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Abstract The usual geometrical-optics expansion of the solution for the Helmholtz equation
of a point source in an inhomogeneous medium yields two equations: an eikonal equation for
the traveltime function, and a transport equation for the amplitude function. However, two
difficulties arise immediately: one is how to initialize the amplitude at the point source as the
wavefield is singular there; the other is that in even-dimension spaces the usual geometrical-
optics expansion does not yield a uniform asymptotic approximation close to the source.
Babich (USSR Comput Math Math Phys 5(5):247–251, 1965) developed a Hankel-based
asymptotic expansion which can overcome these two difficulties with ease. Starting from
Babich’s expansion, we develop high-order Eulerian asymptotics for Helmholtz equations
in inhomogeneous media. Both the eikonal and transport equations are solved by high-order
Lax–Friedrichs weighted non-oscillatory (WENO) schemes. We also prove that fifth-order
Lax–Friedrichs WENO schemes for eikonal equations are convergent when the eikonal is
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smooth. Numerical examples demonstrate that new Eulerian high-order asymptotic methods
are uniformly accurate in the neighborhood of the source and away from it.

Keywords Eikonal equations · Eulerian asymptotics · Helmholtz equations ·
High-order factorization

1 Introduction

We consider the Helmholtz equation with variable refractive index n(r). A point-source
problem amounts to finding the solution of the equation

[� + ω2n2(r)]w = −δ(r, r0), (1)

where

� =
m∑

i=1

∂2

∂x2i
, r = [x1, x2, . . . , xm]T , (2)

r0 is the source location, ω is the angular frequency, m is the dimension, and the Sommerfeld
radiation condition is imposed at infinity. The point-source solution is the so-called Green’s
function which is needed for a variety of applications, such as medical imaging, seismic
imaging, underwater acoustics, and synthetic aperture radar. When the angular frequency ω

is large, it is difficult for finite-difference or finite-element methods to solve the Helmholtz
equations accurately because of so-called pollution errors or dispersion errors. Therefore,
alternative approaches are sought to compute such solutions. In this paper we develop high-
order Eulerian asymptotics for point-source Helmholtz equations in inhomogeneous media
by using Babich’s expansion [3].

Tomotivate Babich’s formulation, we apply the usual asymptotic expansion of the solution
for the Helmholtz equation of a point source in an inhomogeneous medium as

w(r, r0) = eiωτ
∞∑

s=0

As(r, r0)
1

(iω)s− (m−1)
2

, (3)

where τ = τ(r, r0) is the phase satisfying the eikonal equation

∇τ · ∇τ = n2(r), τ (r0, r0) = 0, (4)

and As = As(r, r0) satisfy a recursive system of PDEs,

2∇τ · ∇ As + As�τ = −�As−1, s = 0, 1, . . . , A−1 ≡ 0. (5)

However, a difficulty arises immediately: how to initialize As at the source point for this
system of equations. Moreover, when m is even, the ray series (3) does not yield a uniform
asymptotic form close to the source. When m = 3 Avila and Keller [2] were able to find
the initial data for As by using the boundary layer method, but the case of m = 2 was
left incomplete. In practice, such difficulties in initializing amplitudes were handled in ad
hoc ways in the sense that the amplitudes were initialized a little bit away from the point
source by using amplitudes for the medium with a constant refractive index corresponding to
that of the source point [12,15,16,20,24]; consequently, the resulting numerical asymptotic
solution is not approximated with uniform accuracy near the source. To overcome these
initialization difficulties Babich [3] proposed to use an asymptotic series defined by the
first Hankel function as an ansatz to expand the underlying highly-oscillatory wavefield; the
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resulting eikonal equation is the same as the usual one, but the resulting transport equations
are easily initialized. Moreover, Babich’s expansion ensures that the Hankel-based ansatz
yields a uniform asymptotic solution as ω → ∞ in the neighborhood of the point source and
away from it.

Based on Babich’s expansion, we develop high-order Eulerian asymptotic methods for
point-source Helmholtz equations in inhomogeneous media. By Eulerian asymptotics, we
mean that we solve the eikonal and transport equations as PDEs and utilize the resulting
asymptotic ingredients to construct the asymptotic solution; see [4] for an introduction to
Eulerian geometrical optics. To do that we first apply high-order Lax–Friedrichs WENO
sweeping schemes to the eikonal equation and transport equations; we further prove that
high-order Lax–Friedrichs WENO sweeping schemes for eikonal equations are convergent
when the eikonal solution is smooth. Numerical examples demonstrate that the proposed
high-order Eulerian asymptotic methods yield uniform asymptotic solutions as ω varies in
the neighborhood of the point source and away from it.

2 Babich’s Hankel Based Ansatz

To solve Eq. (1) asymptotically when ω → ∞, Babich [3] proposed the following Hankel-
based ansatz to expand the solution u

w(r, r0) =
∞∑

s=0

vs(r, r0) fs−(m−2)/2(ω, τ), (6)

where

fq(ω, τ) = i

√
π

2
eiqπ

(
2τ

ω

)q

H(1)
q (ωτ), (7)

and τ is the phase satisfying the eikonal equation (4). Here H(1)
q is the q-th Hankel function of

the first kind. The amplitude coefficients vs+1 in expression (6) satisfy the recurrent system

4τn2 ∂vs+1

∂τ
+ vs+1

[
�τ 2 + 2n2(2s + 2 − m)

] = �vs, s = −1, 0, 1, . . . , (8)

and v−1 ≡ 0, where the differentiation ∂
∂τ

is performed along the ray departing from r0.
Assuming vs(r, r0) to be continuous in the neighborhood of r = r0, we get the initial
conditions for v0 at r = r0,

v0(r, r0)|r=r0 = nm−2
0

2π(m−1)/2
, n0 = n(r0). (9)

When n(r) is smooth, τ is smooth in the neighborhood of r0 except the source point itself
as shown in [2,17,23]. When n(r) is analytic, it can be shown [3] that the function v0(r, r0)
will also be analytic in r when r is in the neighborhood of r0; furthermore, vs+1(r, r0) are
determined in terms of v0 and τ so that vs+1 are analytic when v0 are analytic for s = 0, 1, . . ..
In the followingwe assume that r0 is at the origin so that r0 will be suppressed in the notations.

