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Abstract

In some applications, it is reasonable to assume that geodesics (rays) have a con-
sistent orientation so that the Helmholtz equation can be viewed as an evolution equa-
tion in one of the spatial directions. With such applications in mind, starting from
Babich’s expansion, we develop a new high-order asymptotic method, which we dub
the fast Huygens sweeping method, for solving point-source Helmholtz equations in in-
homogeneous media in the high-frequency regime and in the presence of caustics. The
first novelty of this method is that we develop a new Eulerian approach to compute
the asymptotics, i.e. the traveltime function and amplitude coefficients that arise in
Babich’s expansion, yielding a locally valid solution, which is accurate close enough
to the source. The second novelty is that we utilize the Huygens-Kirchhoff integral
to integrate many locally valid wavefields to construct globally valid wavefields. This
automatically treats caustics and yields uniformly accurate solutions both near the
source and remote from it. The third novelty is that the butterfly algorithm is adapted
to accelerate the Huygens-Kirchhoff summation, achieving nearly optimal complexity
O(N logN), where N is the number of mesh points; the complexity prefactor depends
on the desired accuracy and is independent of the frequency. To reduce the storage
of the resulting tables of asymptotics in Babich’s expansion, we use the multivariable
Chebyshev series expansion to compress each table by encoding the information into a
small number of coefficients.

The new method enjoys the following desired features. First, it precomputes the
asymptotics in Babich’s expansion, such as traveltime and amplitudes. Second, it
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takes care of caustics automatically. Third, it can compute the point-source Helmholtz
solution for many different sources at many frequencies simultaneously. Fourth, for
a specified number of points per wavelength, it can construct the wavefield in nearly
optimal complexity in terms of the total number of mesh points, where the prefactor of
the complexity only depends on the specified accuracy and is independent of frequency.
Both two-dimensional and three-dimensional numerical experiments have been carried
out to illustrate the performance, efficiency, and accuracy of the method.

1 Introduction

We consider the general point-source Helmholtz equation in the m-dimensional space
Rm:

∇ · (µ∇u) + ω2ρu = −δ(r − r0), (1)

with the Sommerfeld radiation condition imposed at infinity, where r0 is the source
location, position r = [x1, · · · , xm]T , the gradient operator ∇ = [∂x1 , · · · , ∂xm ]T , ω
is the angular frequency, and both variables ρ and µ are analytic and positive func-
tions of position r, characterizing certain physical parameters of the medium. The
point-source solution, also called the Green’s function excited by r0, is used in a va-
riety of applications, such as medical imaging, seismic imaging, underwater acoustics,
and synthetic aperture radar. Since in the high frequency regime, the popular finite-
difference or finite-element methods require extremely refined grids of mesh points to
prevent so-called pollution or dispersion error [5, 4], we seek more effective methods
to compute this point-source Helmholtz solution. In this paper, we develop a high-
order, high-frequency, asymptotic method, which we call the fast Huygens sweeping
method, for solving the Helmholtz equation (1) in the high frequency regime and in
the presence of caustics, based on Babich’s rarely used asymptotic ansatz described in
[3]. This ansatz is the Fourier transform in time of the one used by Hadamard [18]
as outlined by Courant and Hilbert [13], Chapter VI, Section 15.6. Underlying this
new method there are three critical elements: a novel Babich-ansatz based formulation
for computing locally valid solutions, the Huygens secondary-source principle for con-
structing globally valid solutions, and an adapted butterfly algorithm to expedite the
whole process.

