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Traveltime, or geodesic distance, is locally the solution of the eikonal equation of
geometric optics. However traveltime between sufficiently distant points is generically
multivalued. Finite difference eikonal solvers approximate only the viscosity solution,
which is the smallest value of the (multivalued) traveltime (‘‘first arrival time’’). The
slowness matching method stitches together local single-valued eikonal solutions,
approximated by a finite difference eikonal solver, to approximate all values of the
traveltime. In some applications, it is reasonable to assume that geodesics (rays) have
a consistent orientation, so that the eikonal equation may be viewed as an evolution
equation in one of the spatial directions. This paraxial assumption simplifies both the
efficient computation of local traveltime fields and their combination into global
multivalued traveltime fields via the slowness matching algorithm. The cost of slow-
ness matching is on the same order as that of a finite difference solver used to
compute the viscosity solution, when traveltimes from many point sources are
required as is typical in seismic applications. Adaptive gridding near the source point
and a formally third order scheme for the paraxial eikonal combine to give second
order convergence of the traveltime branches.

KEY WORDS: Hamilton–Jacobi; viscosity solution; multivalued eikonal solvers;
weighted essentially nonoscillatory scheme (WENO); slowness matching.

1. INTRODUCTION

Denote by y(x, xs) the time (‘‘traveltime’’) taken by a wave moving at velocity v(x)
to travel from a source point xs ¥ Rn to a target point x. For x ] xs near xs, y is a
differentiable function of both arguments and satisfies the eikonal equation

|Nxy(x, xs)|=
1

v(x)
. (1)



The traveltime has a well-known relation with the rays of geometric optics: the rays
are the orthogonal trajectories of the wavefronts (level sets of y) (see for example
[6]).

The traveltime solves (1) only locally, but can be computed through its evolu-
tion along the rays globally (i.e., to any point x which can be reached by a wave
which previously passes xs). However it generically becomes multivalued when
source and target points are sufficiently distant and the wave velocity v(x) varies
significantly with spatial position x. In two dimensional space, for example, denot-
ing by s the variance of the velocity, source and target points more distant than
O(s− 2

3 ) will have at least two rays connecting them, hence at least two possible
values of traveltime [50]. Generally, there is a high probability for so-called
transmission caustics to occur. Beyond transmission caustics, more than one ray
pass over each point in space so that the traveltime is multivalued.

One way to extract a (single valued) function of position from the multiplicity
of traveltimes is to assign to each point x the smallest of the (possibly many) tra-
veltimes from xs to x. This smallest or first arrival traveltime is a so-called viscosity
solution of the eikonal equation (1) [24]. The theory of viscosity solutions of
Hamilton–Jacobi equations (of which the eikonal equation is an example) was
developed by Crandall, Lions, and others over the last 20 years [8, 7]. Viscosity
solutions are approximately computable by monotone finite-difference schemes [24,
9, 29, 30]. Finite-difference eikonal solvers developed in [48, 47, 31, 42, 41, 20, 43]
and many others owe their effectiveness to this theory. On the other hand, it also
explains why these methods must compute only the first arrivals.

While some applications of geometric optics need only the first arrival travel-
time, others require all traveltimes. An example of the latter type is high resolution
seismic imaging via integral transform, in the presence of strong seismic refraction
[15, 25, 27]. It is certainly possible in principle to compute the global, multivalued
traveltime field by evolution along rays (‘‘ray tracing’’). However this ‘‘Lagrangian’’
approach suffers from a few drawbacks. A numerical scheme will compute
(approximately) a finite number of rays; when the rays diverge, as they do in
strongly refracting velocity models, some regions will be visited by many rays,
others by none. Controlling the ray density to achieve roughly uniform sampling of
the traveltime with expensive interpolation to prescribed output points is compli-
cated but feasible [49].

Finite difference approximation of the eikonal equation on a regular or
irregular grid automatically achieves prescribed sampling of the computed travel-
time field, but produces only first arrival times, as noted above. A number of
authors have proposed extensions of this ‘‘Eulerian’’ approach to compute the
complete, multivalued traveltime [2, 3, 4, 12, 13, 44, 40, 28, 34, 14].

This paper details another Eulerian approach to multivalued traveltime com-
putation beyond transmission caustics, which we have dubbed ‘‘slowness matching’’
[46]. The method patches together local single-valued solutions of the eikonal
equations via Fermat’s principle into a global, multivalued traveltime field, using
a finite-difference eikonal solver to compute the local solutions. The cost of this
computation is actually comparable to that of a single-valued, first-arrival compu-
tation, when many times must be computed from many source points along a
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surface, as is typical in seismic migration or tomography applications. The method
also retains the other advantages of finite difference eikonal solvers mentioned
above.

For some seismic applications, it is also natural to assume that traveltimes of
interest are carried by rays which are subhorizontal (i.e., directed downwards)
everywhere. This additional assumption permits us to replace the eikonal equation
with a paraxial eikonal equation, which defines an evolution equation in depth for
(a part of ) the traveltime field. A local solution of the paraxial eikonal point source
problem is identical to the local single-valued traveltime at points connected to the
source point by subhorizontal rays. Local solutions of the paraxial eikonal are
glued together to compute all traveltimes along subhorizontal rays (without of
course explicitly computing the rays!). It is this paraxial variant of slowness match-
ing which we explain and illustrate in this paper.

The paper is organized as follows. In Sec. 2, we describe a family of adaptive
finite difference schemes for local, single-valued solutions of the eikonal equation
with point sources. The adaptive eikonal solver is based on second- and third-order
weighted essentially non-oscillatory (WENO) Runge–Kutta schemes developed in
[30, 19], and it is also used to good effect in computing other geometric optics
related quantities [36]. In Sec. 3, we illustrate the multivaluedness geometrically,
explain the principle for the slowness matching Eulerian approach, and describe
a numerical implementation for problems in two space dimensions. In Sec. 4, we
show some numerical examples to demonstrate the accuracy of the new Eulerian
method. In Sec. 5, we discuss some possible extensions and open issues, including
treatment of the three dimensional problem and dropping the ‘‘paraxial’’ restriction
to sub-horizontal rays.