According to the ray theory or the method of characteristics, we have

n2 ∂

∂τ
= ∇τ · ∇, (10)

�τ 2 = 2τ�τ + 2n2. (11)

123



J Sci Comput

Using (10) and (11) in (8), we get

2τ∇τ · ∇vs+1 + vs+1[τ�τ + n2(2s + 3 − m)] = �vs

2
, s = −1, 0, 1, . . . , (12)

or

∇τ 2 · ∇vs+1 + vs+1

[
�τ 2

2
+ n2(2s + 2 − m)

]
= �vs

2
, s = −1, 0, 1, . . . . (13)

Although Eqs. (12) and (13) are mathematically equivalent, Eq. (13) is more suitable for
computing vs numerically since τ 2 is smooth at the source point while τ behaves like a
distance function and thus is not smooth at the source point. Therefore, Eq. (13) equipped
with the initial condition (9) will be numerically solved to yield vs .

2.1 Relation to the Usual Geometrical-Optics Ansatz

When s = −1, Eq. (12) yields

2τ∇τ · ∇v0 + v0[τ�τ + n2(1 − m)] = 0. (14)

Setting v0 = τ
m−1
2 A0, we have

2∇τ · ∇ A0 + A0�τ = 0, (15)

which is the conventional transport equation for the leading coefficient in the usual
geometrical-optics ansatz.

Babich’s leading term near the source behaves like

w ≈ v0i

√
π

2
e−π im−2

2

( ω

2τ

) m−2
2

H(1)
− m−2

2
(ωτ), (16)

where v0 tends to
nm−2
0

2π
m−1
2

(17)

as the field point tends to the source, n0 being the value of n at the source.
Inserting (17) into (16) and using formula 9.1.6 in [1] we see that, asymptotically near the

source, the wave field that we are trying to approximate is reduced to

w � n(m−2)
0

2
m+2
2 π

m−2
2

(ω

τ

) m−2
2

i H(1)
m−2
2

(ωτ); (18)

when m = 2 this reduces to

w � i

4
H(1)
0 (ωτ), (19)

and when m = 3, to

w � n0

2
5
2 π

1
2

(ω

τ

) 1
2
i H(1)

1
2

(ωτ),

= n0

2
5
2 π

1
2

(ω

τ

) 1
2
i

√
2

πωτ
(−i) eiωτ

= n0
eiωτ

4πτ
(20)
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2.2 Two-Term Expansion for the 2-D Case

When m = 2, the transport equation (13) is reduced to

∇τ 2 · ∇vs+1 + vs+1

[
�τ 2

2
+ 2sn2

]
= �vs

2
. (21)

Letting s = −1 in the above equation, we have the equation for coefficient v0,

∇τ 2 · ∇v0 + v0

[
�τ 2

2
− 2n2

]
= 0, (22)

with the initial condition for v0 as

v0(r)|r=0 = 1

2
√

π
. (23)

Therefore, we can find v0 by solving Eq. (22) with the initial condition (23). In the homoge-
neous case (n(r) ≡ n0), we have v0 ≡ 1

2
√

π
.

Letting s = 0 in (21), we obtain the equation for the coefficient v1 as

∇τ 2 · ∇v1 + v1
�τ 2

2
= �v0

2
, (24)

with the initial condition for v1 to be determined according to v0 and n.

2.3 Two-Term Expansion for the 3-D Case

When m = 3, the transport equation (13) is reduced to

∇τ 2 · ∇vs+1 + vs+1

[
�τ 2

2
+ n2(2s − 1)

]
= �vs

2
. (25)

Letting s = −1 in the above equation, we have the equation for the coefficient v0 as

∇τ 2 · ∇v0 + v0

[
�τ 2

2
− 3n2

]
= 0, (26)

with the initial condition of v0 at r = 0,

v0|r=0 = n0

2π
. (27)

Therefore, we can find v0 by solvingEq. (26)with initial condition (27). For the homogeneous
medium n ≡ n0, v0 ≡ n0

2π .
Letting s = 0 in (25), we have the equation for the coefficient v1,

∇τ 2 · ∇v1 + v1

[
�τ 2

2
− n2

]
= �v0

2
, (28)

with the initial condition for v1 to be determined.
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3 Approximations of Eikonals and Amplitude Coefficients Near the Source

To solve the transport equation (13), we need to solve the eikonal equation for τ first as τ 2

appears as coefficients in the transport equation. At first, we consider to obtain an accurate
one-term Babich’s asymptotic expansion which requires that v0 be of at least first-order
accuracy. Since �τ 2 appears as a coefficient in the transport equation (13) (s = −1) for v0,
numerically computed�τ 2 should be of at least first-order accuracy so that v0 is of first-order
accuracy; this in turn implies that τ 2 itself should be computed with third-order accuracy.
Next, we consider to obtain an accurate two-term Babich’s expansion. Since the transport
equation (13) (s = 0) for v1 involves both �τ 2 and �v0 as coefficients and the accuracy
of v0 also depends on that of �τ 2, these facts imply that first-order accurate v1 needs first-
order accurate �v0, which in turn implies that v0 itself should be of third-order accuracy.
To have third-order accurate v0, the transport equation (13) (s = −1) for v0 should have
third-order accurate coefficient �τ 2, which implies that τ 2 should have fifth-order accuracy.
Consequently, to obtain the two-term Babich’s asymptotic expansion for the point-source
solution of the Helmholtz equation, we need to use fifth-order schemes to solve the eikonal
equation for τ and related higher order schemes to solve the transport equations for v0 and
v1.

Since initial conditions for the eikonal and transport equations are only specified at the
source point and high-order schemes need accurate initial valueswithin a small neighborhood
of the source to start with, we will assume that the refractive index n, the eikonal-squared
τ 2, and the coefficients vs are analytic near the source so that we can extract high-order
approximations of eikonals and amplitude coefficients near the source.

3.1 High-Order Factorization of Eikonals

Since τ(r) behaves like the distance function |r| near the source, it is non-differentiable at the
source point so that the local truncation error analysis will fail for finite-difference methods
and all formally high-order schemes will only yield first-order accuracy near the source, and
the resulting first-order accuracy will propagate through the computational domain because
of the upwinding nature of the underlying schemes. To overcome such difficulties, in [15] we
have proposed high-order factorization based high-order sweeping methods for point-source
eikonal equations, and we further develop this family of high-order methods here.

According to [15], letting T (r) = τ 2 and S(r) = n2, we have following expansion near
the source point for analytic T and S:

T (r) =
∞∑

k=0

Tk(r), S(r) =
∞∑

k=0

Sk(r), (29)

where Tk(r) and Sk(r) are homogeneous polynomials of degree k in r. More specifically, we
can determine Tk term-by-term by substituting the expansions (29) into the squared eikonal
equations,

T0 = 0, T1 = 0, T2(r) = S0r2, T3(r) = 1

2
S1(r)r2,

T4(r) = r2

48S0

[
16S0S2 − r2(∇S1)

2] , (30)

T5(r) =
(
r2

)2

96S2
0

[−2S0∇S1 · ∇S2 + S1(∇S1)
2] + r2

4
S3. (31)
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In fact, we have a recursive formula for computing TP for P ≥ 3,

(P − 1)S0TP =
P−2∑

k=1

Sk TP−k − 1

4

P−2∑

k=2

∇Tk+1 · ∇TP−k+1. (32)

Then we use the truncated sum T̃P ≡ ∑P
ν=2 Tν to approximate T near the source, and we

further choose τ̃P ≡
√

T̃P to approximate τ near the source with accuracy

|τ(r) − τ̃P (r)| = O(|r|P ), |r| → 0.

