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Abstract

The geometric optics approximation to high frequency anisotropic wave propagation reduces the anisotropic wave equation
to a static Hamilton–Jacobi equation. This equation is known as the anisotropic eikonal equation and has three different
coupled wave modes as solutions. We introduce here a level set-based Eulerian approach that captures all three of these wave
propagations. In particular, our method is able to accurately reproduce the quasi-transverse, or quasi-S, waves with cusps,
which form a class of multi-valued solutions. The level set formulation we use is borrowed from one for moving curves in
three spatial dimensions, with the velocity fields for evolution following from the method of characteristics on the anisotropic
eikonal equation. We present here our derivation of the algorithm and numerical results to illustrate its accuracy in different
cases of anisotropic wave propagations related to seismic imaging.
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Geometric optics-based high frequency approximations provide an efficient framework as well as a set of
tools for capturing the most singular part of a wave field[20], making it a fundamental assumption for mod-
ern seismic data processing such as Kirchoff migration[5,6], tomographic velocity analysis[43], and inver-
sion [8,12]. The most singular part of a wave field is characterized by two quantities, the phase, or traveltime,
function which satisfies the so-called eikonal equation and the amplitude function which satisfies a transport
equation. The efficient computation of these two functions is thus of great practical importance in numerous
areas such as oil industry applications[13,14,30,32,45,50]. Aside from wave applications, eikonal equations
also appear in the calculus of variations, computer vision, image processing, and differential games, to name a
few.

For isotropic wave propagations, the eikonal equations, which are of Hamilton–Jacobi form, are usually solved
using viscosity solution-based solvers over spatial space[15,21,37,38,48,49], producing single-valued traveltime
fields representing first-arrival traveltimes[22]. The relationship between traveltimes and geometric optics in an
isotropic medium is that the rays are the trajectories orthogonal to the wavefronts, level sets of the traveltimes[11].
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Moreover, if the medium is heterogeneous, there is a high probability that more than one ray will occupy any given
spatial point, resulting in a multi-valued traveltime field over spatial space[51]. Nevertheless, the multi-valued
traveltime field is essential, for example, in obtaining high resolution seismic images[23]. The Lagrangian ap-
proach to this problem is to use the method of characteristics to trace rays in phase space, thus taking care of
multi-valuedness[10,30]. However, because in reality only a finite number of rays can be traced, Lagrangian meth-
ods in general produce nonuniform distributions of the traveltime field. The solution to this is interpolation, which
can be cumbersome[30,50]. Therefore, Eulerian approaches are much desired for solving eikonal equations and,
consequently, much research has been devoted to this. For example, Benamou in[2] proposed “big ray” tracing
by localizing Riemann solvers in regions bounded by selected rays. Later on, in[3], he also enacted direct res-
olution of multi-valued phase space solutions of Hamilton–Jacobi equations. In[42], Symes derived a slowness
matching finite difference method for computing multi-valued traveltimes by patching together local single-valued
solutions of the eikonal equation via Fermat’s principle into a global multi-valued traveltime field; see also[44].
In [16,17], Engquist and coworkers used the segment projection method to reparametrize multi-valued wavefronts
into single-valued segments existing in a different space. Steinhoff et al., in[41], introduced an Eulerian method
for capturing short acoustic pulses which allows the pulses to pass through each other. Related to this work, Ruuth
et al. in[36] proposed a fixed grid method for capturing self-intersecting interfaces. More recently, in[26], Osher
et al. introduced a phase space-based level set and Eulerian framework for constructing wavefronts that automat-
ically handles multi-valued solutions when they appear. Finally, in regard to acoustic caustics, see the work of
Benamou and Solliec[4] for more. All this effort to deal with multi-valued solutions, however, is for the isotropic
case only. In this paper, we extend the level set-based Eulerian approach in[26] to apply to anisotropic wave
propagations.