2. LOCAL SINGLE-VALUED SOLUTIONS: ADAPTIVE PARAXIAL
SOLVERS

We suppose throughout that W … Rn is open and bounded, v ¥ CK(W) is the
(positive) velocity, and its reciprocal slowness will be denoted by s=v−1. The theory
developed here requires that K \ 3.

Rays (x(t), p(t)) from the source point xs ¥ W are solutions of Hamilton’s
equations

dx
dt

=
“H
“p

,
dp
dt

=−
“H
“x

(2)

where H(x, p)=1
2 v2(x) |p|2 is the Hamiltonian so that the parameter t has the

dimension of time. The relevant trajectories of this system have initial conditions
satisfying

x(0)=xs,

||p(0)||=s(xs)
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so that one ray emanates from the source point in each direction. A real t \ 0 is a
traveltime from xs to x if x=x(t) is a solution of this system. Clearly there is no
reason for traveltimes to be unique, in general: several solutions may connect xs

to x. However for each xs there is an open neighborhood W(xs) of xs so that a
unique ray from xs to x exists for each x ¥ W(xs); this follows from, e.g., Lemma
10.2 in [26]. Therefore traveltime is well-defined as a function of x ¥ W(xs), via
y(x(t), xs)=t; also p(t)=Nxy(x(t), xs), whence y satisfies the eikonal equation (1)
with the point source initial condition

lim
x Q xs

y(x, xs)
||x − xs ||

=s(xs), y \ 0. (3)

See [6], Chap. II for an account of this elementary Hamilton–Jacobi theory.
We shall assume throughout that each point in W has at least one traveltime,

i.e., is connected by at least one ray to every source point under consideration. In
general, many rays will do the job, as examples presented later in the paper illus-
trate; it is only in a neighborhood, possibly small, of each source point that the
traveltime is well defined as a function of x.

2.1. Paraxial Eikonal Equations

The eikonal equation with the point source condition (1), (3) apparently con-
stitutes a boundary value problem. A direct numerical attack on this problem is
certainly possible [39]. However, restricting attention to traveltimes carried by rays
which are oriented in a specific direction results in a subproblem which has the
character of an evolution equation in a spatial coordinate. Most of the references to
finite difference methods for the eikonal equation cited above make essential use of
this observation, either implicitly or explicitly. Solutions to the eikonal as a spatial
evolution in several directions may be combined to produce solutions of the
boundary value problem (1), (3) [42, 20]. On the other hand, some applications
naturally single out a particular evolution direction. For example, wave propaga-
tion in reflection seismics occurs with a generally vertical orientation. In this paper,
we will adopt the point of view motivated by the reflection seismic example: that
traveltimes of interest are carried by sub-horizontal rays. This subsection will
explain how to modify the eikonal equation to compute accurately only traveltimes
along sub-horizontal rays.

For the discussion of traveltime along sub-horizontal rays, we will restrict our
attention to problems in R2. Accordingly we will write x=(x, z), p=(p, q) and
xs=(xs, zs) etc. ‘‘Sub-horizontal’’ then means ‘‘oriented in the positive z direction.’’
Both the theory developed in this subsection and the numerical methods explained
in the next two are easily extended to three spatial dimensions [20, 35, 37].

A convenient way to legislate sub-horizontal ray direction is to require that

“y

“z
\ s cos hmax > 0; (4)
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this is the subhorizontal condition. This inequality holds for traveltimes associated
to rays making an angle [ hmax < p

2 with the vertical. To enforce this condition, we
modify the eikonal equation to take the form of an evolution equation in depth
[16]:

“y

“z
=H 1x, z,

“y

“x
2==f 1 s2 −1 “y

“x
22

, s2 cos2 hmax
2 , (5)

where f is a sufficiently smooth positive function satisfying

f(x, a)=x, x \ a.

The computations described below use the C3 function defined for a > 0 by

f(x, a)=˛
1
2

a if x < 0,

1
2

a+2
x4

a3
11 −

4
5

x
a
2 if 0 [ x <

a
2

,

x+2
(x − a)4

a3
11+

4
5

x − a
a

2 if
a
2

[ x < a,

x if x \ a.

This choice of f is compatible with truncation error analysis for difference schemes
of up to 3rd order accuracy [33].

The remainder of this subsection presents a proof of the following assertions:

Theorem 2.1. For a suitable subset Wp(xs, zs) … W(xs, zs) and an appropriate
initial condition compatible with a point source located at (xs, zs), the solution
yp(x, z, xs, zs) of (5) is identical to the traveltime y(x, z, xs, zs) at (x, z) ¥ Wp(xs, zs)
… W(xs, zs) provided that the unique ray connecting the source point (xs, zs) to
(x, z) makes an angle [ hmax < p

2 with the vertical at every point. Moreover, a point
(x, z) satisfies this condition if the characteristic or paraxial ray for (5) through
(x, z), selected by the method of characteristics, also makes an angle [ hmax with the
vertical, in which case it is a ray for the eikonal equation.

Remark. Thus satisfaction of the subhorizontal condition can be monitored
during solution of (5). Near other points, y has the character of a plane wave, and
does not approximate the traveltime—see Fig. 3, also [38].

Remark. To generate an appropriate initial condition compatible with a point
source located at (xs, zs), we may assume that the velocity near the source is con-
stant and equal to the velocity at the source; see [36] for theoretical justification of
such an assumption and Sec. 2.3 for more implementation details.
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Proof. Note first that rays (x(t), p(t)) associated to traveltimes satisfying (4)
along their entire length may be parameterized by depth z rather than time t, where
x(t)=(x(t), z(t)) and p(t)=(p(t), q(t)). The horizontal coordinate x(z, h0) and the
angle with the vertical h(z, h0)=arc sin(v(x(z, h0), z) p(z, h0)) completely determine
the ray trajectory, and form a solution of the system

dx
dz

=tan h (6)

dh

dz
=

1
s
1“s

“z
−

“s
“x

sin h2 (7)

with initial data

x(zs, h0)=xs, h(zs, h0)=h0 .