Taking τ̃P as high-order approximations of τ near the source, we apply high-order LxF-
WENO methods to solve the factored eikonal equation as shown below.

3.2 High-Order Factorization of Coefficients vs

Although vs are assumed to be analytic near the source, we still need to obtain high-order
approximations to vs within a small neighborhood of the source so that high-order numerical
schemes can be initialized near the source. Therefore, we will expand the coefficients vs as
homogeneous polynomials of degree k in r as well.

Similarly, the coefficient v0 can be expanded as

v0 =
∞∑

k=0

Bk(r), (33)

where Bk(r) are homogeneous polynomials of degree k in r and

B0 = nm−2
0

2π(m−1)/2
.

It follows that Bν can be determined termby termby substituting (33) into (13) for s = −1:
( ∞∑

ν=2

∇Tν(r)

)
·
( ∞∑

ν=1

∇ Bν(r)

)
+

( ∞∑

ν=0

Bν(r)

) [
1

2

( ∞∑

ν=2

�Tν(r)

)
− m

( ∞∑

ν=0

Sν(r)

)]
= 0.

(34)
Comparing the linear terms in (34) and using the homogeneity of B1, we have

∇T2 · ∇ B1 + 1

2
(B0�T3 + B1�T2) − m(B0S1 + B1S0) = 0,

⇒ 2S0r · ∇ B1 + 1

2
(B0�T3 + 2B1mS0) − m(B0S1 + B1S0) = 0,

⇒ 2S0B1 + 1

2
B0�T3 − m B0S1 = 0,

⇒ B1 = 1

2S0

(
−1

2
B0�T3 + m B0S1

)
.

(35)

A recursive formula for BP with P ≥ 2 is given as

2P S0BP = −
P−1∑

k=1

∇ Bk · ∇TP+2−k − 1

2

P−1∑

k=0

Bk�TP+2−k + m
P−1∑

k=0

Bk SP−k . (36)
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Consequently, we can now use the truncated sum to approximate v0, i.e.,

B̃P ≡
P∑

k=0

Bk, (37)

and

|B̃P − v0| = O(|r|P ), |r| → 0.

Taking B̃P as high-order approximations of v0 near the source, we will apply high-order
LxF-WENO methods to solve the Babich’s transport equation (13) for v0 when s = −1.

The governing equation for the coefficient v1 satisfies

∇τ 2 · ∇v1 + v1

[
�τ 2

2
+ n2(2 − m)

]
= �v0

2
. (38)

Near the source, we expand v1 as

v1 =
∞∑

k=0

Ck(r). (39)

where C0 is the initial value of v1 at the source.
By substituting (39) into (38), we have

( ∞∑

k=2

∇Tk

)
·
( ∞∑

k=1

∇Ck

)
+

[
1

2

( ∞∑

k=2

�Tk

)
+ (2 − m)

( ∞∑

k=0

Sk

)]( ∞∑

k=1

Ck

)

= 1

2

( ∞∑

k=2

�Bk

)
. (40)

Comparing the zeroth-order terms in (40), we have

1

2
�T2 C0 + (2 − m)S0 C0 = 1

2
�B2,

2S0C0 = 1

2
�B2. (41)

Comparing the linear terms in r in (40) and using the homogeneity of C1, we have

∇T2 · ∇C1 + 1

2
[�T2 C1 + �T3 C0] + (2 − m)[S0 C1 + S1 C0] = 1

2
�B3,

4S0C1 = 1

2
�B3 − 1

2
�T3 C0 − (2 − m)S1 C0. (42)

In general, the coefficient CP for P ≥ 2 can be obtained by comparing the Pth-order
terms in (40):

P∑

k=1

∇Ck · ∇TP+2−k + 1

2

P∑

k=0

Ck�TP+2−k + (2 − m)

P∑

k=0

Ck SP−k = 1

2
�Bp+2,

2(P + 1)S0CP = 1

2
�Bp+2 −

P−1∑

k=1

∇Ck · ∇TP+2−k − 1

2

P−1∑

k=0

Ck�TP+2−k

−(2 − m)

P−1∑

k=0

Ck SP−k . (43)
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Consequently, we can now use the truncated sum to approximate v1, i.e.,

C̃P ≡
P∑

k=0

Ck, (44)

and

|C̃P − v1| = O(|r|P ), |r| → 0.

Taking C̃P as high-order approximations of v1 near the source, we will apply high-order
LxF-WENO methods to solve the Babich’s transport equation (13) for v1 when s = 0.

Analogously, we can apply the above approach to derive high-order approximations of vs

near the source for s ≥ 1, and here we will not pursue this further.

4 High-Order Lax–Friedrichs WENO Schemes

4.1 Schemes for Phase τ

We first recall a factorization approach to resolving the source singularity for computing τ

[7,12,13,15,16,19,26]. In the factorization approach, τ is factored as

τ = τ̃ τ̄ , (45)

where τ̃ is pre-determined analytically to capture the source singularity such that τ̄ is the
new unknown that is smooth at the source and satisfies the factored eikonal equation,

|τ̃∇ τ̄ + τ̄∇ τ̃ | = n(r). (46)

For instance, τ̃ may be taken as τ̃ (r; r0) = n(r0)|r − r0|.
Since τ̄ is smooth at the source, we can solve Eq. (46) efficiently with high-order Lax–

Friedrichsweighted essentially non-oscillatory (LxF-WENO) schemes as designed in [12,15,
16,25,27], and these schemes in turn are built upon the first-order Lax–Friedrichs sweeping
method [10]. In a P-th order LxF-WENO finite difference method on a mesh of size h, τ̄

must be initialized in a neighborhood of size 2(P − 1)h centered at the source, and these
initial values are fixed during iterations.

In the P-th order LxF-WENOmethod for solving (46) to obtain τ̄ , we first choose τ̃ (r) ≡√
S0|r|. To initialize τ̄ near the source, τ̄ is assigned as 1 at the source and as τ̃P/τ̃ at other

points in the 2(P − 1)h neighborhood of the source so that these values are fixed during
the LxF-WENO sweeping iterations. At other points, the LxF-WENO iterations are used to
update τ̄ with τ̃ (r) ≡ √

S0|r|. In the following, we will take P = 6 for computing τ .

