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Abstract

We apply the level-set methodology to compute multivalued solutions of the paraxial eikonal equation in both

isotropic and anisotropic metrics. This paraxial equation is obtained from 2D stationary eikonal equations by using one

of the spatial directions as the artificial evolution direction. The advection velocity field used to move level sets is

obtained by the method of characteristics; therefore, the motion of level sets is defined in a phase space, and the zero

level set yields the location of bicharacteristic strips in the reduced phase space. The multivalued traveltime is obtained

from solving another advection equation with a source term. The complexity of the algorithm is OðN 3 logNÞ in the

worst case and OðN 3Þ in the average case, where N is the number of the sampling points along one of the spatial di-

rections. Numerical experiments including the well-known Marmousi synthetic model illustrate the accuracy and the

efficiency of the Eulerian method.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The eikonal equation as a first-order non-linear PDE usually admits more than one weak solution. The

concept of viscosity solution developed by Crandall and et al. [10] and others makes use of the maximum

principle for the non-linear PDE and picks out a unique and stable solution among many weak solutions;

physically, this solution corresponds to the first arrival or the least traveltime if the solution of the eikonal

equation has the dimension of time [21]. However, in practice, later arrivals may carry information which is
more relevant to applications. In geophysical oil explorations, for example, the first-arrival wavefront may

not carry the most energetic part of the wave-field, and later-arrival wavefronts may be more useful for

modern high resolution seismic imaging via integral transform in the presence of strong refraction

[15,22,25]. In the quantum mechanics, the WKBJ method for the semi-classical limit of the Schr€odinger
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equation needs multivalued phases to construct the asymptotic expansion of the wave field, where the

phases are multivalued solutions of eikonal equations [6,23].

Naturally, one may use the method of characteristics, a Lagrangian formulation, to compute multi-
valued solutions of the eikonal equation. However, it suffers from some typical shortcomings of Lagrangian

methods, for instance, non-uniform distribution of the solutions in the physical space. The resolution of

this is via dynamic addition and removal of rays (characteristics) as computation proceeds at the cost of

complicated data structures and bookkeeping [44]. Therefore, one looks to Eulerian formulations for

computing multivalued solutions of the eikonal equation. In this regard, a new field, so-called Eulerian

geometrical optics, emerged [2] as many researchers have devoted a lot of efforts to developing efficient

Eulerian methods for computing multivalued solutions since the early 90s. As a result, there are many

different approaches in the literature: explicit caustic construction method [1,3], slowness matching method
[41,42], segment projection method [13], dynamic surface extension method [37,38], kinetic method for

multibranch entropy solutions [4,16], higher co-dimension level-set evolution method [6,7,20,26,31],

Liouville equations for escape parameters [14], to name just a few.

The level-set method was first used to compute multivalued phases in the high frequency asymptotics for

acoustic wave equations in [26], where the multivalued phases are implicitly represented as self-intersecting

wavefronts in the physical space. Later it was extended to compute multivalued phases (traveltimes) in the

high frequency asymptotics for anisotropic elastic wave equations in [7,31], where the multivalued solutions

for a class of steady Hamilton–Jacobi equations were computed and illustrated as self-intersecting wave-
fronts as well. Recently, it was extended to compute multivalued wavefronts and multivalued phases in the

high frequency asymptotics for the Schr€odinger equation in [6], where multivalued solutions for time-de-

pendent Hamilton–Jacobi equations were constructed in a general level-set framework; it was also extended

to compute the multivalued gradient of the solution for a class of Hamilton–Jacobi equations in [20], where

a level-set formulation for handling the gradient of the solution is used to obtain the Liouville equation, but

the formulation only yields the multivalued gradient of the solution and does not provide the multivalued

solution itself.

In this paper, we propose another level-set based Eulerian method for computing multivalued solutions
of the paraxial eikonal equation in both isotropic and anisotropic metrics. The level-set framework provides

a natural link from a Lagrangian formulation to an Eulerian formulation. We first derive the ray tracing

equation using one of the spatial directions as the running parameter, which corresponds to the paraxial

eikonal equation. The ray tracing equation is embedded into a level-set motion equation to define a passive

motion for level sets. The multivalued traveltime is obtained from solving another advection equation with

a non-homogeneous source term. The complexity of the algorithm is OðN 3 logNÞ in the worst case and

OðN 3Þ in the average case where N is the number of the sampling points along one of the spatial directions.

After we finished this paper, we became aware of that our method shares some similarities with that
proposed in [6]; but our setup, derivation and aimed applications are different from those presented in [6],

and one of the advantages of our work is that multivalued solutions of 2D steady eikonal equations are

obtained by solving two ‘‘time’’ dependent (z-dependent), 2D in a reduced phase space (ðx; hÞ space with h
being the phase angle), linear advection equations rather than two time dependent (t-dependent), 3D in a

reduced phase space (ðx; z; hÞ space), linear advection equations as in [26,31]. Our method is different from

that in [20] because our formulation yields both locations of multivalued wavefronts and multivalued

traveltimes, while the formulation in [20] only yields the multivalued gradient of the solution. Our method is

also different from that in [14], in terms of how to obtain a well-posed problem. Under a point source
condition considered here for the eikonal equation, our method is based on an advection equation for

traveltimes in phase space (ðx; z; hÞ space), thus allowing for multivaluedness on projection to physical

space. Since the traveltime is not defined for all values of h at every physical location ðx; zÞ under a point

source condition, a level-set function defined in the phase space is advected concurrently to indicate the

wavefront location. The paraxial assumption is used to guarantee that the planes z ¼ const: are non-
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characteristic for the evolution, so that the z variable can be used to advance the front; this overall gives a

well-posed problem. Because the traveltime at a specific location ðx; zÞmay not be defined for all values of h,
to obtain a well-posed problem the work in [14] imposes point source conditions everywhere on the space
boundary; this in essence boils down to making the traveltime defined everywhere in the phase space;

finally, to extract multivalued traveltimes at a specific physical location a set of Liouville equations for

so-called escape parameters have to be solved as well.