The usual asymptotic expansion of the point-source solution to (1) is sought as

u(r; r0) = eiωτ
∞∑
s=0

As(r; r0)
1

(iω)s−(m−1)/2
, (2)

where τ is the travel time from r0 to r satisfying the eikonal equation

|∇τ(r; r0)| = n(r), (3)

with a point source boundary condition τ(r0; r0) = 0, the refractive index n =
√
ρ/µ,

and the {As} satisfy a recursive system of ODEs along the ray,

2µ∇τ · ∇As +As∇ · (µ∇τ) = −∇ · (µ∇As−1), (4)
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for s = 0, 1, · · · , with A−1 ≡ 0. However, one difficulty arises immediately: how to
choose the initial data for those {Ai}. Moreover, when m = 2, this usual ray series
does not yield an accurate solution close to the source. For constant µ, the problem
of initializing starting values of {Ai} when m = 3 have been solved in [2] and is left
incomplete when m = 2; in practice, such difficulties were handled by initializing
{Ai} slightly away from the point source by using the solution for a medium with a
constant refractive index equal to that at the source point [53, 42, 27, 31, 30]; the
resulting numerical asymptotic solution is not uniform near the source. To resolve the
difficulties, Babich [3] proposed a ray series, essentially the Fourier transform in time
of Hadamard’s method for the wave equation, defined in terms of Hankel functions
of the first kind, where the initial data for the frequency-independent coefficients, or
asymptotics, are easily specified by comparison with the exact solution for a uniform
medium near the source. By computing these, the new expansion yields uniformly
accurate solutions in a region containing the source and up to but not including the
first focal point (first contact with a caustic) on each ray.

The usefulness of this ansatz for numerical simulation has been justified in our recent
work [45] when µ = 1. In this paper, we extend the application of Babich’s ansatz to
the more general self-adjoint point-source Helmholtz equation (1) with variable µ.

The one-term truncation of the usual geometric-optics series (2), as illustrated in
many contexts [6, 15, 17, 30, 41], is not able to characterize the caustics, which will
occur with high probability for wave propagation in inhomogeneous media. Babich’s
ansatz cannot overcome this issue either since it requires the traveltime τ to be smooth
[3], which fails at caustics. To treat caustics, we will use the Huygens secondary source
principle. It has been shown that in isotropic media, as considered here, which are
smooth, the squared eikonal solution of equation (3) is also smooth in a neighborhood
of the source r0 [2, 34, 48], implying that there is a neighborhood of the source which
is free of caustics, and hence Babich’s ansatz constructs a locally valid, short-wave
asymptotic solution. Based on such an observation and the Huygens secondary source
principle, we are able to develop a Huygens sweeping algorithm to construct a globally
valid, or far-wave solution by using the Huygens-Kirchhoff integral to patch together
many short-wave solutions, so that caustics are automatically taken care of.

To go beyond caustics, we will make some assumptions for this point-source Helmholtz
equation under consideration. For some seismic applications, it is natural to assume
that a set of geodesics (rays) have a consistent direction so that the Helmholtz equation
(1) may be viewed as an evolution equation. Thus along this direction, we partition
the computational domain into layered subdomains such that a layer-by-layer sweeping
solver can be developed using Huygens’ principle to construct a globally valid solution.
Specifically, the first layer is identified as a local neighborhood of r0, where Babich’s
expansion is valid. Next, we identify a neighborhood outside the first layer as the sec-
ond layer so that Babich’s expansion for the Green’s function excited by any secondary
source on the first layer boundary is caustic-free in the second layer. By using the
Huygens-Kirchhoff integral to integrate these locally valid Green’s functions over the
first layer boundary, we construct the wavefield in the second layer. Repeating this
sweeping process, we construct a globally valid solution in the whole computational
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domain. In this way caustics are treated automatically.
The question now is how to implement the above sweeping strategy efficiently.

To tackle this challenging problem, we must surmount several obstacles. The first
obstacle is in the Babich-expansion ansatz in that the traveltime function satisfying
the eikonal equation has an upwind singularity at the primary source so that it is
difficult to compute this function with high-order accuracy; moreover, the occurrence
of the Laplacian of the traveltime in the transport equations makes the task more
challenging. To deal with this obstacle, we use the newly developed high-order schemes
[27, 30, 31, 45] for computing first-arrival traveltimes.