4.2 Schemes for Coefficients vs

In the P-th order LxF-WENO method for solving transport equations (13) when s = −1,
v0 is assigned as B̃P in the 2(P − 1)h-neighborhood of the source so that these values are
fixed during the LxF-WENO iterations; at other points, the LxF-WENO iterations are used
to update v0.

Similarly, when s = 0, v1 is assigned as C̃P in the 2(P − 1)h-neighborhood of the
source so that these values are fixed during the LxF-WENO iterations; at other points, the
LxF-WENO iterations are used to update v1.
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4.3 3rd- and 5th-Order WENO LxF Schemes

Since both Eqs. (46) and (13) are first-order scalar hyperbolic equations, we summarize the
high-order Lax–Friedrichs schemes for these equations as follows. We consider the general
Hamilton–Jacobi equation:

F(x, y, u, ux , uy) = f (x, y), (47)

where F is convex in the gradient variable.
Let ui j denote the value of u at grid point (xi , y j ) and h be the step size in both directions.

At a generic grid point (i, j) = (xi , y j ) with neighbors

N {i, j} = {(xi−1, y j ), (xi+1, y j ), (xi , y j−1), (xi , y j+1)}, (48)

we consider the Lax–Friedrichs Hamiltonian:

F L F (xi , y j , ui, j , uN {i, j}) = F

(
xi , y j , ui, j ,

ui+1, j − ui−1, j

2h
,

ui, j+1 − ui, j−1

2h

)

−αx
ui+1, j − 2ui j + ui−1, j

2h
− αy

ui, j+1 − 2ui j + ui, j−1

2h
, (49)

where αx and αy are chosen such that for a fixed (xi , y j ),

∂ F L F

∂ui j
≥ 0, and

∂ F L F

∂uN {i, j}
≤ 0.

For example, we can choose

αx = max
m≤u≤M,A≤p≤B,C≤q≤D

{
|F1(x, y, u, p, q)| + h

2
|∂ F

∂u
(x, y, u, p, q)|

}
, (50)

αy = max
m≤u≤M,A≤p≤B,C≤q≤D

{
|F2(x, y, u, p, q)| + h

2
|∂ F

∂u
(x, y, u, p, q)|

}
, (51)

where F1 and F2 denote the derivatives of the F with respect to thefirst and the secondgradient
component, respectively. The flux F L F is monotone for m ≤ ui j ≤ M , A ≤ p ≤ B, and
C ≤ q ≤ D with p = (ui+1, j − ui−1, j )/2h and q = (ui, j+1 − ui, j−1)/2h.

The first-order Lax–Friedrichs scheme is [10]

unew
i, j =

(
1

αx/h + αy/h

) [
fi, j − F

(
xi , y j , uold

i, j ,
ui+1, j − ui−1, j

2h
,

ui, j+1 − ui, j−1

2h

)

+αx
ui+1, j + ui−1, j

2h
+ αy

ui, j+1 + ui, j−1

2h

]
. (52)

The third-order WENO Lax–Friedrichs scheme can be obtained by replacing ui−1, j ,
ui+1, j , ui, j−1, and ui, j+1 in (52) with the following approximations [27],

ui−1, j = ui, j − h(ux )
−
i, j , ui+1, j = ui, j + h(ux )

+
i, j ,

ui, j−1 = ui, j − h(uy)
−
i, j , ui, j+1 = ui, j + h(uy)

+
i, j , (53)

where (ux )
−
i, j and (ux )

+
i, j are the third-order WENO approximations of ux , and (uy)

−
i, j and

(uy)
+
i, j are the third-order WENO approximations of uy as defined in [8].

Similar to [10,25,27], the fifth-order WENO Lax–Friedrichs scheme can be obtained by
replacing ui−1, j , ui+1, j , ui, j−1 and ui, j+1 in (52) with those formulas in (53), where (ux )

−
i, j
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and (ux )
+
i, j are the fifth-order WENO approximations of ux , and (uy)

−
i, j and (uy)

+
i, j are the

fifth-order WENO approximations of uy as defined in [8].

5 Convergence of WENO LxF Schemes

In this section, we consider the two dimensional static Hamilton–Jacobi equation

F(x, z, u, ux , uz) = f (x, z), (54)

and the WENO based Lax–Friedrichs scheme is

unew
i, j = h

αx + αz

[
fi, j − F

(
xi , z j , uold

i, j ,
ui+1, j − ui−1, j

2h
,

ui, j+1 − ui, j−1

2h

)

+αx
ui+1, j + ui−1, j

2h
+ αz

ui, j+1 + ui, j−1

2h

]
(55)

where h represents the spatial partition and

ui−1, j = ui, j − h(ux )
−
i, j ; ui+1, j = ui, j + h(ux )

+
i, j ;

ui, j−1 = ui, j − h(uz)
−
i, j ; ui, j+1 = ui, j + h(uz)

+
i, j . (56)

Here (ux )
−
i, j and (ux )

+
i, j are WENO approximations of ux ; (uz)

−
i, j and (uz)

+
i, j are WENO

approximations of uz .

Theorem 5.1 The p-th order WENO based Lax–Friedrichs sweeping scheme (55)–(56) for
the static Hamilton–Jacobi equation (54) yields p-th order accuracy when u, F and f are
smooth.

The proof of Theorem 5.1 follows from the following two lemmas.

Lemma 5.2 Assume that u∗(x, z) is the solution to the static Hamilton–Jacobi equation (54),
and u∗(x, z, T ) is the solution to the time-dependent Hamilton–Jacobi equation (57) at time
T ,

ut + F(x, z, u, ux , uz) = f (x, z) (57)

then ‖ u∗(x, z) − u∗(x, z, T ) ‖∞→ 0 as T → ∞.

This is obvious since the static Hamilton–Jacobi equation (54) can be considered as the
steady state solution of the time dependent Hamilton–Jacobi equation (57) [6,11,25]. We can
follow the method of lines to numerically solve (57). For example we first apply high order
WENO schemes for spatial discretization and then use Runge–Kutta methods for temporal
discretization. One the other hand, the convergence of nonlinear Jacobi iteration implies
the convergence of the Gauss–Seidel iteration under suitable conditions on the Jacobian
matrices of the iteration operators [5,18,21]. In fact, it can be proved that the spectral radius
of the Jacobian of Gauss–Seidel iterative procedure is smaller than the spectral radius of
the corresponding Jacobi iteration if the latter is smaller than one [18]. Thus Gauss–Seidel
procedure enjoys better convergence than its Jacobi counterpart. Therefore, to show the
convergence of the scheme (55)–(56) for (54), we only need to prove the the convergence of
WENO and Runge–Kutta methods for time-dependent Hamilton–Jacobi equation since the
time marching approach is one type of Jacobi iterations.
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Lemma 5.3 Assume that u∗(x, z, T ) and uh(x, z, T ) are the exact and numerical solution
to the time dependent Hamilton–Jacobi equation (57) at time T obtained via p-th order
WENO scheme with Lax–Friedrichs flux and n-th (n ≥ max(p, 3)) order Runge–Kutta time
discretization scheme, and u, F and f have p +q0 +4 continuous derivatives in the domain
of dependence of (x, z, t) as defined in [22]. Under an appropriate chosen CFL condition,
we have

‖u∗(x, z, T ) − uh(x, z, T )‖∞ ∼ O(h p), (58)

where q0 is a small integer related to the smoothness of the fully discrete operator [22].