Although the paraxial assumption in the method does not allow overturning rays in the physical space, it

is sufficient for many geophysical applications [17,33,34]. We notice that the paraxial formulation for

eikonal equations [17] is different from the paraxial (or parabolic) formulation for wave equations [8]. The

paraxial formulation for wave equations first appeared in reflection seismology [8], and the resulting

equation is usually called the parabolic wave equation; later the idea was used in underwater acoustics and
many other applications. One may apply the high frequency asymptotics to a parabolic wave equation to

obtain a ‘‘time’’-dependent eikonal equation as well. However, as pointed out in [12], the paraxial ap-

proximation in geometrical optics signifies another simplification which can be made when there is one

preferred wave propagation direction so that a stationary eikonal equation can be rewritten as an evolution

equation in one of the spatial variables [17,35]; as long as a version of the so-called sub-horizontal condition

holds, there is no approximation involved. The paraxial eikonal equation we will use first appeared in [17]

and was rigorously justified in [42].

The rest of the paper is organized as follows: Sections 2 and 3 present the paraxial formulation for
isotropic and anisotropic eikonal equations, respectively; Section 4 presents the level-set formulation for

multivalued wavefronts and multivalued traveltimes; Section 5 gives implementation details for the

level-set method; Section 6 demonstrates the accuracy of the proposed Eulerian method with extensive

numerical examples, including the well-known Marmousi synthetic model; Section 7 concludes the

paper.
2. Paraxial formulation for isotropic eikonal equation

Consider the eikonal equation with a point source condition in an isotropic medium which occupies an

open, bounded domain X � R2. By isotropy here we mean the wave velocity has no directional dependence.

The equation is as follows:

jrxsðx; xsÞj ¼
1

cðxÞ ; ð1Þ
lim
x!xs

sðx; xsÞ
jx� xsj

¼ 1

cðxsÞ
; sP 0; ð2Þ

where xs is the given source point, c 2 C1ðXÞ is the positive velocity and j � j denotes the two-norm in the x
space. Here, sðx; xsÞ denotes the time (‘‘traveltime’’) taken by a particle moving at velocity cðxÞ to travel

from the source point xs to a target point x 2 X. For x 6¼ xs near xs, s is a differentiable function of both

arguments and satisfies the eikonal equation (1). However, when x is sufficiently distant from xs and the

velocity cðxÞ is inhomogeneous with spatial position x, s is generally a multivalued function of both

variables, and cusps and caustics occur with high probabilities [45].

The concept of viscosity solution can be used to extract a globally single valued solution for the eikonal

equation [10]; this solution assigns to each point x the least of the (possibly many) traveltimes from xs to x.

Relying on this concept we may use finite difference schemes to compute the least traveltime stably and
efficiently [11,28,29,34–36]. Although the viscosity concept and related numerical methods provide a
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natural Eulerian framework for geometrical optics, the drawback is that it provides only first-arrivals while

some applications may require all arrival times.

To motivate our derivation from a multivalued Lagrangian framework to a multivalued Eulerian
framework, we first derive a single-valued Lagrangian framework from the above viscosity-solution-based

single-valued Eulerian framework. Because the rays of geometric optics are the orthogonal trajectories of

the wavefronts (level sets of s) [9], consider the one-parameter family of two-dimensional wavefronts cðtÞ,
where t 2 ½�0;1Þ is time, �0 is a small number and cð�0Þ is a simple, closed and smooth wavefront. Then near

t ¼ �0, cðtÞ can be generated by moving cð�0Þ along the normal vector field with speed c depending on

position x. Let xðr; tÞ ¼ ðxðr; tÞ; zðr; tÞÞ be the position vector which parameterizes cðtÞ by r : 06 r6R,
xð0; tÞ ¼ xðR; tÞ. Then the equations of motion can be written as

xt ¼ cðx; zÞ zrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ z2r

p ; zt ¼ �cðx; zÞ xrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ z2r

p : ð3Þ

Given the mapping from ½0;R� � ½�0;1Þ to R2 generated by the moving curve, there exists near t ¼ �0 an

inverse mapping function s defined by t ¼ sðx; yÞ. Then the function s satisfies the eikonal equation (1), as

long as the wavefront stays smooth and non-intersecting [28]. If the wavefront intersects, then the particle

tracking system (3) without regridding is linearly ill-posed [28]. However, the monotone numerical method

for the viscosity solution of the eikonal equation (1) was well developed which yields a physically relevant

solution even if the wavefront self-intersects. In fact, the success of the level-set method in the early stage

was more or less attributed to the concept of viscosity solution and related high-order numerical methods

[19,29], so that topology change and merging can be taken care of automatically when they occur. On the
other hand, it also implies that in the current framework, i.e., Lagrangian formulation (3) and Eulerian

formulation (1), it is hard to capture self-intersecting wavefronts unless special care is taken to keep track of

some extra parameters, such as amplitude [1] or slowness [41,42], etc. These extra parameters are essentially

used to parameterize the self-intersection, i.e., multivaluedness, and this viewpoint naturally leads one to

consider phase-space formulations for computing multivalued solutions.

By the method of characteristics for the eikonal equation (1) with the point source condition (2), we have

a ray tracing system

dx
dt

¼ c sin h; ð4Þ
dz
dt

¼ c cos h; ð5Þ
dh
dt

¼ sin h
oc
oz

� cos h
oc
ox

; ð6Þ

with initial conditions

xjt¼0 ¼ xs; ð7Þ
zjt¼0 ¼ zs; ð8Þ
hjt¼0 ¼ hs; ð9Þ

where x ¼ ðx; zÞ, xs ¼ ðxs; zsÞ and hs varies from �p to p. This is a multivalued Lagrangian formulation

because even though the rays in the phase space ðx; z; hÞ may never intersect, the projected rays in the

physical space ðx; zÞ may intersect.
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In some applications, for example, wave propagation in reflection seismics [8], the

traveltimes of interest are carried by the so-called sub-horizontal rays [17,34,40], where sub-horizontal

means ‘‘oriented in the positive z-direction’’. A convenient characterization for sub-horizontal rays is
that