[The angle h0 is the takeoff angle of the ray.] Here |h0 | < p
2 . A calculation verifies

that the scaled trajectory

xE(z, h0)=
1
E

x(Ez, h0), hE(z, h0)=h(Ez, h0)

satisfies (7) with s(x, z) replaced by the scaled slowness sE(x, z)=s(Ex, Ez), and with
the same initial conditions. As E Q 0, sE approaches the constant function s0(x, z)
=s(xs, zs) in the Ck sense for any k [ K. Therefore the right hand side of (7) con-
verges to the constant-slowness right hand side, whence the solution converges to
the constant-slowness solution

x0(z, h0)=xs+(z − zs) tan h0, h(z, h0)=h0

uniformly in compact sets of parameters. Note that x0(1, h0) is monotone as a
function of h0. Define

h1
max=

p

4
+

hmax

2
.

For sufficiently small E, xE(1, h0) is monotone as a function of h0 ¥ [ − h1
max, h1

max].
Fix such an E, and set

x− =ExE(1, −hmax)

x+=ExE(1, hmax)

x1
− =ExE(1, −h1

max)

x1
+=ExE(1, h1

max).

It follows that

h0 W x(E, h0) is monotone on [ − h1
max, h1

max] (8)
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by the scaling relation. Choose a cut-off function, k ¥ C.(R) with (1) k(x)=1,
x− [ x [ x+, (2) k(x)=0, x [ x1

− or x \ x1
+, and (3) kŒ(x) [ 0, x+ [ x [ x1

+ and
kŒ(x) \ 0, x1

− [ x [ x− . Choose positive A so that

A > max 1 sin h1
max sup

(x, z) ¥ W

s(x, z), sup
x1

− [ x [ x − , x+ [ x [ x1
+

y(x, zs+E, xs, zs)
|x − xs |

2

and set

yp
0 (x, xs)=k(x) y(x, zs+E, xs, zs)+A(1 − k(x)) |x − xs |. (9)

It is easy to check that

:“yp
0 (x, xs)

“x
: > s(x, zs+E) sin hmax if x > x+ or x < x− . (10)

Now define yp to be the solution of (5) with initial data yp
0 on {(x, z): z=

zs+E} 5 W(xs, zs).
For E possibly smaller still, the method of characteristics yields a smooth solu-

tion of the Hamilton–Jacobi initial value problem (5), (9) in Wp(xs, zs) — W(xs, zs)
5 {(x, z): zs [ z [ zs+E}.

Assume that (x, z) lies on a ray through (xs, zs) always making an angle [ hmax

with the vertical. In particular the takeoff angle h0 of this ray satisfies |h0 | [ hmax,
so (8) implies that the ray crosses z=zs+E at x=xc with x− [ xc [ x+. It follows
immediately from the definition (5) that this ray is also characteristic for the
paraxial eikonal, that the initial data on z=zs+E is the same as that for the
traveltime field in a neighborhood of xc, that the ray-tracing constructions of
yp(x, z, xs, zs) and the traveltime at (x, z) are exactly the same, and that therefore
yp(x, z, xs, zs) is actually the traveltime at (x, z).

Finally, suppose that (x, z) lies on a characteristic or paraxial ray for (5), con-
structed by the method of characteristics for initial condition (9), and that this
paraxial ray makes an angle [ hmax with the vertical at every point. [This condition
can be monitored implicitly during the finite difference solution of (5).] Then the
ray must meet z=zs+E at x=xc with x− [ xc [ x+, since otherwise the method
of characteristics together with the construction of the initial condition (9), (10)
implies that the angle constraint is violated at the intersection of the paraxial ray
with z=zs+E. However then the paraxial ray satisfies the same initial conditions
as does the ray for the eikonal equation, and also the same Hamiltonian system.
Therefore the paraxial ray is a ray, and yp and y are the same along it, as claimed.

i

2.2. WENO Runge–Kutta Schemes

A number of finite difference methods for Hamilton–Jacobi equations are
mentioned in the introduction; others include [21, 22, 23, 18]. The work reported
here is based on a class of high-order finite difference methods, so called essentially
non-oscillatory schemes and their relatives, developed in [29, 30, 19].
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For a function f of the space variable x=(x, z) in the computational domain,
we write

fk
i =f(xi, zk),

(xi, zk)=(xmin+(i − 1) Dx, zmin+(k − 1) Dz).

Let

yk
i =y(xi, zk; xs, zs)

and define the forward D+ and backward D− finite-difference operators

D±
x yk

i =
± [yk

i ± 1 − yk
i ]

Dx
.

The simplest, first-order method of the family results from replacing the
z-derivative in the eikonal equation by the forward difference, and the x-derivative
by the upwind choice of first order one-sided differences:

1
Dz

(yk+1
j − yk

j )=H(D1 1
x) (11)

where

D1 1
xy=modmax(max(D−

x y, 0), min(D+
x y, 0)).

Here the modmax function returns the larger value in modulus. This scheme
chooses the D+y to represent yx if both possibilities are negative, and D−y if both
possibilities are positive. That is, the formula takes information from the direction
in which the rays are coming if that direction is signaled unambiguously by the
signs of both first differences. If the signs differ, one of two compromises is made.
This scheme can be shown to be monotonic, have l. contraction property and
satisfy maximum principle. Thus it enjoys only first-order accuracy [9]. To obtain
high order accurate eikonal solvers, we may use high-order ENO and WENO
schemes.

The second-order ENO refinement of D±
x y is

D±, 2
x yi=D±

x yi +
1
2 Dx m(D±

x D±
x yi, D−

x D+
x yi), (12)

where

m(x, y)=min(max(x, 0), max(y, 0))+max(min(x, 0), min(y, 0)).