Because most sedimentary rocks in which oil reservoirs lie are anisotropic in the sense that the incident wave
velocity depends on the incident angles, maximal resolution for imaging requires that the high frequency approxi-
mation of the wave field take into account the anisotropy of the wave propagation[12,13,47]. In general, 21 elastic
parameters are needed to completely characterize an anisotropic medium. This can lead to very complicated wave
propagations[18,24]. The high frequency approximation applied to the anisotropic wave equation gives rise to the
Christoffel equation[24], and the related Christoffel determinant set equal to zero gives the so-called anisotropic
eikonal equation. This equation characterizes a slowness surface which consists of three sheets corresponding to
three different wave modes, the so-called quasi-P, quasi-SV, and quasi-SH waves[24], sometimes abbreviated to
qP, qSV, and qSH, respectively.

Among the three sheets, the innermost one corresponds to the quasi-P waves and is always convex and seldom
touches the others. The other two sheets may intersect with each other and the one associated to the quasi-SV
waves may not be convex, leading to cusps and multi-valued wavefronts during wave propagation. To accurately
solve the anisotropic eikonal equation, which takes the form of a static Hamilton–Jacobi equation, in an Eulerian
framework, one technique is to use the level set method to obtain an evolution equation in artificial time[25,27]that
can then be discretized using high order Runge–Kutta and essentially nonoscillatory schemes[19,28]. Efficiency
can be achieved through localization of the algorithm around the zero level set denoting the desired wavefront[1,29].
Since this approach involves solving Hamilton–Jacobi equations in spatial space, it can only produce single-valued
viscosity solutions. Other Eulerian approaches encounter the same difficulty and thus must limit themselves to the
computation of single-valued wavefronts. Observing that the quasi-P slowness sheet is convex, Qian and Symes
introduced a paraxial formulation to produce an evolution equation that uses one of the spatial variables for artificial
time, with the resultant solution single-valued and giving the first-arrival traveltime field[31,33]. Also, Sethian and
Vladimirsky have developed so-called ordered upwind schemes for static Hamilton–Jacobi equations which also
produce single-valued traveltimes[39]. However, the quasi-S wavefronts and related multi-valued solutions are just
as important as the quasi-P wavefronts for seismic imaging[8,13] and thus, an efficient and accurate method for
computing them is much needed. To our knowledge, so far, in the framework of the geometric optics approximation,
the only approach for computing quasi-S wavefronts with cusps is the method of characteristics[9]. Thus, our work
here is the first attempt of an Eulerian approach to this problem.
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In Section 2, we briefly give some background on the high frequency approximation of anisotropic wave prop-
agations and on three coupled wave propagations. InSection 3, we consider anisotropic wave propagations in two
and three dimensions and derive related ray tracing equations in a reduced phase space. The ray tracing equations
can then be embedded into the level set framework to obtain an Eulerian method. InSection 4, we present the level
set formulation for moving curves in three spatial dimensions that forms the basis of our algorithm. InSection 5, we
show the numerical results of our algorithm on examples of anisotropic wave propagation in transversely isotropic
media of hexagonal symmetry and media of orthorhombic symmetry to illustrate the advantages in accuracy and
resolution of our approach. Finally, inSection 6, we conclude with a summary and a brief outline of future work.

2. Geometric optics: background

Throughout this paper, the Einstein summation convention is assumed for simplicity (see, e.g.,[24]). Hooke’s
law states that the stressσij is related to the strainekl through a stiffness tensorCijkl and the relation

σij = Cijklekl.

Therefore, the motion equation without body force takes the form

ρ
∂2U
∂t2

= ∇ · σ, (1)

whereU = (Ui) is the displacement vector. By the relation between strain and displacement,

ekl = 1

2

(
∂Uk

∂xl
+ ∂Ul

∂xk

)
, (2)

and the symmetry of the stiffness tensor, the motion equation is the wave equation

ρ
∂2Uj

∂t2
= ∂

∂xi

(
Cijkl

∂Uk

∂xl

)
. (3)

The geometric optics or high frequency approximation (see, e.g.,[11,20]) assumes that the solution is of the form

U(x, t) =
∞∑
n=0

A(n)(x)fn(t − τ(x)), f ′
n+1 = fn, (4)

where the wavefront is given by

t = τ(x). (5)

Upon inserting theansatz (4) into the wave equation and comparing individual coefficients offn−2 to zero succes-
sively, starting with the most singular term,n = 0, we arrive at a recursive system for the phaseτ and amplitudes
A(n). Because the geometric optics term consists of the phase and amplitude function determined by the zeroth
order,n = 0, and first order,n = 1, term, respectively, we focus our attention here on the zeroth-order term.