dz
dt

P c cos hmax > 0; ð10Þ

for some 0 < hmax < p=2. This inequality holds for rays making an angle h with the vertical satisfying

jhj6 hmax < p=2.
To be specific, consider

X ¼ ðx; zÞ : xminf 6 x6 xmax; 06 z6 zmaxg; ð11Þ

and assume that the source is located on the surface: xmin 6 xs 6 xmax and zs ¼ 0. By the sub-horizontal

condition we can use depth as the running parameter so that we have a reduced system

dx
dz

¼ tan h; ð12Þ
dh
dz

¼ 1

c
oc
oz

tan h

�
� oc
ox

�
; ð13Þ

with

xjz¼0 ¼ xs; ð14Þ
hjz¼0 ¼ hs; ð15Þ

where now hs varies from �hmax 6 h6 hmax < p=2. In addition, the traveltime is computed by integrating

dt
dz

¼ 1

c cos h
; ð16Þ

with

tjz¼0 ¼ 0: ð17Þ

This ray tracing system (12)–(15) is a multivalued Lagrangian formulation defined in the reduced phase

space ðz; x; hÞ. Actually, the ray tracing system can be obtained by applying the method of characteristics to
the paraxial eikonal equation

os
oz

¼ H x; z;
os
ox

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

1

c2
� os

ox

� �2

;
cos2 hmax

c2

 !vuut ; ð18Þ

which in turn comes from enforcing the sub-horizontal condition in the eikonal equation (1); see [42] for a

theoretical justification.

As we will see, since the ray tracing system (12), (13) is formulated in a reduced phase space, we may use
a two-dimensional level-set motion equation to move the initial curve deduced from the initial condition

and the curves moved will not self-intersect because they are defined in the reduced phase space.
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3. Paraxial formulation for anisotropic eikonal equation

For general anisotropic media in which wave propagation velocities have both spatial and directional
dependence, we may also formulate paraxial eikonal equations by enforcing a version of the sub-horizontal

condition.

To illustrate the idea behind our approach, we consider the two-dimensional anisotropic eikonal

equation only; please see [31] for a detailed derivation of 3D anisotropic eikonal equations. Consequently,

we denote the 2D anisotropic eikonal equation as

F ðx; z; p1; p3Þ ¼ 0; ð19Þ

where F is a function depending on the anisotropic medium under consideration. Here, p1 ¼ sx and p3 ¼ sz
are components of the slowness vector rs with s being the traveltime. Parameterize the slowness vector by

p1 ¼
sin h

V ðx; z; hÞ ; p3 ¼
cos h

V ðx; z; hÞ ; ð20Þ

where h is known as the phase angle, varying from �p to p, and V as the phase velocity solving an ei-

genvalue problem [31] and selecting different wave modes. Applying the method of characteristics to Eq.

(19) yields

dx
dt

¼ p1
oF
op1

�
þ p3

oF
op3

��1
oF
op1

; ð21Þ
dz
dt

¼ p1
oF
op1

�
þ p3

oF
op3

��1
oF
op3

; ð22Þ
dp1
dt

¼ � p1
oF
op1

�
þ p3

oF
op3

��1
oF
ox

; ð23Þ
dp3
dt

¼ � p1
oF
op1

�
þ p3

oF
op3

��1
oF
oz

; ð24Þ

where the normalization is made so that the evolution parameter t has the dimension of time and thus it is

identical to s. To obtain an equation for dh=dt, we differentiate the equations in (20), arriving at

dp1
dt

¼
V cos h� oV

oh sin h

V 2

dh
dt

� sin h
V 2

oV
ox

dx
dt

�
þ oV

oz
dz
dt

�
; ð25Þ
dp3
dt

¼
�V sin h� oV

oh cos h

V 2

dh
dt

� cos h
V 2

oV
ox

dx
dt

�
þ oV

oz
dz
dt

�
: ð26Þ

Thus, solving the above equations for dh=dt and substituting in (23) and (24) gives us

dh
dt

¼ p1
oF
op1

�
þ p3

oF
op3

��1

V
oF
ox

cos h

�
� V

oF
oz

sin h

�
: ð27Þ

Eqs. (21), (22) and (27) give us the ray tracing system which may be solved with suitable initial conditions

as (7)–(9).
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The condition for sub-horizontal rays is

dz
dt

¼ p1
oF
op1

�
þ p3

oF
op3

��1
oF
op3

> 0; ð28Þ

which may be enforced easily in the reduced phase space for different wave modes. This implies that we may

use the depth variable as the running parameter along the ray so that we have

dx
dz

¼ oF
op1

oF
op3

� ��1

; ð29Þ
dh
dz

¼ oF
op3

� ��1

V
oF
ox

cos h

�
� V

oF
oz

sin h

�
; ð30Þ

augmented with initial conditions (14) and (15).

Similar to the isotropic case, the traveltime T ¼ t is computed by integrating

dT
dz

¼ p3 þ p1
dx
dz

; ð31Þ

with the initial condition (17).
4. Level set formulation

As we mentioned above, we treat z as an artificial time variable. Now, if we define / ¼ /ðz; x; hÞ such that
the zero level set, fðxðzÞ; hðzÞÞ : /ðz; xðzÞ; hðzÞÞ ¼ 0g, gives the location of the reduced bicharacteristic strip

ðxðzÞ; hðzÞÞ at z, then we may differentiate the zero level-set equation with respect to z to obtain

/z þ u/x þ v/h ¼ 0; ð32Þ

with

u ¼ dx
dz

and v ¼ dh
dz

; ð33Þ

which are given by the ray equations (12) and (13) or (29) and (30). In essence, we embed the ray tracing

equations as the velocity field, u ¼ ðu; vÞ, into the level set equation which governs the motion of the bi-

characteristic strips in the phase space.

