramified for all primes in S.
- Let $X = \lim_{l \to \infty} \operatorname{Cl}_S(K_l)$ and μ , λ be the Iwasawa invariant of X.
- Assume X has no torsion element and $H^2(G_{K,S},\mu_p) \cong \mathbb{F}_p$.

Then $\mu = 0$ if and only if there exists k such that the generalized Bockstein map $\Psi^{(k)} \neq 0$ for some k. If $\mu = 0$, then $\lambda = min\{n|\Psi^{(n)} \neq 0\} - \#S + 1$

Corollary (Q.)

• Let K be an imaginary quadratic field and the same setting up as Gold's criterion.

Corollary (Q.)

- Let K be an imaginary quadratic field and the same setting up as Gold's criterion.
- Then

 $\lambda = \min\{n | n \text{ fold "Massey product" } (\chi, \chi, \cdots, \chi, \alpha) \text{ is nonzero}\}.$

Corollary (Q.)

- Let K be an imaginary quadratic field and the same setting up as Gold's criterion.
- Then

 $\lambda = \min\{n | n \text{ fold "Massey product" } (\chi, \chi, \cdots, \chi, \alpha) \text{ is nonzero}\}.$

Corollary (Q.)

- Let $K = \mathbb{Q}(\mu_p)$ and the same setting up as McCallum-Sharifi's result.
- Then

 $\lambda_i = \min\{n \mid n \text{ fold "Massey product" } \varepsilon_i(\chi, \chi, \cdots, \chi, \alpha_i) \text{ is nonzero}\}.$

 $\bullet\,$ Iwasawa λ invariant can control the growth of the size of class group.

э

- $\bullet\,$ Iwasawa λ invariant can control the growth of the size of class group.
- Some classical results tells us " $\lambda \ge 2 \iff$ certain cup product vanishes" under some conditions.

- Iwasawa λ invariant can control the growth of the size of class group.
- Some classical results tells us " $\lambda \ge 2 \iff$ certain cup product vanishes" under some conditions.
- Massey product is a generalization of cup products.

- Iwasawa λ invariant can control the growth of the size of class group.
- Some classical results tells us " $\lambda \ge 2 \iff$ certain cup product vanishes" under some conditions.
- Massey product is a generalization of cup products.
- Main results: "Assume $\lambda \ge n-1$, then $\lambda \ge n \iff$ certain Massey product vanishes" under some conditions.

THANK YOU!

Image: A matrix

문 문 문

- Robert Gold, The nontriviality of certain Z₁-extensions, J. Number Theory 6 (1974), 369–373. MR 369316
- Kenkichi Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183–226. MR 124316
- Yeuk Hay Joshua Lam, Yuan Liu, Romyar Sharifi, Preston Wake, and Jiuya Wang, *Generalized Bockstein maps and Massey products*, Forum Math. Sigma **11** (2023), Paper No. e5, 41. MR 4537772
- William G. McCallum and Romyar T. Sharifi, *A cup product in the Galois cohomology of number fields*, Duke Math. J. **120** (2003), no. 2, 269–310. MR 2019977