Equating the zeroth-order term to zero gives rise to Christoffel’s equation,

(Γjk − δjk)A
(0)
k = 0, (6)

which leads to the anisotropic eikonal equation for the phase functionτ,

det(aijklpipl − δjk) = 0, (7)

wherep = (pi) = ∇τ is the slowness vector normal to the wavefront(5), τ is the traveltime or phase of the wave
mode,aijkl = Cijkl/ρ are the density-normalized elastic parameters,Γjk equalsaijklpipl, andδjk is the Kronecker
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Fig. 1. The slowness surface for typical anisotropic media: a sextic surface which consists of three slowness sheets.

delta. Note that all of these quantities depend on the spatial coordinate vectorx = (x1, x2, x3), though we suppress
this dependence in equations for notational simplicity.

Eq. (7)is a sextic polynomial equation in the slowness vectorp, i.e., the slowness vectorp lies on a sextic surface
consisting of three sheets, each surrounding the origin (seeFig. 1). To understand this, let

pi = ni

V
, (8)

Fig. 2. The ray direction is not in general tangent to the wavefront normal in homogeneous anisotropic media, and thus the wavefronts are in
general not spherical. The qP traveltime contours for zinc are also shown.
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wheren = (ni) is the unit normal vector to the wavefront andV is the normal or phase speed of the wavefront.
ThenEq. (7)yields

det(aijklninl − V 2δjk) = 0, (9)

which is a cubic characteristic polynomial equation with respect toV 2 and hence has three eigenvalues corresponding
to a quasi-longitudinal wave, known as the quasi-P wave, and two transverse waves, known as the quasi-SV and
quasi-SH waves. Note we can extendV to be homogeneous of degree 1 in the variablep. Moreover, experiments
show that the velocity of the quasi-P wave is always greater than those of the transverse, or quasi-S, waves (see
[18]). Hence the largest eigenvalue ofEq. (9)corresponds to quasi-P wave propagation, is simple, i.e., uniquely
defined, and the quasi-P slowness sheet is the innermost one away from the other two. Furthermore, the quasi-P
slowness sheet is convex (see, e.g.,[24]), which is essential in constructing the paraxial approximation for the
eikonal equations associated to the quasi-P waves[33].

In isotropic media, the polarization vector of the compression wave, known as the P-eigenvector, is tangent to
the wavefront normal and the polarization vectors of the transverse waves, known as the SH- and SV-eigenvectors,
are normal to the P-eigenvector, with the three eigenvectors forming an orthogonal system. But, as was shown by
Musgrave[24], the P-eigenvector is in general not tangent to the wavefront normal in anisotropic media and hence
the inclusion of the prefix “quasi” (seeFig. 2).

3. The ray tracing system in a reduced phase space

To illustrate the idea behind our approach, we first consider the two-dimensional anisotropic eikonal equation, i.e.,
Eq. (7)without thep3 component. Consequently, we denote the resultant slowness surface in the two-dimensional
case by

F(x1, x2, p1, p2) = 0, (10)

and parametrize the slowness vector by

p1 = cosθ

V(x1, x2, θ)
, p2 = sinθ

V(x1, x2, θ)
, (11)

whereθ is known as the phase angle, varying from−π toπ, andV the phase velocity solving an eigenvalue problem.
Applying the method of characteristics (see, e.g.,[11]) to Eq. (10)yields

dx1

dt
=

(
p1

∂F

∂p1
+ p2

∂F

∂p2

)−1
∂F

∂p1
, (12)

dx2

dt
=

(
p1

∂F

∂p1
+ p2

∂F

∂p2

)−1
∂F

∂p2
, (13)