Proof Without loss of generality, we assume that p = 5. The consistent WENO based
Lax–Friedrichs sweeping operator for the time dependent Hamilton–Jacobi equation (57) is

L = h

αx + αz

[
fi, j − F

(
xi , z j , ui, j ,

ui+1, j − ui−1, j

2h
,

ui, j+1 − ui, j−1

2�x

)

+αx
ui+1, j + ui−1, j

2h
+ αz

ui, j+1 + ui, j−1

2h

]
− ui, j (59)

where ui−1, j , ui+1, j , ui, j−1 and ui, j+1 are defined as in (56). (ux )
−
i, j , (ux )

+
i, j , (uz)

−
i, j , (uz)

+
i, j

are the 5-th order WENO biased approximations of ux and uz , respectively. It’s easy to see
that the stencil for the operator L is

{ui, j , ui−3, j , ui−2, j , ui−1, j , ui+1, j , ui+2, j , ui+3, j , ui, j−3, ui, j−2, ui, j−1,

ui, j+1, ui, j+2, ui, j+3}. (60)

TheWENO based Lax–Friedrichs sweeping scheme is smooth in the sense that the spatial
operator L is infinitely differentiable with respect to any of its arguments. Strang’s theorem
[22] implies that the scheme is convergent if its first variation is l2-stable. We are going to
prove the l2 stability of the first variation of the 5-th order WENO operator in the following.

The first variation L̃ is defined as

L̃ ≡
i+3∑

k=i−3

j+3∑

l= j−3

∂L

∂uk,l
(ui, j , . . . , ui, j )uk,l (61)

Since the solution is assumed to be smooth, the 5-th orderWENOapproximation is equivalent
to the upstream central approximation [9], i.e.

(ux )
−
i, j = − 1

30h
ui−3, j + 1

4h
ui−2, j − 1

h
ui−1, j + 1

3h
ui, j + 1

2h
ui+1, j − 1

20h
ui+2, j ;

(ux )
+
i, j = 1

30h
ui+3, j − 1

4h
ui+2, j + 1

h
ui+1, j − 1

3h
ui, j − 1

2h
ui−1, j + 1

20h
ui−2, j , (62)

and

(uz)
−
i, j = − 1

30h
ui, j−3 + 1

4h
ui, j−2 − 1

h
ui, j−1 + 1

3h
ui, j + 1

2h
ui, j+1 − 1

20h
ui, j+2;

(uz)
+
i, j = 1

30h
ui, j+3 − 1

4h
ui, j+2 + 1

h
ui, j+2 − 1

3h
ui, j − 1

2h
ui, j−1 + 1

20h
ui, j−2. (63)
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With these WENO expressions, the 4-th and 5-th arguments of F can be replaced by

ux ≈ ui+1, j − ui−1, j

2h
(64)

≈ 1

2

(
(ux )

+
i, j + (ux )

−
i, j

)

= 1

h

[
− 1

60
ui−3, j + 3

20
ui−2, j − 3

4
ui−1, j + 3

4
ui+1, j − 3

20
ui+2, j + 1

60
ui+3, j

]
; (65)

uz ≈ ui, j+1 − ui, j−1

2h
(66)

≈ 1

2

(
(uz)

+
i, j + (uz)

−
i, j

)

= 1

h

[
− 1

60
ui, j−3 + 3

20
ui, j−2 − 3

4
ui, j−1 + 3

4
ui, j+1 − 3

20
ui, j+2 + 1

60
ui, j+3

]
. (67)

Also

ui+1, j + ui−1, j

2h
≈ 1

h

[
1

60
ui+3, j − 1

10
ui+2, j + 1

4
ui+1, j + 2

3
ui, j + 1

4
ui−1, j − 1

10
ui−2, j

+ 1

60
ui−3, j

]
;

ui, j+1 + ui, j−1

2h
≈ 1

h

[
1

60
ui, j+3 − 1

10
ui, j+2 + 1

4
ui, j+1 + 2

3
ui, j + 1

4
ui, j−1 − 1

10
ui, j−2

+ 1

60
ui, j−3

]
. (68)

After some calculations, the first variation L̃ is

L̃ = − h

αx + αz

∂ F

∂u
ui, j + 1

αx + αz

[
−1

3
αx − 1

3
αz

]
ui, j

+ 1

αx +αz

[
− ∂ F

∂ux

(
− 1

60

)
+ 1

60
αx

]
ui−3, j + 1

αx +αz

[
− ∂ F

∂ux

(
3

20

)
− 1

10
αx

]
ui−2, j

+ 1

αx + αz

[
− ∂ F

∂ux

(
−3

4

)
+ 1

4
αx

]
ui−1, j + 1

αx + αz

[
− ∂ F

∂ux

(
3

4

)
+ 1

4
αx

]
ui+1, j

+ 1

αx +αz

[
− ∂ F

∂ux

(
− 3

20

)
− 1

10
αx

]
ui+2, j + 1

αx +αz

[
− ∂ F

∂ux

(
1

60

)
+ 1

60
αx

]
ui+3, j

+ 1

αx +αz

[
− ∂ F

∂uz

(
− 1

60

)
+ 1

60
αz

]
ui, j−3+ 1

αx +αz

[
− ∂ F

∂uz

(
3

20

)
− 1

10
αz

]
ui, j−2

+ 1

αx + αz

[
− ∂ F

∂uz

(
−3

4

)
+ 1

4
αz

]
ui, j−1 + 1

αx + αz

[
− ∂ F

∂uz

(
3

4

)
+ 1

4
αz

]
ui, j+1

+ 1

αx +αz

[
− ∂ F

∂uz

(
− 3

20

)
− 1

10
αz

]
ui, j+2+ 1

αx + αz

[
− ∂ F

∂uz

(
1

60

)
+ 1

60
αz

]
ui, j+3

(69)

which can be rewritten as

L̃ = − h

αx + αz

∂ F

∂u
ui, j + 1

αx + αz
(T1 + T2) , (70)
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where