The initial condition for the level-set motion equation (32) is taken to be

/jz¼0 ¼ /ð0; x; hÞ ¼ x� xs; ð34Þ

which is obtained from initial conditions (14) and (15). This is a signed distance function, satisfying

jrx;h/j ¼ 1, to the initial phase space curve

ðx; hÞ : xf ¼ xs;� hmax 6 h6 hmaxg; ð35Þ

in the reduced phase space

Xp ¼ ðx; hÞ : xminf 6 x6 xmax;� hmax 6 h6 hmaxg: ð36Þ
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The initial curve partitions Xp into two sub-domains represented by fðx; hÞ : /ð0; �; �Þ < 0g and

fðx; hÞ : /ð0; �; �Þ > 0g. Afterwards, the level-set motion equation takes over and moves this initial curve as z
varies, and the zero level set of / at z gives the location of the new curve which still partitions Xp into two
sub-domains. Since the initial curve defines an implicit function between x and h, where h is a (possibly

multivalued) function of x, the new curve shares the same property. Therefore, for fixed z, for some xs we
may have more than one h� such that /ðz; x; h�Þ ¼ 0. This essentially tells us where the solutions are

multivalued.

To determine the arrival-time of the ray from the above level-set equation, we now derive a corre-

sponding equation governing the evolution of the traveltime. By the sub-horizontal condition in the par-

axial formulation and the ray equation (16) or (31), let Fuðz; x; hÞ be the flow generated by the velocity field

u ¼ ðu; vÞ in the phase space ðx; hÞ along the z-direction. Then we can write

dT
dz

ðz; Fuðz; x; hÞÞ ¼
1

c cos h
; ð37Þ

in the isotropic case and

dT
dz

ðz; Fuðz; x; hÞÞ ¼ p3 þ p1
dx
dz

; ð38Þ

in the anisotropic case. Therefore, having t ¼ T ðz; x; hÞ, we get the following advection equation:

dt
dz

¼ dT
dz

¼ Tz þ uTx þ vTh ¼
1

c cos h
; ð39Þ

for isotropic traveltime and

dt
dz

¼ dT
dz

¼ Tz þ uTx þ vTh ¼ p3 þ p1
dx
dz

; ð40Þ

for anisotropic traveltime.

The initial condition for T is specified according to the initial condition (17)

T jz¼0 ¼ T ð0; x; hÞ ¼ 0; ð41Þ

which is consistent with the initial condition (34).

By solving the level-set equation (32), we have the locations of wavefronts; by solving the traveltime
equation (39) or (40), we have the traveltime values at the corresponding locations. Therefore, the multi-

valued traveltime at a specific location in the physical space can be obtained by first computing wavefront

locations and then interpolating the traveltime at that location from gridded traveltimes.
5. Implementation

We will give full details on implementing the level-set Eulerian method for isotropic eikonal equations
only.

5.1. Boundary conditions and an algorithm

Because the level-set equation is a homogeneous advection equation, a non-reflective boundary condi-

tion is used for the level-set equation, meaning o/=on ¼ 0, where n is the outward normal along the
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boundary of Xp. This ensures the information outside the domain Xp will not interfere with the zero level set

inside the computational domain.

However, since the traveltime equation is a non-homogeneous advection equation, we need to specify
normal derivatives of the traveltime along the boundary according to the characteristic system. In general,

there are two types of characteristics, i.e., outgoing and incoming characteristics. By using upwind nu-

merical schemes, those boundary conditions can be taken care of automatically if some appropriate normal

derivatives are imposed on the boundary so that the outside information will not propagate into the

computational domain. To obtain such normal derivatives, we use the information from the characteristics

system. We first invert Eqs. (4) and (6) locally and get
oT
ox

¼ 1

c sin h
; ð42Þ

which is used for boundaries x ¼ xmin and x ¼ xmax, and

oT
oh

¼ sin h
oc
oz

�
� cos h

oc
ox

��1

; ð43Þ

which is for boundaries h ¼ �hmax and h ¼ hmax.

The above conditions essentially specify normal derivatives of the traveltime along the boundaries.

Then the values of T on the boundaries will be obtained by applying the Adams� Extrapolation

formula to Eq. (42), where h is considered as fixed, and to Eq. (43), where x is considered as

fixed.

In Eq. (42), when h ¼ 0, it seems that there is a singularity. However, in that case, u ¼ tan h ¼ 0, and

thus the information on the boundary will not propagate into the computational domain.
With above ingredients in place, we summarize the first algorithm for determining the multivalued

traveltimes for all x at some depth z�.

Algorithm 1.
(I) Solve the level-set equation (32) and the traveltime equation (39) up to z� with the velocity field gen-

erated by the ray equations (12) and (13).

(II) For all x,
(i) determine all hi such that /ðz�; x; hiÞ ¼ 0 ði ¼ 1; . . .Þ by root finding;

(ii) determine T ðz�; x; hiÞ ði ¼ 1; . . .Þ by interpolation.

In Step I, the level-set equation and the traveltime equation are decoupled and can be solved separately.

The x and h derivatives are approximated by a fifth-order WENO-Godunov scheme [19] while a third-order

TVD-RK method [29] can be used for the z derivative. Since both the level-set equation (32) and the

traveltime Eq. (39) are linear, the CFL step Dz can be chosen by

Dz6C
minðDx;DhÞ

maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ
; ð44Þ

where Dx and Dh are mesh sizes along x- and h-directions, respectively, and C is a CFL number taken to be
0.6. For the root finding and the interpolation in Step II, we can simply use any non-oscillatory interpo-

lation scheme, for example, linear interpolation or ENO reconstruction. For z� fixed the root finding on

each line of x is conducted by checking the values of / with h varying. Interpolation for traveltime is

performed where a root is present according to the Intermediate Value Theorem.
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5.2. Regularizations

Initially at z ¼ 0, we have a signed distance function satisfying jr/j ¼ 1, so that the level sets, i.e.,
contours, of / are equally spaced. However, as z varies the level-set equation is solved and the level-set

function is updated; in general the level-set function is no longer equally spaced because of the underlying

inhomogeneous velocity field, even though the zero level set of / at z, the curve that we are interested in, is

moving at the correct velocity. This implies that / may develop steep and flat gradients at or near the zero

level set, making the computed curve locations and further computations inaccurate, which does happen in

Algorithm 1.