dp1

dt
= −

(
p1

∂F

∂p1
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∂F

∂p2

)−1
∂F
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, (14)

dp2

dt
= −

(
p1

∂F

∂p1
+ p2

∂F

∂p2

)−1
∂F

∂x2
, (15)

where the evolution parametert has the dimension of time. Here since the wavefront is expanding, time can be used
as an evolution parameter along the ray; the above ray tracing system is obtained with this observation. To obtain
an equation for dθ/dt, we differentiate the equations in(11), arriving at

dp1

dt
= −V sinθ − (∂V/∂θ) cosθ

V 2

dθ

dt
− cosθ

V 2

(
∂V

∂x1

dx1

dt
+ ∂V

∂x2

dx2

dt

)
, (16)
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dp2

dt
= V cosθ − (∂V/∂θ) sinθ

V 2

dθ

dt
− sinθ

V 2

(
∂V

∂x1

dx1

dt
+ ∂V

∂x2

dx2

dt

)
. (17)

Thus, solving the above equations for dθ/dt and substituting in(14) and (15)leads to

dθ

dt
=

(
p1

∂F

∂p1
+ p2

∂F

∂p2

)−1 (
V

∂F

∂x1
sinθ − V

∂F

∂x2
cosθ

)
. (18)

Eqs. (12), (13) and (18), in total, give us the velocity field needed in our level set formulation for two-dimensional
anisotropic wave propagation. Similarly, the ray tracing system for the three-dimensional case gives the desired
velocity field in that case.

4. Level set formulation for moving curves in reduced phase space

We now place the problem into the level set framework found in[7], with the process similar to that in[26]. This is
desirable for numerical reasons, with the advantages in automatic resolution and the ability to easily and accurately
handle multi-valued wavefronts. We first begin with the setup introduced in[17]. In the two-dimensional ray tracing
problem, the objects of interest we will evolve, in place of the wavefronts, form curves in three-dimensional reduced
phase space. This space, for fixed time, consists of the points(x1, x2, θ), wherex = (x1, x2) ∈ R2, representing
points in spatial space, andθ ∈ [−π, π], representing the phase angle. The link is that the projection of these curves
to spatial space gives back the wavefronts we wish to construct. The advantage to working in reduced phase space
is that the curves there are smooth, even when their projections to spatial space, the wavefronts, are multi-valued.
This is what allows us to effectively handle multi-valued wavefronts.

The level set framework for the ray tracing consists of implicitly representing the curves of interest in reduced
phase space. This is through the use of two real valued level set functions,φ andψ, over reduced phase space and
time whose common zeros,φ = ψ = 0, for a fixed time give the curves at that moment. In fact,φ andψ can be
thought of as the components of a two component vector valued level set function. Note reduced phase space can be
replaced byR3 through enforcing periodicity in theθ direction. The evolution of wavefronts thus translates to that
of curves inR3 which furthermore, in our framework, translates to evolution of the level set functions. We achieve
this through a system of PDEs forφ andψ incorporating the velocity for the motion of the curves. As seen from
Eqs. (12), (13) and (18), for a given slowness surface defined byF = 0 and phase velocityV corresponding to the
qP, qSV, or qSH waves, the points on the curves move with velocity

w(x1, x2, θ) =




(
p1

∂F

∂p1
+ p2
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∂F
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∂F

∂p2

)−1
∂F

∂p2(
p1

∂F

∂p1
+ p2

∂F

∂p2

)−1 (
V
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∂x1
sinθ − V

∂F

∂x2
cosθ

)




,

in reduced phase space, noting thatp1 andp2 can be written in terms ofθ andV . The velocity can thus be defined
in all of reduced phase space and used to evolve the level set functionsφ andψ also defined there. Note also it is
fixed in time and for any given curve and, furthermore, it is a generalization of the velocity field considered in[26].
In fact, the algorithm we construct here is the same as that in[26] except for the use of this more general form of
the velocity for the anisotropic case. The evolution of the level set functions under this velocity satisfies the system
of PDEs

φt + w · ∇φ = 0, ψt + w · ∇ψ = 0,
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which is a system of transport equations. Thus, to find the position of wavefronts at a given time, the procedure for
our algorithm is to solve the evolution equations for the level set functions inR3, then project the common points
of the zero level sets to spatial space. Note, the two evolution equations can even be solved separately since they
are not coupled.