The WENO third-order schemes for D±
x yi are

D ± W, 3
x yi=

1
12 ( − D+

x yi − 2+7D+
x yi − 1+7D+

x yi − D+
x yi+1)

± Dx FW(D−
x D+

x yi ± 2, D−
x D+

x yi ± 1, D−
x D+

x yi, D−
x D+

x yi + 1),
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where FW is smooth and is given by

FW(a, b, c, d)=1
3 w0(a − 2b+c)+1

6 (w2 − 1
2 )(b − 2c+d)

with weights defined as

w0=
a0

a0+a1+a2
, w2=

a2

a0+a1+a2
,

a0=
1

(d+b0)2 , a1=
1

(d+b1)2 , a2=
1

(d+b2)2 ,

b0=13(a − b)2+3(a − 3b)2,

b1=13(b − c)2+3(b+c)2,

b2=13(c − d)2+3(3c − d)2.

In the denominators above, we added a small positive number d to avoid dividing
by zero. In the computation, d is chosen to be 10−6; in practice, the solution is not
sensitive to the choice of d.

The upwind second-order ENO approximation for “y
“x is

D1 2
xy=modmax(max(D−, 2

x y, 0), min(D+, 2
x y, 0));

similarly, the upwind third-order WENO approximation for “y
“x is

D1 W, 3
x y=modmax(max(D−W, 3

x y, 0), min(D+W, 3
x y, 0)).

To maintain high-order accuracy, these formulae must be combined with a
z-step of comparable accuracy. Here we use Runge–Kutta schemes as suggested in
[30]. Thus the second- and third-order (W)ENO Runge–Kutta steps are

d1
2y=Dz H(D1 2

xy),

d2
2y=1

2 (d1
2y+Dz H(D1 2

x(y+d1
2y))),

(13)

and

d1
3y=Dz H(D1 W, 3

x y),

d2
3y=1

4 (d1
3y+Dz H(D1 W, 3

x (y+d1
3y))),

d3
3y=1

3 (2d2
3y+2 Dz H(D1 W, 3

x (y+d2
3y))).

(14)

The depth step Dz must satisfy the stability condition

Dz [ Dzcfl=
Dx

tan(hmax)
.

We have typically chosen Dz=0.9Dzcfl.
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The nth order scheme is then

yk+1=yk+dn
nyk (15)

for k=0, 1, 2,... .

2.3. Adaptive Refinements for a Point Source

The traveltime field for the eikonal equation with a point source has an
upwind singularity at the source point. This singularity generates a first-order error
which propagates throughout the grid, regardless of the order of the scheme. This
source-generated error negates the accuracy advantages of high-order schemes so
that the computed take-off slowness and its derivatives have zeroth-order accuracy
only; however, these quantities are important in the algorithm described below (and
in the computation of geometric optics amplitude). Therefore, we sought another
approach, that is, an adaptive gridding approach. The adaptive gridding approach
was proposed in [36] which treats this singularity efficiently and achieves
prescribed accuracy at a far lower cost than does a fixed grid method. To be
complete, we summarize the idea of the method here.

The usual step adjustment in ODE solvers would change Dz by a factor com-
puted from the asymptotic form of the truncation error [45, 49]. This is impractical
for a PDE application because it would require an arbitrary adjustment of the
spatial grid (i.e., the x-grid in the difference scheme) and, therefore, expensive
interpolation. Scaling Dz by a factor of two, however, implies that the stability may
be maintained by scaling Dx by the same factor. For coarsening, this means simply
throwing out every other grid point, i.e., no interpolation at all, which dramatically
reduces the floating point operations required. This bisection refinement is similar
to the adaptive mesh refinement (AMR) proposed by Berger and Oliger [5], but we
refine or coarsen the mesh globally rather than locally. Since the typical behavior of
the traveltime field is to become smoother as one moves away from the source, the
truncation errors tend in general to decrease. Therefore, most of the grid adjust-
ments are coarsening and very little or no interpolation is required. Since the slow-
ness field comes to us in gridded form, an interpolation is always required to supply
estimates of slowness at the points appearing in the WENO-Runge–Kutta formula.
We use a local quadratic interpolation in x and z because the third-order accuracy
of which is compatible with that of the difference scheme. For traveltimes, we use a
similar quadratic interpolation.

To initialize our algorithm, the user supplies a local error tolerance E; s1 and s2

are two user-defined positive functions of E which are used to control the coarsening
and refinement. We use the 2nd and 3rd order eikonal solvers (Eqs. (13) and (14))
and estimate the truncation error of the 2nd-order scheme as e2=max |d2

2y − d3
3y|

over the current depth. So long as s1(E) [ e2 [ s2(E) at every point of the current
depth level, we simply proceed to the next step. When e2 < s1(E), we increase the
step by a factor of two, i.e., Dz P 2Dz, and we recompute the y update and e2.
Similarly, when e2 > s2(E), we decrease the step by a factor of two. As soon as the
local error is once again within the tolerance interval, we continue depth-stepping.
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A very important point is that we retain the 3rd-order (a more accurate one) com-
putation of y at the end of each depth step as the actual update, discarding the 2nd-
order computation, which is used only in step control.

Since the traveltime field is non-smooth at the source point, the truncation
error analysis on which the adaptive step selection criterion is based is not valid
there. Therefore, it is necessary to produce a smooth initial traveltime field. We do
this by estimating the largest zinit > 0 at which the constant velocity traveltime is in
error by less than s2(E). Details of the zinit calculation are given in [36]. Having
initialized y at zinit, the algorithm invokes adaptive gridding. Since zinit is quite small,
y changes rapidly, resulting in a large number of grid refinements at the outset.
However, no interpolation is performed, as y is given analytically on z=zinit. This
initially very fine grid is rapidly coarsened as the depth stepping proceeds.

In our current implementation, we maintain a data structure for the computa-
tional grid that is independent of the output grid; the desired quantities are cal-
culated on the computational grid and interpolated back to the output grid. As a
safeguard against pathological program behaviors, we specify a maximum number
of permitted grid refinements.