In fact, numerically, if Algorithm 1 is implemented straightforwardly, then the obtained multivalued

solution is inaccurate. Therefore, we propose the following regularization procedure which consists of
reinitialization and orthogonalization.

To restore the equally spaced property for the level sets, the usual way is to make / a signed distance

function without moving the zero level set of / appreciably. This can be achieved through so-called re-

initialization and the usual way is to solve the following equation to steady state ~/1 [18,27,30,39]:

o~/
on

þ Sð/Þ r~/
��� ����

� 1
�
¼ 0; ð45Þ
~/jn¼0 ¼ /ðz; �; �Þ; ð46Þ
o~/
on

�����
oXp

¼ 0; ð47Þ

where Sð/Þ is a smooth, bounded, strictly monotone increasing function of / with Sð0Þ ¼ 0 [18]. In practice,
we have found that the following choice of Sð/Þ works well in the numerical examples presented below:

Sð/Þ ¼ 2

p
tan�1ð/Þ: ð48Þ

There are other possible choices, such as mesh-dependent smeared signum functions; see [27] for more

examples.

The steady state ~/1 has the same zero level set as /ðz; �; �Þ within a certain accuracy since ~/ does not
move on the zero level set of /. Moreover, at the steady state ~/1 is a signed distance function since

jr~/1j ¼ 1. The reinitialization step is to use ~/1 instead of /ðz; �; �Þ as the initial condition at z for solving
the level-set motion equation to the next stage. To achieve the steady state, we usually need only evolve Eq.

(45) for a few steps of the reinitialization procedure. How often we should invoke the reinitialization

procedure is a subtle issue; see [27,30] for some discussions. In our implementation, we invoke the reini-

tialization at every z step so that we have a better-behaved function for determining the values hi in Step II

of Algorithm 1.

Even with careful implementation of the above reinitialization procedure, the location of the zero level
set may still be shifted by an amount less than one grid cell. This is harmless for the visualization purpose of

the location of the wavefront. However, because the solution from the traveltime equation (39) would

typically vary a lot near the corresponding location of the zero level set of /, this shift makes the results

from the interpolation in Step II highly inaccurate.

Because we are only interested in the value of T where / ¼ 0, we propose the following orthogonali-

zation procedure:
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o~T
on

þ Sð/Þ r/
jr/j � r

~T
� �

¼ 0; ð49Þ
~T jn¼0 ¼ T ðz; �; �Þ; ð50Þ
o~T
on

�����
oXp

¼ 0; ð51Þ

which, theoretically, preserves the values of T where / ¼ 0 but changes them elsewhere such that the new T
would not vary too much near the desired region. At the steady state, r/ � r~T ¼ 0. Eq. (49) may also be
viewed as an extension procedure; namely, we extend the values of T on the zero level set of / along the

normals of the zero level set of /; see [27,30] and also see [5] for orthogonalization in higher co-dimensional

level-set methods. This generally makes T discontinuous since lines normal to the zero level set will

eventually intersect somewhere away from the zero level set. Even if the location of the zero level set may be

shifted, the effect to the interpolation will still be acceptable as long as the computational mesh is fine

enough; see Section 6 for more discussions.

Similar to the reinitialization in /, we only need to apply several iterations, instead of solving it until

reaching the steady state. This makes the regularization procedure efficient, simple to implement and
robust.

Incorporating the regularization procedure into Algorithm 1, we have an improved algorithm.

Algorithm 2.

(I) Initialization: given Nz, Nx and Nh: Dz ¼ zmax

Nz�1
, Dx ¼ xmax�xmin

Nz�1
and Dh ¼ 2hmax

Nh�1
; initialize / and T at z ¼ 0.

(II) For k ¼ 1 to Nz:

1. March one Dz step from ðk � 1ÞDz to kDz by solving the level-set equation (32) and reinitializing the

level-set motion by solving (45) at every intermediate z-step.
2. March one Dz step from ðk � 1ÞDz to kDz by solving the traveltime equation (39).

3. Orthogonalize T and / by solving Eq. (49).

4. For x ¼ ðj� 1ÞDx; j ¼ 1; . . . ;Nx,

(i) determine all hi such that /ðkDz; x; hiÞ ¼ 0 ði ¼ 1; . . .Þ by root finding;

(ii) determine T ðkDz; x; hiÞ ði ¼ 1; . . .Þ by interpolation.
Since the reinitialization procedure is usually invoked for a fixed number of steps (from 1 to 2 steps in
our numerical examples presented below), the above algorithm in the average case has the complexity

OðN 3Þ where Nz ¼ Nx ¼ Nh ¼ N is assumed. In the worst case, if the reinitialization procedure is invoked

until convergence, the above algorithm has the complexity OðN 3 logNÞ.
6. Numerical experiments

For the first three examples, we put a point source at the origin and the velocity functions cðx; zÞ are all
C1. The fourth example, the synthetic Marmousi model, is a more challenging one where the velocity

function is given only as a sampled function.

In all the examples the computational domain is chosen to be

X ¼ ðx; hÞ :f � 16 x6 1;� h 6 h6 h g; ð52Þ
p max max
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with hmax ¼ 9p=20. Accordingly, the Marmousi velocity model will be rescaled to the above computational

domain. The last example is an anisotropic model which consists of three different wave modes; one of the

wave modes has the so-called instantaneous singularity, and the corresponding traveltime is multivalued.

6.1. Constant velocity model

When the velocity c is constant, the analytic solution for the traveltime is known so that we can study the

accuracy and the convergence order of the proposed Eulerian method. We compute the traveltime up to

z ¼ 1:0 km with different options of regularization procedures to see how reinitialization and orthogo-

nalization affect the accuracy and the convergence order of the method.