The numerical aspects of this algorithm include placing an Eulerian fixed grid inR3 as a foundation for solving the
evolution PDEs. This provides the automatic resolution of wavefronts we desire. It also allows for easy discretization
of PDEs through the use of standard and well-studied techniques. In this case, the PDEs we are interested in
are of Hamilton–Jacobi form and can be discretized using, for example, fourth-order SSP-RK[40], a recently
developed Runge-Kutta scheme, in time and fifth-order WENO-Godunov[19] in space. Thus, implementing such
a discretization and iterating up to the desired time will give the curves of interest inR3, regardless of whether the
wavefronts have become multi-valued in the process. As seen in[26], one correction, in general, has to be made to
this algorithm. The zero level set surfaces of the level set functions we are evolving may develop kinks or become
nearly parallel to each other at certain points. This can greatly affect the accuracy of the discretization as well as
the plotter, which is based on interpolation. To prevent this from occurring, reinitialization can be performed every
few time steps. This involves replacing the level set functions with level set functions of a better form by evolving
them under PDEs that use distance and orthogonality as criteria. For more details, see[26]. Note one effect of
incorporating reinitialization is that the evolution ofφ andψ become coupled. Also, we note that in simulations,θ

is sometimes scaled to lie in [−1,1] throughθ 
→ θ/π.
This altogether gives the framework and numerical discretization we use to construct wavefronts and determine

traveltimes. Efficient and optimal algorithms for the implementation following local level set ideas[1,29]are being
pursued to achieve faster speeds and for larger problems. Such algorithms will be needed to handle the case of ray
tracing in three dimensions, where the basic formulation under our approach is a straightforward extension of that
in the two-dimensional case. See[26] for details.

5. Numerical results

Although a general anisotropic solid has 21 independent elastic parameters, the transversely isotropic, or TI, solid
has only five. It nevertheless retains the essential features of the anisotropic case that we are interested in. Therefore,
it is convenient to use TI solids as models to illustrate the advantages of our approach. We first consider the simplest
case for TI solids, those with vertical symmetry axes, known as VTI solids. We then test our approach on inclined TI
models obtained by rotating the VTI models[31]. Because the slowness surface equation for the inclined TI model
is a sextic polynomial equation with the essential features of a general sextic slowness surface and admits no explicit
solutions, it is suitable for us to use this model as a further test of our proposed algorithm. The extensive numerical
experiments we present show that our algorithm is accurate, even in situations with multi-valued solutions.

The elastic modulus matrix for transversely isotropic media with vertical symmetry axes has five independent
components among a total of twelve nonzero components (see, e.g.,[24]). A closed form solution exists in this case
for the eigenvalue problem(7). The quasi-P and quasi-SV slowness surfaces for VTI can be represented by a quartic
polynomial equation and the quasi-SH slowness surface can be decoupled from this, leading to the equations

c1p
4
1 + c2p

2
1p

2
2 + c3p

4
2 + c4p

2
1 + c5p

2
2 + 1 = 0, (19)

and
1
2(a11 − a12)p

2
1 + a44p

2
2 = 1, (20)

where

c1 ≡ a11a44, c2 ≡ a11a33 + a2
44 − (a13 + a44)

2, c3 ≡ a33a44,

c4 ≡ −(a11 + a44), c5 ≡ −(a33 + a44).

In the above equations, the Voigt recipe is assumed to simplify the elasticity tensoraijkl to obtainaij.
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Fig. 3. Reciprocity between slowness surfaces and wavefronts for Greenriver shale: (a) slowness surfaces; (b) wavefronts.