The second obstacle is how to store the many tables of asymptotics that we will
generate for the many secondary sources. This storage issue is critical as we are aiming
at solving Helmholtz equations in both 2-D and 3-D cases. We reduce data storage
by expressing each asymptotic in terms of a multivariable Chebyshev series expansion.
Thus we compress each table into a small number of Chebyshev coefficients. Compu-
tationally, such compression leads to a significant storage reduction and efficient access
to memory.

The third obstacle is how to carry out efficiently the dense matrix-vector products
required by the Huygens-Kirchhoff integration. Let J be the number of mesh points
along each coordinate direction of the computational domain, so that the total number
of mesh points is N = Jm in the m-dimensional case. Because we are interested in the
asymptotic solution everywhere in the computational domain, the solution at observa-
tion points (receivers) in the m-D case corresponds to the result of some matrix-vector
products. In 2-D cases straightforward implementation of the above matrix-vector
products requires O(N) operations for each 1-D straight line of receivers, and the to-
tal computational cost will be O(N3/2) as we need to carry out such matrix-vector
products for roughly N1/2 planes of receivers; in 3-D cases straightforward implemen-
tation of the above matrix-vector products requires O(N4/3) operations for each plane
of receivers, and the total computational cost will be O(N5/3) as we need to carry
out such matrix-vector products for roughly N1/3 planes of receivers. Such computa-
tional cost is far too high to make our strategy practical. To tackle this difficulty, we
adapt to our application the multilevel matrix decomposition based butterfly algorithm
[33, 36, 11, 56, 14, 29, 41, 40]. The resulting butterfly algorithm allows us to carry out
the required matrix-vector products with the total computational cost of O(N logN)
complexity, where the proportionality constant depends only on the specified accuracy
and is independent of the frequency parameter ω. Such low-rank rapid matrix-vector
products are responsible for the adjective “fast” in the name “fast Huygens-sweeping
method” of our method.

The fast Huygens sweeping method also has two unique advantages which may be
attributed to the precomputed tables of traveltimes and amplitudes. First, because
the traveltime and amplitudes are independent of the frequency, the precomputed
tables can be used to construct the wavefield for a given primary source at arbitrary
frequencies. Second, those tables can be use to construct the wavefield at many other
primary sources for arbitrary frequencies as well. These two merits are much desired
in many applications, such as seismic imaging and inversion.
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1.1 Related work

The high-order schemes for the eikonal and transport equations that we are using here
were developed in [27, 30, 31], which in turn are based on Lax-Friedrichs sweeping
[21, 58, 59, 52, 47, 45], weighted essentially non-oscillatory (WENO) finite-difference
approximation [37, 25, 20, 19], and factorization of the upwind source singularities
[38, 57, 17, 27, 31, 28, 30]. To treat the upwind singularity at the point source, an
adaptive method for the eikonal and transport equations has been proposed in [42] as
well.

The idea of compressing a traveltime table into a small number of coefficients in a
certain basis has been used frequently in seismic imaging by the geophysical community.
Here we use the tensor-product based Chebyshev polynomials as the basis to compress
the tables of traveltime, amplitudes and related ingredients involved in the sweeping
process, as inspired by the work in [1].

To construct a globally valid asymptotic Helmholtz solution even in the presence
of caustics, there exist three possible approaches in the literature. The first approach
is based on Ludwig’s uniform asymptotic expansions at caustics [26, 10], which re-
quire that the caustic structure be given. The second approach is based on the Maslov
canonical operator theory [32]. Although the Maslov theory is beautiful, it is not so
useful as it requires identifying where caustics occur first before the theory can be
applied; in practice, caustics can occur anywhere along a central ray in an inhomoge-
neous medium with a high probability as shown in [54]. The third approach is based
on Gaussian beam methods [12, 39, 46, 55, 24, 50, 49]. Although Gaussian beam meth-
ods can treat caustics automatically along a central ray, the method itself suffers from
expensive beam summation and exponential growth of beam width as analyzed and
illustrated in [24, 43, 44, 22, 23, 35, 49], and such shortcomings sometimes have hin-
dered applications of Gaussian beam methods to complicated inhomogeneous media.
In addition, Benamou et al. [7, 8] designed an Eulerian geometrical-optics method for
computing high-frequency electromagnetic fields in the vicinity of fold caustics. Our
proposed new method is different from the above approaches.