Fig. 1 shows the evolution of the zero level set as the depth z increases. Notice that initially we have a
vertical line. Under the influence of the velocity field u ¼ ðtan h; 0Þ, the upper part of the vertical line is

advected to the right, and the lower part of the vertical line is advected to the left. However, since the
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Fig. 1. Evolution of the zero level set in the phase space at z ¼ 0:0, 0.2, 0.4, 0.6, 0.8 and 1.0, respectively.
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traveltime is single valued in the constant velocity case, the zero level set always defines a single valued

implicit function between x and h for every fixed z.
Table 1 shows clean second-order accuracy and convergence of traveltimes in l1, l2 and l1 norms

without either reinitialization or orthogonalization. This is expected because the linear interpolation is used

to find roots and extract traveltimes, yielding second-order accuracy only, even though the level-set

equation and the traveltime equation are solved to third-order accuracy.

Table 2 also shows second-order convergence of traveltimes in different norms without orthogonaliza-

tion but with two steps of reinitialization procedure at each z-step. This shows that the reinitialization

procedure alone does not move the zero level set too much so that the accuracy is not affected appreciably.

Table 3 shows second-order convergence of traveltimes in different norms without reinitialization but

with two steps of orthogonalization procedure at each z-step. This shows that the orthogonalization
procedure alone does not change too much the behavior of the traveltime field near the zero level set so that

the traveltime accuracy is not affected appreciably.

Table 4 shows neat second-order convergence of traveltimes in different norms when both reinitialization

and orthogonalization are invoked. This indicates that combining reinitialization and orthogonalization

procedures together does enhance the algorithmic behavior and improve the accuracy of computed trav-

eltimes significantly.
Table 1

Accuracy and convergence order of traveltimes without either reinitialization or orthogonalization

Dx l1 error l1 order l2 error l2 order l1 error l1 order

0.20000 0.01374575 0.01153032 0.01213886

0.10000 0.00366580 1.9067 0.00283586 2.0235 0.00265964 2.1903

0.05000 0.00092272 1.9901 0.00073505 1.9478 0.00079357 1.7447

0.02500 0.00024266 1.9269 0.00018498 1.9904 0.00021538 1.8814

0.01250 0.00005863 2.0491 0.00004600 2.0074 0.00005231 2.0416

0.00625 0.00001497 1.9692 0.00001165 1.9814 0.00001369 1.9336

Table 2

Accuracy and convergence order of traveltimes without orthogonalization but two reinitialization pseudo steps at each z-step using the

approximation (48)

Dx l1 error l1 order l2 error l2 order l1 error l1 order

0.20000 0.02029779 0.01874370 0.02519635

0.10000 0.00532929 1.9293 0.00430244 2.1231 0.00484257 2.3793

0.05000 0.00135341 1.9773 0.00116012 1.8908 0.00173133 1.4838

0.02500 0.00035766 1.9199 0.00029215 1.9894 0.00050259 1.7844

0.01250 0.00008633 2.0506 0.00007299 2.0008 0.00011961 2.0710

0.00625 0.00002233 1.9506 0.00001873 1.9617 0.00003397 1.8159

Table 3

Accuracy and convergence order of traveltimes without reinitialization but two orthogonalization pseudo steps at each z-step using the

approximation (48)

Dx l1 error l1 order l2 error l2 order l1 error l1 order

0.20000 0.00727231 0.00770262 0.01124069

0.10000 0.00143178 2.3445 0.00131120 2.5544 0.00181632 2.6296

0.05000 0.00040647 1.8165 0.00038993 1.7495 0.00065443 1.4726

0.02500 0.00010576 1.9422 0.00009684 2.0095 0.00020036 1.7076

0.01250 0.00002598 2.0252 0.00002437 1.9899 0.00004782 2.0667

0.00625 0.00000671 1.9517 0.00000633 1.9446 0.00001484 1.6880



Table 4

Accuracy and convergence order of traveltimes with two reinitialization pseudo steps and two orthogonalization pseudo steps at each

z-step using the approximation (48)

Dx l1 error l1 order l2 error l2 order l1 error l1 order

0.20000 0.00393867 0.00383178 0.00440058

0.10000 0.00109580 1.8457 0.00097230 1.9785 0.00122641 1.8432

0.05000 0.00027266 2.0067 0.00024258 2.0029 0.00032516 1.9152

0.02500 0.00007131 1.9349 0.00006096 1.9924 0.00008355 1.9603

0.01250 0.00001745 2.0304 0.00001520 2.0031 0.00002115 1.9814

0.00625 0.00000434 2.0053 0.00000380 1.9996 0.00000530 1.9955
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6.2. Wave guide

The velocity function is

cðx; zÞ ¼ 1:1� exp
�
� 0:5x2

�
: ð53Þ

The function is symmetric with respect to x ¼ 0, and we also expect the same type of symmetry in the

traveltime.
Fig. 2 shows the computed traveltimes at different depth zs by using only 40� 40 grids in the x–h space.

The results shown are the traveltimes at z being 0.8, 1.2, 1.6 and 2.0, respectively. Here, the steps in the

reinitialization and orthogonalization procedures are taken to be 1. The solutions are symmetric as

expected, and the developing of multivalued traveltime branches is clearly seen.

Fig. 3 shows the zero level set overlaying the traveltime field at z ¼ 0:0, 0.4, 0.8, 1.2, 1.6 and 2.0, re-

spectively. The dashed line is the location of the zero level set and the solid lines are the contour plot of the

traveltime function T . There are discontinuities in the traveltime field coming from the orthogonalization

procedure, where the normals of the zero level-set intersect. However, since we only use the information
near the dashed line, the jump in T will not interfere with our interpolation procedure if the grids are fine

enough, meaning that the discontinuity is at least one Dx distance away from the zero level set. Theoret-

ically, to resolve the zero level set itself on a given mesh, two parallel level-set segments should be greater

than one Dx distance away from each other so that they can be resolved. In our computation here, we need

to perform the orthogonalization procedure, and the normals from the two parallel level set segments

intersect in the middle so that discontinuities appear in the traveltime field. To avoid discontinuities in-

terfering with our computation, we have to keep discontinuities away from the zero level set at least one Dx
away. This in turn requires that the computational mesh resolve the parallel segments of the zero level set
greater than 2Dx distance away. At the tip of the zero level set, the traveltime is continuous along the zero

level set, so discontinuities in the traveltime field will not hurt the computation. Computationally, due to

the smearing of discontinuities, the required mesh may be finer.