T1 = − ∂ F

∂ux

[
− 1

60
ui−3, j + 3

20
ui−2, j − 3

4
ui−1, j + 3

4
ui+1, j − 3

20
ui+2, j + 1

60
ui+3, j

]

+αx

[
− 1

60
ui−3, j + 1

15
ui−2, j − 1

12
ui−1, j + 1

12
ui+1, j − 1

15
ui+2, j + 1

60
ui+3, j

]

−αx

[
− 1

30
ui−3, j + 1

6
ui−2, j − 1

3
ui−1, j + 1

3
ui, j − 1

6
ui+1, j + 1

30
ui+2, j

]
, (71)

T2 = − ∂ F

∂uz

[
− 1

60
ui, j−3 + 3

20
ui, j−2 − 3

4
ui, j−1 + 3

4
ui, j+1 − 3

20
ui, j+2 + 1

60
ui, j+3

]

+αz

[
− 1

60
ui, j−3 + 1

15
ui, j−2 − 1

12
ui, j−1 + 1

12
ui, j+1 − 1

15
ui, j+2 + 1

60
ui, j+3

]

−αz

[
− 1

30
ui, j−3 + 1

6
ui, j−2 − 1

3
ui, j−1 + 1

3
ui, j − 1

6
ui, j+1 + 1

30
ui, j+2

]
. (72)

Applying the classical Fourier analysis to L̃ in (70), we see that the first two terms in T1
and T2 render purely imaginary spectrum, while the last term is a 5-th order upwind-biased
difference, which has a spectrum of the form

16

15

(
sin

(
θ

2

))5 (
sin

(
θ

2

)
+ i cos

(
θ

2

))
(73)

where 0 ≤ θ ≤ 2π .
By the assumption ∂ F L F

∂ui, j
≥ 0, we can obtain

∂ F

∂u
− 2

3h
(αx + αz) ≥ 0, (74)

with αx , αz and h positive. Therefore ∂ F
∂u ≥ 0.

We conclude that the spectrum of the operator L̃ lies fully on the left half of the complex
plane, leading to the l2 stability which further implies the convergence of the scheme.

6 Numerical Examples

We will carry out some numerical experiments to verify that Babich’s expansion based high-
order Eulerian asymptotics constructed by solving eikonal and transport equations directly
provides valid, efficient and accurate asymptotic solutions for point-source Helmholtz equa-
tions in the high frequency regime before caustics occur. Although we exclude the situation
of caustics, the schemes developed here for solving eikonal and transport equations can be
incorporated into some recent methods, such as fast Huygens sweeping methods to treat
caustics [14].

We will compare the first-order and second-order Babich’s expansions carefully. By the
first-order expansion, we mean that we will keep only the leading-order term in (6); by the
second-order expansion, wemean that wewill keep the first two terms only, namely, s = 0, 1,
in (6).

In numerical implementations, to obtain the second coefficient v1 with first-order accu-
racy, we need to compute the first coefficient v0 with at least third-order accuracy, implying
that the phase τ be computed at least with fifth-order accuracy. The fifth-order accurate τ can
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be obtained by using the fifth-order Lax–Friedrichs WENO scheme and the fifth-order fac-
torization around the source. The first amplitude coefficient v0 can be calculated by solving
Eq. (13) with s = −1 with the third-order Lax–Friedrichs WENO scheme. When solving
Eq. (13), we need to compute ∇τ 2 and �τ ; we use the third-order WENO to compute ∇τ 2

and a fourth-order finite-difference method to compute �τ 2 except for points around the
source, while the approximate analytic expression of τ is used to compute ∇τ 2 and �τ 2

at those points around the source. Since τ is of fifth-order accuracy, ∇τ 2 and �τ 2 will be
of third-order accuracy. Therefore, v0 will also be of third-order accuracy. After v0 is com-
puted, �v0 is computed by the fourth-order finite-difference scheme. Finally, v1 is obtained
by solving the transport equation (13) with s = 0 by the third-order Lax–Friedrichs WENO
scheme.

As for boundary conditions in solving eikonal and transport equations, we use high-order
extrapolation to naturally extend interior values beyond the boundary. One may apply more
elegant boundary conditions as designed in [25] to treat the equations presented here, but we
are not pursuing this further in the current work.

In the following, we use w0 and w1 to denote the first and second term of Babich’s
expression (6), respectively; w0 and w = w0 + w1 are the first-order and second-order
Babich’s asymptotic solution, respectively.

To obtain the direct solution for the point-sourceHelmholtz equation,wefirst solve the cor-
responding time-domain wave equation by a finite-difference time-domain (FDTD) method
and then Fourier-integrate in time to obtain the frequency-domain solution for the Helmholtz
equation.

6.1 2-D Examples

In the following 2-D examples, the phase τ is computed by the fifth-order Lax–Friedrichs
WENO scheme with the sixth-order (P = 6) factorization around the source.

v0 is computed by the third-order Lax–Friedrichs WENO scheme with the third-order
(P = 3) factorization around the source. v1 is computed by the third-order Lax–Friedrichs
WENO scheme with the first-order (P = 1) factorization around the source.

The FDTD results are computed in the domain [−0.2, 1.2]2 with mesh grid 701 × 701
for both ω = π and ω = 8π .

Example 1 a 2-D constant refractive index The computational setup is the following.

• The refractive index n(x, y) = 2;
• The computational domain is [0, 1] × [0, 1];
• The mesh size is 100 × 100 with the grid size h = 0.01;
• The angular frequency ω = π or 8π .
• The source point is (0.5, 0.5).

Figure 1 shows the errors of τ 2, ∂
∂x τ 2 and ∂2

∂x2
τ 2, as τ 2 rather than τ is the most important

quantity in the Babich’s transport equations. Figure 2 shows the error of v0 along with the
fields of �v0 and v1.

Figures 3 and 4 show the real part of w0, w = w0 + w1, and the exact solution wexact at
x = 0.2, x = 0.5 and x = 0.6 with ω = π and ω = 8π , respectively. As we can see, the
three solutions match with each other very well.

Example 2 Constant gradient case for 1
n The computational setup is the following.

• The refractive index n(x, y) = 1
0.5 − 0.5 ∗ (y − 0.5) ;
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Fig. 1 Example 1: a The error of τ2. b The error of ∂
∂x τ2. c The error of ∂2

∂x2
τ2.
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Fig. 2 Example 1: a The error of v0. b The field of �v0. c The field of v1
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Fig. 3 Example 1: The real part of w0, w and wexact at a x = 0.2, b x = 0.5, and c x = 0.6 with ω = π .
Black dashed line for w0, red solid line for w, and blue dash-dot line for wexact (Color figure online)
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Fig. 4 Example 1: The real part of w0, w and wexact at a x = 0.2, b x = 0.5, and c x = 0.6 with ω = 8π .
Black dashed line for w0, red solid line for w, and blue dash-dot line for wexact (Color figure online)

• The computational domain is [0, 1] × [0, 1];
• The mesh size is 100 × 100 with the grid size h = 0.01;
• The angular frequency ω = π or 8π .
• The source point is (0.5, 0.5).