The origin of the multilevel-matrix decomposition based butterfly algorithm can
be traced back to the work [33], and it has been further developed in [36, 56, 11, 14].
In this work, we are using the version of the fast butterfly algorithm first developed
in [11] and further analyzed in [14]. This fast butterfly algorithm was then adapted
for Helmholtz equations [29, 41] and for Maxwell’s equations [40]. The significance of
the fast butterfly algorithm for high-frequency wave computation was illustrated in a
recent work [16]. Engquist and Zhao [16] showed that the ε-approximate separability
of G(r; r0) = A(r; r0)eiωτ(r;r0) has ω-dependent lower and upper bounds when r ∈ X
and r0 ∈ Y with X ⊂ R3 and Y ⊂ R3 disjoint and compact. This result has two
implications. The first implication is that when ω is fixed, the matrix corresponding
to the discretized Green’s function will have finite ε-numerical ranks no matter how
dense the sampling is; consequently, low rank structures exist in the corresponding
matrix when the wavefield is over-resolved per wavelength, which is not optimal in
practice. The second implication is that when ω increases, the ε-numerical rank for
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the corresponding matrix increases as well so that no obvious low-rank structure exists
when the wavefield is resolved with a fixed number of points per wavelength. To create
low-rank structures in the corresponding matrix, we have to set up the two sets X and
Y in an ω-dependent manner which is exactly the departure point for fast butterfly
algorithms in [11, 29, 41, 40] and in the current paper.

1.2 Plan of the paper

In section 2, by introducing Babich’s expansion, we propose a novel formulation to con-
struct a locally valid solution of equation (1). To construct the globally valid solution,
we develop a Huygens-principle based sweeping algorithm in section 3. In sections 4
and 5, we present details of numerical implementations, along with a complexity anal-
ysis of our sweeping algorithm. Extensive numerical experiments are carried out in
section 6 to illustrate the performance, efficiency and accuracy of our new method.

2 Babich’s expansion based local solution

2.1 Babich’s expansion

Using Babich’s ansatz [3] we seek an asymptotic solution to equation (1) as ω →∞ in
a deleted neighborhood of r0 in the following form

u(r;ω) =

∞∑
s=0

vs(r)fs+1−m
2

(τ(r);ω), (5)

where τ is the traveltime from r0 to r,

fp(τ, ω) = i

√
π

2
eipπ

(
2τ

ω

)p
H(1)
p (ωτ) = i

√
π

2

(
2τ

ω

)p
H

(1)
−p (ωτ),

H
(1)
p is the p-th Hankel function of the first kind, and the {vs}, for s ≥ 0, are assumed

to be smooth functions in the source neighborhood.
Substituting equation (5) into equation (1), and using the formulas [3]

1

τ

∂fp(τ ;ω)

∂τ
= −2fp−1(τ ;ω), (6)

ω2fp(τ ;ω) = 4(1− p)fp−1(τ ;ω)− 4τ2fp−2(τ ;ω), (7)

we obtain

∞∑
s=−∞

fs+1−m/2[4vs+2µτ
2|∇τ |2 − 4vs+2ρτ

2 − 2∇ · (vs+1µτ∇τ)