Fig. 3 also shows that the contours are perpendicular to the zero level set as designed. As z varies, the
zero level set is advected so that it has more turnarounds and it no longer defines a single-valued implicit

function between x and h. This in turn implies that the traveltime becomes multivalued, and the number of

traveltime arrivals increases from 1 to 3 during this process.

6.3. Sinusoidal model

This example is adapted from the sinusoidal waveguide model proposed in [41,42], and the velocity

function is given by

cðx; zÞ ¼ 1þ 0:2 sinð0:5pzÞ sin½3pðxþ 0:55Þ�: ð54Þ
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Multivalued solutions develop as z increases.
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Computational results using a 120 by 120 grid in x–h space are given in Figs. 4–7. In these computations

the number of steps in the reinitialization and orthogonalization procedures is set to be 2, respectively.

Fig. 4 shows that the triplications in the traveltime developed at z ¼ 0:4, 1.0, 1.2 and 1.8 are clearly cap-

tured by the level set Eulerian method. Fig. 5 shows the evolution of the zero level set in the phase space.
The zero level set is overturned by the underlying velocity field, and this introduces multivaluedness in the

traveltime. Fig. 6 shows the zero level set overlaying the traveltime field at z ¼ 1:2 and 2.0. Note that there

are five traveltimes at some locations x.
To check the accuracy of the computed multivalued traveltimes, we compare the results with the ray

tracing solution at z ¼ 2:0; the comparison is shown in Fig. 7. The solid line is the solution using our level-

set formulation while the circles represent the ray-tracing solution. The solutions match with each other;

however, the ray tracing Lagrangian method failed to assign traveltimes to some locations, leaving some

shadow zones in the domain, but the level-set Eulerian method here has no such problem at all, and every
location was assigned at least one traveltime, i.e., the first-arrival traveltime.

To study the convergence behavior of the method, we also compute the solution up to z ¼ 2:0 km using a

240 by 240 grid in x–h space; Fig. 8 shows the results. In comparison to Fig. 7, the traveltime accuracy in

Fig. 8 is improved considerably.
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6.4. Synthetic Marmousi model

This example is the Marmousi model from the 1996 INRIA Workshop on Multi-arrival Traveltimes.

The calibration data used here were computed by Dr. Klimes and can be found at http://www.caam.

rice.edu/~benamou/traveltimes.html. This is a synthetic model which will challenge the level-set method
used here; thus we will study this model carefully.

The original Marmousi model is sampled on a 24 m by 24 m grid, consisting of 384 samples in the

x-direction and 122 samples in the z-direction; therefore, the model dimension is 9.192 km long in the

x-direction and 2.904 km deep in the z-direction. In the computational results presented here, we use a portion

of Marmousi model, i.e., a window from 4.8 to 7.2 km in the x-direction and from 0 to 2.904 km in the

z-direction. The source is located at x ¼ 6:0 km and z ¼ 2:8 km. The purpose is to compute (possibly mul-

tivalued) traveltimes for those sampling points, i.e., the receivers from 200 to 300 on the surface z ¼ 0:0 km.

In the computation, we have set both reinitialization and orthogonalization steps to be 2 with Sð/Þ being
given in (48). To speed up the computation in the reinitialization and orthogonalization procedures, we use

a first-order Euler scheme in the depth marching and a third-order WENO in the spatial discretization.

http://www.caam.rice.edu/~benamou/traveltimes.html
http://www.caam.rice.edu/~benamou/traveltimes.html
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In the first run, we used a 100 by 200 grid in x–h space with Dx ¼ 24 m and hmax ¼ 9p=20. The computed
traveltime at z ¼ 0:0 km and the comparison with the ray tracing solution are shown in Fig. 9. The ray

tracing data used to calibrate the computed Eulerian solutions are presumably accurate. As we can see from

Fig. 9, the computed Eulerian solution is consistent with the ray tracing solution, being able to capture

most of the structure of the multivalued solution, but it failed to resolve some fine details, especially the two

traveltime branches located from receivers 260 to 280, where those two branches are very close to each

other. Fig. 10 tells us why the level-set method failed in that region. Fig. 10 shows the zero level set and its

overlay on the traveltime field in the reduced phase space. From the ray tracing solution we know that

receivers from 260 to 280 should have three arrivals, but from the zero level set, receivers from 260 to 280
are single-valued functions of h, and they correspond to first-arrival traveltimes. Apparently, the tip of the

zero level set near receiver 260 should be more elongated, but somehow the level set failed to elongate that

tip. This is partly due to the dissipation of the finite difference scheme used here and partly due to the

resolution capability of the level-set method which can resolve the zero level set only up to one grid-cell

width. Computationally, if the segments of the zero level curve get too close to each other, then they will

merge and this is exactly happening to the tip that we are interested in.

Therefore, to resolve the fine tip we have to use a finer grid, 400� 200 on x–h space. Since the original

velocity model is given on the discretized points, we use interpolation to obtain a velocity model for the
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Fig. 6. The zero level set and the contour of T at z ¼ 1:2 and 2.0 in Sinusoidal model.
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Sinusoidal model. The Eulerian approach captures more solutions than the ray tracing method.
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finer computational mesh. The computational results are shown in Figs. 11 and 12. As we can see, in this

run the level-set Eulerian method yields multivalued traveltimes which match with the ray tracing solution

remarkably. From Fig. 12, we can see that the zero level set does have an elongated tip receivers from 260 to
280, and the segments of the zero level-set curve near the tip are indeed very close to each other. Without a

finer computational mesh, the level-set method is unable to capture the tip and the related multivalued

traveltimes. This demonstrates that given a discretized mesh the resolution is fixed and a method can only

capture a finite number of traveltimes.
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Fig. 10. The zero level set for Marmousi model on a 100� 200 grid; the zero level set overlaying contours of T at z ¼ 0:0 km.
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Fig. 12. The zero level set for Marmousi model on a 400� 200 grid; the zero level set overlaying contours of T at z ¼ 0:0 km.
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6.5. An anisotropic model

Although a general anisotropic solid has 21 independent elastic parameters, the transversely isotropic, or
TI, solid has only five. It nevertheless retains the essential features of the anisotropic case that we are in-

terested in. Therefore, it is convenient to use TI solids as models to illustrate the advantages of our ap-

proach. We consider the simplest case for TI solids, those with vertical symmetry axes, known as VTI

solids.