Thus, the phase velocities for the three different waves take the form

V 2
qP = 1

2

(
−Y1 +

√
Y2

1 − 4Y2

)
, V 2

qSV = 1
2

(
−Y1 −

√
Y2

1 − 4Y2

)
,

V 2
SH = 1

2(a11 − a12) cos2θ + a44 sin2θ,

where

Y1 = c4 cos2θ + c5 sin2θ, Y2 = c1 cos4θ + c2 cos2θ sin2θ + c3 sin4θ.

These velocities are obtained by substituting(11)into (19) and (20)and solving the resulting polynomial equations.
We can also obtain phase velocities associated to inclined TI media[31] in a similar manner.

In the following examples, we simulate wave propagations excited by point sources, perhaps modelled by delta
functions. This, in turn, implies that the initial level set functions can be easily determined.

As a first example, we compute the three waves for Greenriver shale, a typical VTI medium[46]. The five elastic
parameters area11 = 15.0638,a33 = 10.8373,a13 = 1.6381,a44 = 3.1258, anda12 = 6.5616.Fig. 3(a) shows
the three slowness surfaces of the different waves. The innermost one corresponds to the qP wave, the one with
dimples to the qSV wave, and the outer elliptical surface to the qSH wave (seeEq. (20)). In slowness space, the
three slowness surfaces for the qP, qSV, and qSH waves are from innermost to outermost, however, because of the
reciprocity between the slowness space and position space, the wavefronts for these same waves are from outermost
to innermost in position space, as shown inFig. 3(b). Fig. 3(b) shows the three wavefronts for the waves at the
momentt = 0.1942 s. Because the qP wave is the fastest among the three, the outermost wavefront corresponds
to qP wave propagation. Note the cusps accompanying the qSV wave are well-captured. The innermost ellipse
is the qSH wavefront because of the elliptical anisotropy characterized byEq. (20). Fig. 4(a) shows a calibration
result for the qP wavefront. The darker curve segment imposed on the outermost wavefront represents the same
wavefront computed using a paraxial eikonal solver for qP waves[31]. Note the two qP wavefront segments match
perfectly. Calibration, used here, means comparing our computational result with those obtained by other alternative
approaches; by doing this we can verify that our computational results are correct. The paraxial eikonal solver in
[31,33,34]is developed specifically for capturing qP wavefronts. Furthermore, its theory is developed in[35] and can
be generalized to treat general Hamilton–Jacobi equations with convex Hamiltonians.Fig. 4(b) shows a calibration
result for the qSV wavefront alternatively calculated using a ray tracing method. Note the results match for this case
of multi-valued wavefronts as well. The ray tracing method used here involves solving an ODE system similar to
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Fig. 4. Calibration for wavefronts: (a) a segment of quasi-P wavefront computed by a paraxial eikonal solver is imposed on the quasi-P wavefront
computed using our method; (b) a qSV wavefront computed using a ray tracing method, shown in circles, is imposed on the wavefront computed
from our method, shown as a solid curve.

(12)–(15)by a Matlab ODE45 solver.Fig. 5shows projections of the three waves on thex2θ-plane. All three curves
are single-valued functions of the phase angleθ, which agrees with classical results in Maslov theory[4].

Since VTI media have rotational invariance about thex2-axis, revolving a computed wavefront in two dimensions
about thex2-axis yields the desired wavefront in three dimensions.Figs. 6–10show three-dimensional examples

Fig. 5. Perspective of the function in three dimensions on thex2θ-plane: the three curves corresponding to three waves are single-valued functions
of the phase angleθ. Shown are the (a) qP, qSV and qSH waves; (b) qSV and qSH waves.
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Fig. 6. A qP wavefront in three dimensions obtained by rotating the corresponding qP wavefront in two dimensions: Greenriver shale.

Fig. 7. A qSH wavefront in three dimensions obtained by rotating the corresponding qSH wavefront in two dimensions: Greenriver shale.
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Fig. 8. A qSV wavefront in three dimensions obtained by rotating the corresponding qSV wavefront in two dimensions for Greenriver shale: a
horizontal perspective of the wavefront.