− 2µτ∇τ · ∇vs+1 − 4(s+ 1−m/2)ρvs+1 +∇ · (µ∇vs)] = 0,

(8)

where we have made the convention that vs ≡ 0 when s ≤ −1.
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Meanwhile, since for large ω [3],

fp+1(τ ;ω)

fp(τ ;ω)
= O

(
1

ω

)
, (9)

the coefficient of every fs+1−m/2 in equation (8) must be zero so that we get, for
s = −2,−1, · · · ,

4vs+2µτ
2|∇τ |2 − 4vs+2ρτ

2 − 2∇ · (vs+1µτ∇τ)

−2µτ∇τ · ∇vs+1 − 4(s+ 1−m/2)ρvs+1 +∇ · (µ∇vs) = 0.
(10)

In particular, when s = −2, remembering that v−2 ≡ v−1 ≡ 0, we obtain

4v0τ
2(µ|∇τ |2 − ρ) = 0, (11)

which leads to the same eikonal equation (3), when we define

n =

√
ρ

µ
. (12)

Then for general s ≥ −1, equation (10) reduces to a recursive system of transport
equations

4µτ∇τ · ∇vs+1 + vs+1 [2(2s+ 2−m)ρ+ 2∇ · (µτ∇τ)] = ∇ · (µ∇vs). (13)

2.2 Interpretation as energy conservation when s = −1

We now study equation (13) for the leading term, i.e., for s = −1,

4µτ∇τ · ∇v0 + v0 [−2mρ+ 2∇ · (µτ∇τ)] = 0. (14)

Notice that the amplitude of the leading term in equation (5) is not v0 but v0 multiplied
by the leading amplitude for ω large of f1−m/2. But this amplitude is

O
(
τ1−m/2τ−1/2

)
= O(τ

1−m
2 ), (15)

where the extra τ−1/2 is attributed to

|H(1)
1−m/2(ωτ)| '

√
2

πω
τ−1/2,

for large ω. Therefore, the true leading amplitude is (proportional to) u0 = v0τ
1−m

2 .

We set v0 = τ
m−1

2 u0 in equation (13) and get

4µτ∇τ · ∇u0 + 2u0τ∇µ · ∇τ + 2u0µτ∆τ = 0, (16)

which can be further simplified to

2µ∇τ · ∇u0 + u0∇ · (µ∇τ) = 0. (17)
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Finally, on multiplying by u0, we get

∇ · (µu2
0∇τ) = 0, (18)

or
∇ · (ρu2

0 c
2∇τ) = 0, (19)

where c = 1
n =

√
µ
ρ is the magnitude of ray velocity.

As c2∇τ is the ray velocity vector, if we think ρu2
0 as the energy density, then

ρu2
0c

2∇τ becomes the energy flux vector. Thus, the divergence of the energy flux is zero
so that energy is conserved to leading order, and energy flux is conserved along tubes
of rays as it should be. This also verifies that equation (13) leads to the conventional
transport equation (4) with s = 0 for the leading amplitude A0, which always has this
energy-conservation interpretation due to

∇ · (µA2
0∇τ) = 0. (20)

Unlike the true amplitudes {As}∞s=0, starting values of which are hard to obtain,
those “non-real” amplitudes {vs}∞s=0 can be well-initialized, as will be discussed below.

2.3 Computing vs

It has been shown that in an isotropic medium, as considered here, unlike τ non-
differentiable at r0, τ2 is analytic in the source neighborhood [30] so that by the simple
relation ∇τ2 = 2τ∇τ , we can transform equation (13) into the following transport
equations with analytic coefficients in terms of τ2,

2µ∇τ2 · ∇vs+1 + vs+1

[
2(2s+ 2−m)ρ+∇ · (µ∇τ2)

]
= ∇ · (µ∇vs), (21)

for s = −1, 0, · · · , which, from numerical perspectives, is superior to equation (13).
To compute {vs}s≥0, proper initial conditions of vs at r0 must be imposed. In the
following, we shall assume that the traveltime τ is found in the source neighborhood
by the method of characteristics.