To avoid unnecessary computations, we update y only within the triangle

{(x, z): |x − xs | [ |z − zs | tan hmax}.

All rays with takeoff angles less than hmax must lie inside this triangle, and it is only
along such rays that the paraxial eikonal equation produces correct first-arrival
times. Output points outside the triangle are assigned a very large number so that
constructed ray paths will never reach those places.

Note that rays must point outward at the boundary of the computational domain
for this scheme to succeed: otherwise, traveltimes inside depend on (unknown) travel-
times outside. A robust implementation monitors the sign of yx at the boundary.

This scheme gives extremely accurate results in smooth models. Many tests
with smooth migration velocity models have shown errors of ° 1% on modest
grids, when compared with accurate ray tracing. It can be combined with similar
finite difference transport solvers to give asymptotic Green’s functions for modeling
and migration [36].

In common with standard ODE adaptive timestepping methods, this adaptive
eikonal solver is not optimal as the a posteriori error estimators on which it is based
are only asymptotically accurate. To obtain an optimal adaptive eikonal solver, or
in general, an optimal adaptive method for Hamilton–Jacobi equations, one has to
use a posteriori error estimators, such as those developed in [1].

3. GLOBAL MULTI-VALUED SOLUTIONS: SLOWNESS MATCHING

3.1. Illustration of Multi-Valued Solutions

The sinusoidal waveguide velocity field depicted in Fig. 1 is motivated by a
computation in [49]. The velocity field is given by

v(x, z)=1+0.2 sin 0.5pz sin 3px.
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sin10: velocity field

Fig. 1. Grey scale plot of velocity used in traveltime computations (product of sinusoids).
Maximum excursion is approximately 30% from mean. Horizontal and vertical axes in km.

Fig. 2. Rays traced through model of Fig. 1. Note that five rays pass over some points at bottom.
Caustics (ray envelopes) are clearly visible.
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Figure 2 shows rays traced from a source point (0.55, 0) near the center of the top
of the model. Slow regions form lenses and create crossing rays, imperfect foci, and
caustics (ray envelopes). Clearly one cannot assign single-valued traveltimes glo-
bally in this model.

The method explained in the last section computes the first-arrival time field
with no difficulty; contours of this field appear as Fig. 3. However much has been
missed: in particular the most energetic parts of the wave field emanating from the
point source are actually carried on later arriving convergent bundles of rays. [15]
discusses the serious consequences of omitting these arrivals from consideration in
migration of reflection data, for instance.

Thus the challenge is to devise an algorithm which retains the efficiency of
modern first arrival solvers and at the same time compute all arrival traveltimes. To
arrive at such an algorithm, we introduce the slowness matching principle.

3.2. Slowness Matching Principle

Suppose that P={(x(tŒ), p(tŒ)): 0 [ tŒ [ t} is a ray connecting xs ¥ W to x ¥ W,
i.e., x(0)=xs and x(t)=x. The takeoff slowness vector of P is the initial value
ps=p(0), and the arrival slowness vector is the final value p=p(t).
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Traveltime contours

Fig. 3. Traveltime contours computed with WENO adaptive paraxial eikonal solver. Note that
contours are planar outside of aperture (near top, sides of figure), where rays subtend angles > hmax

with vertical and solution does not approximate traveltime.
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Recall from Sec. 2 that under standing assumptions (v ¥ CK(W), K \ 3, and
strictly positive), for every xs there is a neighborhood W(xs) so that for each x ¥

W(xs) − {xs} there exists a unique ray connecting xs and x lying within W(xs). Also
the traveltime y( · , xs) ¥ C2(W(xs) − {xs}) is simply the time along the unique ray
connecting xs and x, and satisfies the eikonal equation (1) in W(xs) − {xs}. A kind
of reciprocity principle is easy to establish: if x ¥ W(xs) then xs ¥ W(x) and y(xs, x)=
y(x, xs). Therefore, the arrival slowness for the ray from xs to x is Nxy(xs, x), and
the takeoff slowness for the ray is − Nxs

y(x, xs)=−Nxs
y(xs, x) when x ] xs. This

basically says that arrival and takeoff slowness vectors can be represented by gra-
dients of traveltimes with respect to either current point x or source point xs.

Traveltimes are additive, in this sense:

Theorem 3.1. If t0 is the traveltime from x0 to x along ray P0={(x0(t),
p0(t)): 0 [ t [ t0}, and t1 is the traveltime from x to x1 along ray P1={(x1(t),
p1(t)): 0 [ t [ t1}, then t0+t1 is a traveltime from x0 to x1 provided that the arrival
slowness vector for P0 is equal to the takeoff slowness vector for P1. In that case the
concatenation of P0 and P1 is the ray for t0+t1; its takeoff slowness vector is the
takeoff slowness vector of P0, and its arrival slowness vector is the arrival slowness
vector of P1.

Proof. The equality of arrival slowness for P0 and takeoff slowness for P1 is
simply the statement that p0(t0)=p1(0). Since x is the final point of P0 and the
starting point of P1, i.e., x0(t1)=x1(0)=x, the assumptions imply that the data for
P0 at t=t1 coincide with the data for P1 at t=0. It follows that the concatenation

P2={(x2(t), p2(t)): 0 [ t [ t0+t1}

defined by x2(t)=x0(t) if 0 [ t [ t0, else x2(t)=x1(t − t0), similarly for p2, is a C1

curve and a solution of Hamilton’s equations, with initial and final data as stated. i

Corollary 3.2. Suppose that

1. t is a traveltime from x0 to x with takeoff slowness vector p0 and arrival
slowness vector p;

2. x1 ¥ W(x) and y=y( · , x) is the local smooth solution of the eikonal equa-
tion in W(x) with source at x;

3. p+Nxy(x1, x)=0 (slowness matching condition).

Then t+y(x, x1) is a traveltime from x0 to x1 with takeoff slowness vector p0 and
arrival slowness vector p1=Nx1

y(x1, x).
Conversely, suppose that t1 is a traveltime from x0 to x1 with associated ray P1,

that (x, p) is a point on P1 with x ¥ W(x1) (or equally well x1 ¥ W(x)), and that t is
the time along P1 from x0 to x. Then t1=t+y(x, x1) and the slowness matching
condition (3) holds.