Fig. 9. A qSV wavefront in three dimensions obtained by rotating the corresponding qSV wavefront in two dimensions for Greenriver shale: the
horizontal sections are circles because of the transverse isotropy of VTI media.
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Fig. 10. A qSV wavefront in three dimensions obtained by rotating the corresponding qSV wavefront in two dimensions for Greenriver shale:
the cuspidal edges are clearly seen.

of wavefronts after rotation of the computations of Greenriver shale inFig. 3(b). We plot the wavefronts separately
for illustrational purposes as they are nested.Figs. 6 and 7show the qP and qSH wavefronts, respectively, and
Figs. 8–10show different views of the more interesting qSV wavefront. In these pictures,Fig. 8 has a horizontal
perspective, where the profile can be compared to the qSV wavefront in two dimensions,Fig. 9 illustrates that the
horizontal sections of the qSV wavefront are circles due to the transverse isotropy of the VTI medium, andFig. 10
shows the cuspidal edges from a different point of view.

To test the resolution of our approach in capturing cusps, we compute the qSV wavefronts for Beryl, a VTI
crystal.Fig. 11(a) shows our results of an expanding qSV wavefront at three different times. Note there are four

Fig. 11. Resolution test on Beryl: (a) four tiny cusps accompanying the qS waves; (b) the cusps at the upper right corner are zoomed in.
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Fig. 12. Wavefronts for an inclined zinc model: (a) two cusps accompanying the qSV wave are clearly seen; (b) another cusp of the qSV wave
at upper right corner is zoomed in.

tiny cusps in the wavefront at each time because of the instantaneous singularity.Fig. 11(b) shows an enlargement
of the upper right cusps of the two outer wavefronts. Here, an Eulerian mesh of size 50× 50× 50 is placed over
the computational domain, [−1,1] × [−1,1] × [−1,1]. This shows that the cusps are still well-captured under a
coarse mesh.

For inclined TI media, we compute the wavefronts for the zinc model rotated by 30◦. Fig. 12(a) shows the three
wavefronts at the momentt = 0.1891 s. The one corresponding to the qSV wavefront has four cusps, with two of

Fig. 13. Wavefronts for an orthorhombic medium: spruce, a soft wood of anomalous properties. The qP and qSV wavefront with cusps are
shown.
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them apparent inFig. 12(a). One of the other two can be seen in the enlargement inFig. 12(b). Since the slowness
surface in an inclined TI medium satisfies a general sextic polynomial equation, this is a strong indication that our
proposed approach can handle arbitrary two-dimensional anisotropic media.

To test our approach on capturing qSV cusps for general anisotropic media, we compute the qSV wavefronts for
spruce, which has an orthorhombic symmetry[24]. Although in this case, the two-dimensional slowness surface
equation is still a sextic polynomial equation, rotational invariance about thex2-axis no longer holds, with the cusps
of qSV waves only appearing on a particular plane[24]. Furthermore, spruce is highly anisotropic.Fig. 13shows
the qP and qSV wavefronts of spruce at a certain time.

6. Conclusion

We have created and tested a new Eulerian method for solving anisotropic eikonal equations that is able to capture
and resolve all three wave modes inherent in the wave propagations. This especially includes the qSV waves, a class
of multi-valued solutions, which may develop cusps. The method is based on a level set formulation for moving
curves in three dimensions and is seen for the isotropic case in[26]. The level set framework allows it to automatically
handle and resolve multi-valued solutions, should they appear, with numerical results clearly demonstrating this.
We expect our new method to find its way into anisotropic seismic imaging tool boxes, anisotropic velocity analysis,
and numerous other areas and applications.

In future work, we plan to compute amplitudes for the three wave modes under the same Eulerian framework
so that a complete geometric optics term can be constructed for high resolution seismic imaging. See[34] for an
Eulerian approach to constructing a complete geometric optics term for quasi-P waves in the framework of paraxial
geometric optics. Furthermore, we plan to improve the efficiency of the method by localizing the level set evolution
around the zero level set to obtain a O(N logN) algorithm, whereN is the number of points in the grid. The work
in [29] can be consulted in this direction. Finally, the framework of our current approach can be easily extended
to the three-dimensional case, which is a project we are currently pursuing. The results of these will be reported
elsewhere.
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