123



J Sci Comput

Table 1 Example 2: The l∞ and l1 errors of τ and it’s order of convergence

Mesh 101 × 101 201 × 201 401 × 401 801 × 801

l∞ 6.00 × 10−8 1.88 × 10−9 5.61 × 10−11 1.74 × 10−12

Order 5.00 5.07 5.01

l1 6.37 × 10−9 1.65 × 10−10 4.46 × 10−12 1.32 × 10−13

Order 5.27 5.21 5.08

� Iter 212 363 653 1237

CPU time (s) 1.96 14.63 109.49 822.08

The phase τ is computed by the hybrid schemes with fifth-order multiplicative factorization and the fifth-order
Lax–Friedrichs scheme

(a)

x

y

0 0.5 1

0

0.2

0.4

0.6

0.8

1 0

1

2

3

4
x 10

−8

(b)

x

y

0 0.5 1

0

0.2

0.4

0.6

0.8

1 −5

−4

−3

−2

−1

0x 10
−4

(c)

x
y

0 0.5 1

0

0.2

0.4

0.6

0.8

1 −15

−10

−5

0
x 10

−6

Fig. 5 Example 2: a The error of τ2. b The error of ∂
∂x τ2. c The error of ∂2

∂x2
τ2.
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Fig. 6 Example 2: a The field of v0. b The field of �v0. c The field of v1.

In this case, the exact solution for the phase τ can be computed.
To validate that our method is fifth-order accurate for computing phase τ , we have

computed the order of convergence as shown in Table 1, which indicates the fifth-order
convergence in both l1 and l∞ norms.

Figure 5 shows the errors of τ 2, ∂
∂x τ 2 and ∂2

∂x2
τ 2. Figure 6 shows the field of v0 along

with the fields of �v0 and v1.
Next we compare our asymptotic solutions with the direct result obtained by solving the

Helmholtz equation. Figure 7 shows the real part of w0, w, and wFDTD at x = 0.2, x = 0.5
and x = 0.6 with ω = π . Figure 8 shows the results at y = 0.2, y = 0.5 and y = 0.6
with ω = π . Figures 9 and 10 show the results for ω = 8π. We can see that the asymptotic
solution becomes more accurate as the large parameter ω increases.

Figures 11 and 12 show thewave field obtained by a directmethod, the one-term expansion
w0, and the two-term expansion w = w0 + w1 with ω = π and 8π , respectively.

123



J Sci Comput

(a)

0 0.5 1

−0.1

−0.05

0

0.05

y

(b)

0 0.5 1

0

0.2

0.4

0.6

0.8

y

(c)

0 0.5 1

−0.1

−0.05

0

0.05

y

Fig. 7 Example 2: The real part of w0, w and wexact at a x = 0.2, b x = 0.5, and c x = 0.6 with ω = π .
Black dashed line for w0, red solid line for w, and blue dash-dot line for wFDTD (Color figure online)
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Fig. 8 Example 2: The real part of w0, w and wexact at a y = 0.2, b y = 0.5, and c y = 0.6 with ω = π .
Black dashed line for w0, red solid line for w, and blue dash-dot line for wFDTD (Color figure online)
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Fig. 9 Example 2: The real part of w0, w and wexact at a x = 0.2, b x = 0.5, and c x = 0.6 with ω = 8π .
Black dashed line for w0, red solid line for w, and blue dash-dot line for wFDTD (Color figure online)
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Fig. 10 Example 2: The real part of w0, w and wFDTD at a y = 0.2, b y = 0.5, and c y = 0.6 with ω = 8π .
Black dashed line for w0, red solid line for w, and blue dash-dot line for wFDTD (Color figure online)

6.2 3-D Examples

In the following 3-D examples, the phase τ is computed by the fifth-order Lax–Friedrichs
WENO scheme with the sixth-order (P = 6) factorization around the source.
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Fig. 11 Example 2: The wave field of a FDTD solution, b the one-term expansion w0, and c the two-term
expansion w = w0 + w1 with frequency ω = π
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Fig. 12 Example 2: The wave field of a FDTD solution, b the one-term expansion w0, and c the two-term
expansion w = w0 + w1 with frequency ω = 8π

v0 is computed by the third-order Lax–Friedrichs WENO scheme with the fourth-order
(P = 4) factorization around the source.

v1 is computed by the third-order Lax–Friedrichs WENO scheme with the first-order
(P = 1) factorization around the source.

TheFDTDresults are computed in the domain [−0.1, 0.6]3 withmesh grid 141×141×141
for ω = π and mesh grid 281 × 281 × 281 for ω = 16π .

Example 3 a constant refractive index The computational setup is the following.

• The refractive index n(x, y, z) = 2;
• The computational domain is [0, 0.5] × [0, 0.5] × [0, 0.5];
• The mesh size is 50 × 50 × 50 with the grid size h = 0.01;
• The angular frequency ω = π or 16π ;
• The source point is (0.25, 0.25, 0.25).

Figure 13 shows the errors of τ 2, ∂
∂y τ 2 and ∂2

∂y2
τ 2 at z = 0.25. Figure 14 shows the error

of v0 along with the fields of �v0 and v1 at z = 0.25.
Figure 15 shows the exact solution, the first term w0, and the two-term expansion w =

w0 + w1 at z = 0.25 for ω = π . Figure 16 shows the results for ω = 16π . More detailed
comparisons are shown in Fig. 17 for ω = π and in Fig. 18 for ω = 16π , respectively.

Example 4 Constant gradient for 1
n The computational setup is the following.

• The refractive index n(x, y, z) = 1
0.5 − (y − 0.25) ;

• The computational domain is [0, 0.5] × [0, 0.5] × [0, 0.5];
• The mesh size is 50 × 50 × 50;
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Fig. 13 Example 3: a The error of τ2 at z = 0.25. b The error of ∂
∂y τ2 at z = 0.25. c The error of ∂2

∂y2
τ2

at z = 0.25
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Fig. 14 Example 3: a The error of v0 at z = 0.25. b The field of �v0 at z = 0.25. c The field of v1 at
z = 0.25.
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Fig. 15 Example 3: a The wave field of the exact solution at z = 0.25 with ω = π . b The wave field of w0
at z = 0.25 with ω = π . c The wave field of w = w0 + w1 at z = 0.25 with ω = π
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Fig. 16 Example 3: a The wave field of the exact solution at z = 0.25 with ω = 16π . b The wave field of
w0 at z = 0.25 with ω = 16π . c The wave field of w = w0 + w1 at z = 0.25 with ω = 16π

• The angular frequency ω = π or 16π .
• The source point is (0.25, 0.25, 0.25).