Proof. The first part follows immediately from the theorem. For the second,
note that x ¥ W(x1) implies that only one ray connects x and x1 in W(x1), and its
time is y(x1, x), its slowness given by Nxy(x1, x). i
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The condition (3) in the corollary means the arrival slowness matches the
takeoff slowness at the point x, hence the name slowness matching condition [46].
The point x is the slowness matching point.

The computations to be presented in the next section use a version of the
slowness matching principle (Corollary 3.2) adapted to the paraxial eikonal and the
sub-horizontal assumption. Recall that solutions of the paraxial eikonal equation
are identical to solutions of the eikonal equation, and thus with the traveltime, at
points connected to the source point by unique sub-horizontal rays (Theorem 2.1).
As before, we state this modified slowness matching principle explicitly for 2D
problems. Generalization to 3D is straightforward.

Corollary 3.3. Suppose that 0 [ hmax < p
2 , and

1. t is a traveltime from (x0, z0) to (x, z) with takeoff slowness vector (p0, q0)
and arrival slowness vector (p, q);

2. the ray {(x(tŒ), z(tŒ), p(tŒ), q(tŒ)): 0 [ tŒ [ t} associated with t is downgoing,
i.e., |q(tŒ)| \ s(x(tŒ), z(tŒ)) cos hmax, 0 [ tŒ [ t;

3. (x1, z1) ¥ Wp(x, z) and yp=yp( · , x, z) is the local smooth solution of the
paraxial eikonal equation in Wp(x, z) with source at (x, z);

4. the (unique) ray connecting (x, z) and (x1, z1) is downgoing;

5. the slowness matching condition holds at the point (x, z):

p=−
“yp

“x
(x1, z1, x, z). (16)

Then t+yp(x1, z1, x, z) is a traveltime from (x0, z0) to (x1, z1) with takeoff slowness
vector (p0, q0) and arrival slowness vector

p1=
“yp

“x1
(x1, z1, x, z), q1=`s(x1, z1)2 − p2

1.

Conversely, suppose that t1 is a traveltime from (x0, z0) to (x1, z1) with asso-
ciated ray P1, that P1 is downgoing in the sense specified above, that (x, z, p, q) is a
point on P1 with (x1, z1) ¥ Wp(x, z), and that t is the time along P1 from (x0, z0) to
(x, z). Then t1=t+yp(x1, z1, x, z) and the slowness matching condition (16) holds.

Proof. Follows directly from Theorem 2.1 and Corollary 3.2. i

The above corollary leads us to apply slowness matching principle at some
intermediate depth z, which fits well with the evolution in depth of the paraxial
eikonal solver that we have already proposed. The key point is this: even when the
traveltime is single-valued above and below the intermediate depth z, there may be
more than one solution of the slowness matching condition at z, leading to multiple
traveltimes from (x0, z0) to (x1, z1). Moreover, all traveltimes along sub-horizontal
(downgoing) rays may be found in this way. To make the traveltime single-valued,
we may choose the depth strip to be small enough as we argued above. Figure 4
illustrates these contentions: it is possible that there are two rays from (x0, z0) to
(x1, z1) through the depth z, and they must both satisfy the slowness matching
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Fig. 4. Illustration of slowness matching principle: when t+y(x, z; x1, z1) is a traveltime.

condition (16) at depth z. Moreover, each solution of (16) for x-coordinate is
necessarily the location at which a ray crosses at depth z. Therefore one finds in this
way all downgoing rays from (x0, z0) to (x1, z1) and their associated traveltimes.

This procedure applies recursively by dropping the requirement that the tra-
veltime in the depth interval from z0 to z be single valued. It only requires that the
horizontal ray slowness p be available at each point on depth z, and this function
may be multivalued which renders a dynamic data structure to be necessary. In this
way, the slowness matching procedure extends a (possibly multivalued) traveltime
field through the depth interval from z to z1.

3.3. Numerical Implementation

Corollary 3.3 suggests an obvious recursive algorithm to determine all travel-
times along downgoing rays, requiring only the ability to compute local single-
valued traveltime fields in perhaps narrow depth strips. These traveltime fields need
only be accurate at points along downgoing rays. A local paraxial eikonal solver of
the type explained above provides such aperture-limited traveltime fields with an
optimal operation count, i.e., the number of floating point operations required is
proportional to the number of gridpoints visited. Numerical solution of the slow-
ness matching condition can be done by enumerating zero crossings of

p+
“yp

“x
(x, z; x1, z1)

and interpolating or by any other convenient root finding technique. This completes
the algorithm.
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Algorithm 1.

• Initialization:

– Choose dz so that the modified eikonal equation with an appropriate initial
datum on z=z0 has smooth solution for z0 [ z [ z0+dz where dz can be
either an a priori estimate or a guess via trial and error.

– Set zn=z0+ndz, n=0, 1, 2,...: slowness matching depths. Choose step Dx
for grid on slowness matching depths and enumerate grid points xm

n ,
m=1,..., N.

– Solve the modified eikonal equation (5) with the appropriate initial datum
at z=z0 in z0 [ z [ z1. Record the following data

x(1, m)=xm
1 , t(1, m)=y,

p(1, m)=
“y

“x
(xm

1 , z1; x0, z0), p0(1, m)=−
“y

“x0
(xm

1 , z1; x0, z0)

evaluated at (x0, z0; xm
1 , z1) in a linked list, in order of increasing p0.

• Repeated steps for depth n. At depth n, we have list

{x(n, · ), t(n, · ), p(n, · ), p0(n, · )}.

To advance to depth n+1:

– For each grid point x l
n, compute local traveltime table

y(x l
n, zn; xm

n+1, zn+1) (m=1, 2,..., N)

as well as takeoff and arrival slownesses as defined before.

– Initialize counter k=0 for a new list.