The elastic modulus matrix for transversely isotropic media with vertical symmetry axes has five inde-

pendent components among a total of twelve non-zero components (see, e.g. [24]). A closed form solution

exists in this case for the eigenvalue problem of so-called phase velocities. The quasi-P and quasi-SV

slowness surfaces for VTI can be represented as a quartic polynomial equation and the quasi-SH slowness
surface can be decoupled from this, leading to the equations [31]

c1p41 þ c2p21p
2
3 þ c3p43 þ c4p21 þ c5p23 þ 1 ¼ 0; ð55Þ
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and

1

2
ða11 � a12Þp21 þ a44p23 ¼ 1; ð56Þ

where

c1 � a11a44;

c2 � a11a33 þ a244 � ða13 þ a44Þ2;
c3 � a33a44;

c4 � �ða11 þ a44Þ;
c5 � �ða33 þ a44Þ:

In the above equations, aij are independent elastic parameters of VTI media [24].

Thus, the phase velocities for the three different waves take the form

V 2
qP ¼ 1

2

�
� Y1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2
1 � 4Y2

q �
;

V 2
qSV ¼ 1

2

�
� Y1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2
1 � 4Y2

q �
;

V 2
SH ¼ 1

2
ða11 � a12Þ sin2 hþ a44 cos2 h;

where

Y1 ¼ c4 sin
2 hþ c5 cos2 h;

Y2 ¼ c1 sin
4 hþ c2 cos2 h sin

2 hþ c3 cos4 h:

As an example, we compute the three waves for Greenriver shale, which is a typical VTI medium [43].

The five elastic parameters are a11 ¼ 15:0638, a33 ¼ 10:8373, a13 ¼ 1:6381, a44 ¼ 3:1258, and a12 ¼ 6:5616.
First, we consider boundary conditions needed in this computation. For the level-set equation we use the

non-reflective boundary condition just as done for the isotropic eikonal equation.

For the traveltime equation, there needs to be some extra effort. Because the model is homogeneous and

independent of x and z, the velocity component v in the level-set equation is zero. Therefore, there is no need

to specify any condition on the boundaries

h ¼ p
2
� � and h ¼ � p

2
þ �; ð57Þ

where � is a small positive number. On the other two boundaries, analogous to the isotropic case, we can
invert the characteristics locally and get

oT
ox

¼ p1 þ
p3
u
; ð58Þ

where u is another component in the velocity field of the level-set equation. With the substitutions of p1 and
p3 in terms of h, we have the following differential equations needed to be solved numerically in order to

determine the boundary conditions on the two boundaries x ¼ xmin and x ¼ xmax,

oT
ox

¼ 1

V
sin h

�
þ cos h

u

�
; ð59Þ

where V is the phase velocity of the wave mode that we are interested in.
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Fig. 13 shows traveltimes for the three different waves computed by the level-set approach (plotted in

circles) and comparisons with ray tracing solutions (plotted in solid lines) at depth z ¼ 0:5 km. These

traveltimes are excited by a point source located at the origin. The upper-left sub-figure in Fig. 13 shows the
qP wave traveltime which is the fastest of the three waves. The lower-left sub-figure in Fig. 11 shows the

qSH wave traveltime. In particular, the qSV wave (the upper-right sub-figure in Fig. 13) has cusps which

imply the multivaluedness at some locations; those multivalued solutions are captured very well by the

level-set method. The lower-right sub-figure shows the three waves together.

6.6. Wave guide model revisited

According to the sub-horizontal condition, rays making an angle with the z-axis, h, greater than p=2 are
ignored in our formulation; no overturning rays in the physical space are allowed. Figs. 14 and 15 show

how the method behaves when the sub-horizontal condition is not satisfied.

Figs. 14 and 15 are the solutions from the wave guide model as in Section 6.2 at z ¼ 2:4 and 2.8, re-

spectively. Comparing the first sub-figure in Fig. 14 with the last sub-figure in Fig. 3, we see that the two

branches near hmax and �hmax in Fig. 3 are expanding to the outside of the computational domain. Once a

part of the branch leaves the computational domain which is seen in Fig. 14, the information carried by that
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Fig. 13. Anisotropic paraxial multivalued traveltimes by the level-set method. qP wave traveltime, the upper-left one; qSV traveltime,

the upper-right one; qSH traveltime, the lower-left one; qP–qSV–qSH, the lower-right one.
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Fig. 14. The zero level-set overlaid on contours of time field T in the wave guide model at z ¼ 2:4 and 2.8.
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Fig. 15. Multivalued traveltimes by the level-set method for z ¼ 2:4 and 2.8 in the wave guide model.
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part will be lost; this implies that the related traveltimes can not be recovered. This explains why there are

missing pieces in Fig. 15.
7. Conclusions and outlook

We have applied the level-set methodology to compute multivalued traveltimes in the paraxial formu-
lation for both 2D isotropic and anisotropic eikonal equations. The complexity of the proposed Eulerian
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method is OðN 3Þ in the average case and OðN 3 logNÞ in the worst case. Numerical examples including the

synthetic Marmousi model have demonstrated the accuracy and efficiency of the approach.

Although the formulation presented here is mainly for the point source condition, it will be valid for
plane wave propagation too as long as the wave satisfies the sub-horizontal condition; however, we will not

present examples here.

Three-dimensional generalization is straightforward in principle, though some numerical issues related

to the root finding or the intersection of high-dimensional surfaces are to be settled.

Future work includes computing the amplitude related to the multivalued traveltimes and implementing

a localized level-set method [30] which will reduce the computational cost dramatically [32].
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