In this case, the exact solution for the phase τ can be computed.
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Fig. 17 Example 3: a The wave field at line x = 0.25, z = 0.25 with ω = π . b The wave field at line
x = 0.2, z = 0.25 with ω = π . c The wave field at line x = 0.1, z = 0.25 with ω = π . Blue dash-dot line
exact solution; black dashed line one-term expansion w0; red solid line two-term expansion w = w0 + w1
(Color figure online)
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Fig. 18 Example 3: a The wave field at line x = 0.25, z = 0.25 with ω = 16π . b The wave field at line
x = 0.2, z = 0.25 with ω = 16π . c The wave field at line x = 0.1, z = 0.25 with ω = 16π . Blue dash-dot
line exact solution; black dashed line one-term expansionw0; red solid line two-term expansionw = w0+w1
(Color figure online)

Table 2 Example 4: The l1 and l∞ errors of τ and its order of convergence

Mesh 41 × 41 × 41 81 × 81 × 81 161 × 161 × 161

l∞ 5.26 × 10−6 1.42 × 10−7 4.51 × 10−9

Order 5.21 4.98

l1 7.29 × 10−8 1.60 × 10−9 4.69 × 10−11

Order 5.51 5.09

The phase τ is computed by the hybrid scheme with fifth-order multiplicative factorization and the fifth-order
Lax–Friedrichs WENO scheme
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Fig. 19 Example 4: The error of a τ2, b ∂
∂y τ2, and c ∂2

∂y2
τ2 at z = 0.25
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Fig. 20 Example 4: The error of a τ2, b ∂
∂y τ2, and c ∂2

∂y2
τ2 at y = 0.25.
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Fig. 21 Example 4: The field of v0 at a z = 0.25 and b y = 0.25.
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Fig. 22 Example 4: The field of �v0 at a z = 0.25 and b y = 0.25.

To validate that our method is of fifth-order accuracy for computing phase τ , we have
computed the order of convergence of our method as shown in Table 2, which indicates
fifth-order convergence in both l1 and l∞ norms.

Figure 19 shows the errors of τ 2, ∂
∂y τ 2 and ∂2

∂y2
τ 2 at z = 0.25, while Fig. 20 show

those errors at y = 0.25. Figure 21 shows the field of the first coefficient v0 at x = 0.25
and y = 0.25, respectively. Figure 22 shows the field of �v0 at z = 0.25 and y = 0.25,
respectively. Figure 23 shows the fields of the second coefficient v1 at z = 0.25 and y = 0.25,
respectively.

Figures 24 and 25 show the wave field with ω = π obtained by a direct method, the one-
term expansion w0, and the two-term expansion w = w0 + w1 at y = 0.25 and z = 0.25,
respectively.
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Fig. 23 Example 4: The field of v1 at a z = 0.25 and b y = 0.25.
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Fig. 24 Example 4: The wave field of a FDTD solution , b the one-term expansion w0, and c the two-term
expansion w = w0 + w1 at y = 0.25 with frequency ω = π .
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Fig. 25 Example 4: The wave field of a FDTD solution , b the one-term expansion w0, and c the two-term
expansion w = w0 + w1 at z = 0.25 with frequency ω = π .
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Fig. 26 Example 4: The wave field of a FDTD solution (25 points per wavelength), b the one-term expansion
w0, and c the two-term expansion w = w0 + w1 at y = 0.25 with frequency ω = 16π .

Figure 26 shows the wave field at y = 0.25 with ω = 16π obtained by a direct method,
the one-term expansion w0, and the two-term expansion w = w0 + w1, where the direct
method uses 25 points per wavelength; Fig. 27 shows similar results at z = 0.25.
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Fig. 27 Example 4: The wave field of a FDTD solution (25 points per wavelength), b the one-term expansion
w0, and c the two-term expansion w = w0 + w1 at z = 0.25 with frequency ω = 16π .
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Fig. 28 Example 4: Thewave field at line a x = 0.25, z = 0.25, b x = 0.2, z = 0.25, and c x = 0.1, z = 0.25
with frequency ω = π . Blue dash-dot line FDTD solution; black dashed line one-term expansion w0; red
solid line two-term expansion w = w0 + w1 (Color figure online)
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Fig. 29 Example 4: Thewave field at line a y = 0.25, z = 0.25, b y = 0.2, z = 0.25, and c y = 0.1, z = 0.25
with frequency ω = π . Blue dash-dot line FDTD solution; black dashed line one-term expansion w0; red
solid line two-term expansion w = w0 + w1 (Color figure online)
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Fig. 30 Example 4: Thewave field at line a x = 0.25, z = 0.25, b x = 0.2, z = 0.25, and c x = 0.1, z = 0.25
with frequency ω = 16π . Blue dash-dot line FDTD solution; black dashed line one-term expansion w0; red
solid line two-term expansion w = w0 + w1 (Color figure online)
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Fig. 31 Example 4: The wave field at line a y = 0.25, z = 0.25, b y = 0.2, z = 0.25, and y = 0.1, z = 0.25
with frequency ω = 16π . Blue dash-dot line FDTD solution; black dashed line one-term expansion w0; red
solid line two-term expansion w = w0 + w1 (Color figure online)

Figure 28 shows the wave field with ω = π by a direct method, the one-term expansion,
and the two-term expansion on three different lines, x = 0.25 and z = 0.25, x = 0.2 and
z = 0.25, and x = 0.1 and z = 0.25, respectively. Figure 29 shows the results with ω = π

for another set of three different lines.
Similar results are shown in Figs. 30 and 31 for ω = 16π .

7 Conclusion

Starting fromBabich’s expansion,we develop high-order Eulerian asymptotics forHelmholtz
equations in inhomogeneous media. Both the eikonal and transport equations are solved by
high-order Lax–Friedrichs weighted non-oscillatory schemes. We also prove that fifth-order
Lax–Friedrichs WENO schemes for eikonal equations are convergent when the eikonal is
smooth. Numerical examples demonstrate effectiveness and accuracy of the new methods.
Moreover, since Babich’s ansatz is closely related to Hadamard’s method of forming the
fundamental solution of the Cauchy problem for the time-dependent wave equation [3], we
can apply our high-order Eulerian asymptotic methods for constructing the fundamental
solution of the time-dependent wave equation as well, which is an ongoing project.
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