– For each grid-point xm
n+1 (each m):

f For each item {x(n, j), t(n, j), p(n, j), p0(n, j)} in level n list (each j): if

1 p(n, j)+
“y(x, zn, xm

n+1, zn+1)
“x

:
x=x(n, j)

2

×1 p(n, j+1)+
“y(x, zn, xm

n+1, zn+1)
“x

:
x=x(n, j+1)

2 < 0,

then estimate zero crossing for x by linear interpolation. Use resulting
convex combination to interpolate t P t+y, p=yx, and p0= interpolate
of p0’s from level n. Insert the new item into the list as x(n+1, k)=xm

n+1,
t(n+1, k), p(n+1, k), and p0(n+1, k), in order of increasing takeoff
slowness p0; increment k P k+1;

f Next j;

– Next m;

• Next n;
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Remark. We actually only need to record ‘‘in aperture’’ times, i.e., those for
which rays make an angle [ hmax with depth axis. The necessary angle information
is a by-product of the local paraxial eikonal solver.

Remark. In the algorithm the initial datum compatible with a point source is
generated by assuming that the velocity near the source is constant and equal to the
velocity at the source. This assumption naturally introduces some traveltime errors,
but we can compute an a priori estimate of the initial step so that the adaptive
eikonal solver is furnished with accurate, smooth initial data; see Sec. 2.3 for
implementation and see also [36] for more details.

Remark. In the algorithm we need to choose dz in every depth strip so that
the solution is locally smooth. At the initial strip we might obtain an a priori esti-
mate of dz or guess an initial dz by trial and error. However, for depth strips
afterward it is possible to choose dz adaptively so that locally the solution is still
smooth. On the other hand, our computational experience (see next section) indi-
cates that inserting unnecessary depth strips degrades the numerical results; there-
fore one has to be careful in choosing dz in the computation. Fortunately, the
adaptive eikonal solver based on WENO Runge–Kutta schemes is robust enough to
always yield some predictable approximation of viscosity solutions of the eikonal
equation even though the theoretical solution might not be smooth. This implies
that for an arbitrary dz the algorithm will produce numerical solutions of the
paraxial eikonal equation, which in turn justifies the choice of fixed dz in the slow-
ness matching algorithm.

The complexity of the algorithm for a grid of traveltime output points of size
nx × nz is dominated by the cost of the local traveltime solves. Suppose that the total
depth interval is divided into m roughly equal layers. Because of the aperture limi-
tation just mentioned, each local traveltime solve costs O((nx/m)(nz/m)) flops,
even accounting for grid adaptation near each source point. This estimate presumes
that the output grid is eventually the computational grid, after a step-doubling
phase near the source point, and that is indeed the behavior of the adaptive grid
algorithm explained above. Since there are nx gridpoints at the top of each layer,
and m layers, the total cost of local traveltime solves is O(n2

xnz/m). The cost of the
slowness matching computations depends on the root-finding algorithm used. The
algorithm just described searches exhaustively the previous slowness match layer for
each point on the current one. For a fixed bound on the number of traveltime
branches, which in turn is bounded by a function of the C2 norm of log s,
a reasonable estimate is proportional to the number of gridpoints visited, i.e.,
O(n2

xm), which is negligible compared to the cost of the local traveltime solves (as
we observe in practice). The overall cost compares unfavorably to the O(nxnz) cost
of a single first arrival computation using one of the WENO paraxial algorithms.
However, most of the flops go into computing local tables, which are reusable
across sources (xs, zs). Therefore, if multiple (O(nx)) multi-arrival traveltime tables
are required, i.e., one for each gridpoint along the top of the grid, then the cost of
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the slowness matching multi-arrival computations is of roughly same as that of
computing O(nx) first arrival tables. Thus, for applications such as Kirchoff migra-
tion of densely sampled reflection seismic data, the slowness matching algorithm
becomes competitive with other approaches.

Corollary 3.3 guarantees that this procedure actually computes all of the tra-
veltimes along downgoing rays. Concerning numerical accuracy, note that the
adaptive eikonal solver described in the last section computes y with effectively
third-order accuracy, so difference approximation will compute Ny with second-
order accuracy as well. It follows that the solution of the slowness matching condi-
tion, hence the multiple traveltimes and slownesses derived from it, will have second-
order accuracy essentially, apart from the errors introduced by numerical root
finding. Given accurate local tables, main source of error is linear interpolation
which is of O((Dx)2). These latter are consistent in order of accuracy; the upshot is
that the computed multiple traveltimes should be of second-order accuracy essen-
tially in the grid spacing.

4. NUMERICAL EXPERIMENTS

The slowness matching code used in the following experiments combines a
Fortran implementation of the adaptive WENO eikonal solver and a driver module
written in C++. It stores output traveltimes in linked lists to accommodate their
a priori unknown number.

The waveguide example (Fig. 1) has an analytic slowness field, and the ordi-
nary differential equation solver MATLABTM ODE45 computes trajectories of
Hamilton’s equations essentially to machine precision, thus giving ‘‘ground truth’’
against which to compare the output of the slowness matching algorithm.

Trial and error showed that dz=0.25 km in Algorithm 1 is a sufficiently small
depth interval to keep local traveltimes single-valued in this example. Figure 5
compares the ray trace and slowness matching traveltimes at depth z=2.0 km using
Dx=0.05 km. The slowness matching and ray-tracing times differ somewhat, but
the development of the two triplications is clear. To illustrate the convergence
theory sketched above, Fig. 6 shows the same data, but this time using Dx=
0.025 km in the slowness matching algorithm. Since an adaptive eikonal solver is
used in the algorithm, it is hard to measure the convergence order exactly; but in
the figure the near second-order convergence is clearly apparent, and the triplica-
tions unfold nicely.

The next example is Marmousi model from the 1996 INRIA Workshop on
Multi-arrival Traveltimes. The calibration data used here were computed by Dr.
Klimés.

Figure 7 is the calibration for first arrivals only by using the adaptive gridding
WENO eikonal solver. Figure 8 is the calibration for multi-arrivals by the slowness
matching algorithm, where dz=1 km. Figure 9 shows the details of the center
section. Since the convex combinations of traveltimes computed by the algorithm
described above is always an overestimate (Fermat’s principle!), inserting (unneces-
sary) slowness matches degrades the result. Figures 10 and 11 show the comparison
dz=0.5 km vs. dz=1 km.
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Fig. 5. Traveltime at depth z=2.0 km. Dots are ray arrivals, uniformly sampled in angle at source. Line
is result of slowness matching algorithm with Dx=0.05 km used to compute local traveltime fields via
WENO adaptive eikonal solver. Note that the lower line corresponds to the first-arrival traveltime field.
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Fig. 6. Traveltime at depth z=2.0 km. Dots are ray arrivals, uniformly sampled in angle at source.
Line is result of slowness matching algorithm with Dx=0.025 km used to compute local traveltime
fields via WENO adaptive eikonal solver. Comparison with Fig. 5 shows near 2nd-order convergence.

520 Symes and Qian



160 180 200 220 240 260 280 300 320 340
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Receivers

T
im

es
 (

s)
Marmfa vs. ray-tracing

Fig. 7. Traveltime at depth z=2.904 km for Marmousi model. Stars are ray arrivals, uniformly
sampled in angle at source. Line is result of first-arrivals via WENO adaptive eikonal solver with
Dx=0.024 km.
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Fig. 8. Traveltime at depth z=2.904 km. Stars are ray arrivals, uniformly sampled in angle at
source. Line is result of slowness matching algorithm with dz=1 km. The local traveltime fields is
computed with Dx=0.024 via WENO adaptive eikonal solver.
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Fig. 9. Details for traveltime at depth z=2.904 km for Marmousi model. Stars are ray arrivals,
uniformly sampled in angle at source. Line is result of slowness matching algorithm with dz=1 km.
The local traveltime field is computed with Dx=0.024 via WENO adaptive eikonal solver.
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Fig. 10. Traveltime at depth z=2.904 km. Stars are ray arrivals, uniformly sampled in angle at
source. Lines are results of slowness matching algorithm with dz=1 km and dz=0.5 km. The local
traveltime field is computed with Dx=0.024 via WENO adaptive eikonal solver.

522 Symes and Qian



Fig. 11. Details for traveltime at depth z=2.904 km. Stars are ray arrivals, uniformly sampled in
angle at source. Lines are results of slowness matching algorithm with dz=1 km (lower curve, more
accurate) and dz=0.5 km (upper curve, less accurate). The local traveltime field is computed with
Dx=0.024 via WENO adaptive eikonal solver.

5. EXTENSIONS

The algorithm described in the preceding section yields complete traveltime
information at the intermediate depth levels selected in the computation and of
course at the bottom. This is sufficient for modeling of transmitted waves, but some
applications, for example, Kirchoff migration of reflection data, require time fields
throughout the grid, not just at a few levels. A simple modification of the algorithm
generates the global multi-arrival traveltime field on a full grid. In fact, one simply
takes dz=Dz in Algorithm 1, hence m=nz. Remarkably, the procedure remains
economical: for each point on each interface, the aperture limitation implies that
only O(1) points need be searched, not O(nx). Thus the total cost of the slowness
matching phase becomes O(n2

xnz), which is comparable to the cost of the local tra-
veltime solves so that the overall cost estimate remains the same.

The enumerative approach to locating roots of the slowness matching condi-
tion is unnecessarily inefficient. A simple derivative free search, such as Brent’s
method [11, 32], should reduce the cost of the search considerably. More accurate
local traveltimes or an appropriate averaging procedure would make the traveltime
second derivative accessible numerically, permitting Newton’s method or a relative
to be used [11].

Dropping the restriction to times along downgoing rays requires more serious
modification. A variety of methods have been suggested for aperture-unlimited

Eulerian Multivalued Solutions 523



local traveltime computation: see for example [47, 31, 42, 10, 43, 20]. Then replace
the depth range strips of the slowness matching algorithm described here by rec-
tangular patches, in which local traveltimes are single valued, and perform slowness
matching at their common boundaries. In contrast to the down-going ray con-
struction, in which there is a preferred direction, this isotropic algorithm must
sweep through the network of rectangular patches in some order, and almost surely
multiple sweeps will be required. Thus arises an interesting combinatorial problem:
what is the minimum number of sweeps guaranteed to catch all travel-times, and
how should such an optimal program be organized? For discussion of a similar
question in the context of first arrival computation, see [42]. Assuming a reason-
able bound on the number of sweeps, the economics of this algorithm would
compare favorably to global traveltime solves when a dense array of surface source
points is required.

Three dimensional generalization is in principle straightforward, though issues of
numerical efficiency remain to be settled. The slowness matching procedure requires
finding solutions of two equations in two unknowns, which could be approached in
the same way as in the two dimensional case. Obviously the benefit of the more effi-
cient search strategies would be more pronounced in the three dimensional case.

To prove the convergence of the algorithm, there needs some more thinking.
First our algorithm computes multivalued traveltimes rather than caustics.
Secondly, any convergence theorem for our algorithm will have to account for the
changing number of the traveltimes computed at points near caustics as the grid is
refined. Our numerical evidence suggests that: if there are n traveltimes in a neigh-
borhood of a point (this excluding caustic points), then for a small enough Dx we
compute n traveltimes, and they are in error O(Dx2).

For applications in wave propagation, such as high frequency asymptotic
modeling and migration of seismic reflection data, amplitudes and phase factors
(Maslov indices, [17]) are needed. The local computations are already in hand.
Extension of the slowness matching requires computation of a curvature factor to
combine amplitudes along ray segments, which is possible by using the adaptive
eikonal solver designed for both traveltimes and amplitudes [36]. The Maslov
index is immediately available in two dimensions, because of the ordering step in
the algorithm outlined here—the index increments for each sign change of the
arrival slowness, ordered by increasing takeoff slowness.
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