2.3.1 Analytic form of v0

By ray theory or method of characteristics, along a ray traced out from the source r0

to r, the directional derivative operator along the traveltime τ satisfies

n2 ∂

∂τ
= ∇τ · ∇. (22)

Therefore, equation (21) becomes

4ρτ
∂vs+1

∂τ
+ vs+1

[
2(2s+ 2−m)ρ+∇ · (µ∇τ2)

]
= ∇ · (µ∇vs). (23)
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Clearly, when µ = 1, ρ = n2, and so equation (23) exactly coincides with Babich’s
equation (6) in [3], which is

4n2τ
∂vs+1

∂τ
+ vs+1

[
2(2s+ 2−m)n2 + ∆τ2)

]
= ∆vs. (24)

Taking s = −1 in equation (21), we get

∇τ2 · ∇v0 + v0

[
∇ · (µ∇τ2)

2µ
−mn2

]
= 0. (25)

Correspondingly, equation (23) becomes

∂v0

∂τ
+ v0

[
∇ · (µ∇τ2)− 2mρ

4τρ

]
= 0, (26)

or,
∂ log v0

∂τ
= −∇ · (µ∇τ

2)− 2mρ

4τρ
. (27)

Thus, we obtain a general solution for v0

v0(τ) = v0|τ=0 exp

(
−
∫ τ

0

∇ · (µ∇τ ′2)− 2mρ

4τ ′ρ
dτ ′
)
, (28)

which coincides with Babich’s equation (7) in [3] when µ = 1. Moreover, in a source
neighborhood where τ2 is analytic, v0 is analytic and unique if the starting value v0|τ=0

is specified.
We now determine v0(r0) = v0|τ=0. Near the source r0, the wavefield u has the

following asymptotic form [3]

u(r) '

{
− 1

2πµ0
log |r − r0| m = 2,

Γ(m/2)

(m−2)2πm/2µ0
|r − r0|2−m m ≥ 3.

(29)

where µ0 = µ(r0). Meanwhile, knowing that τ(r) ' n0|r − r0| with n0 = n(r0), we
may obtain from the Hankel based ansatz (5) that

u(r) ' v0(r0)

√
πi

2

(
2τ

ω

)1−m/2
H

(1)
m/2−1(ωτ)

'


−v0(r0)√

π
log |r − r0| m = 2,

Γ(m/2)n2−m
0 v0(r0)

(m−2)
√
π

|r − r0|2−m m ≥ 3,

(30)

where we have used the asymptotic form of the Hankel function, as r → r0,

H
(1)
m/2−1 '

{
2
π log |r − r0| m = 2,

− Γ(m/2)
(m/2−1)π

(
2
ωτ

)m/2−1
m ≥ 3.

(31)

Consequently, one gets

v0(r0) =
nm−2

0

2µ0π(m−1)/2
, (32)

for m ≥ 2. Equipped with such an initial condition, equation (25) can be solved for v0.
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2.3.2 Analytic form of vs for s ≥ 1

To solve equation (23) for s ≥ 0, we first consider its homogeneous solution v
(0)
s , solving

4ρτ
∂v

(0)
s+1

∂τ
+ v

(0)
s+1

[
2(2s+ 2−m)ρ+∇ · (µ∇τ2)

]
= 0. (33)

It can be rewritten as by equation (27),

∂ log v
(0)
s+1

∂τ
= −2(2s+ 2−m)ρ+∇ · (µ∇τ2)

4τρ

= −s+ 1

τ
− ∂ log v0

∂τ

=
∂ log τ−(s+1)v0

∂τ
.

(34)

Therefore, let v
(0)
s+1 = τ−(s+1)v0, motivating us to seek the inhomogeneous solution in

the form
vs+1 = wv

(0)
s+1 = wv0τ

−(s+1),

where the unknown w is a function of τ . Substituting this into equation (23) and
taking equation (33) into account, we see that

4ρτ−sv0
∂w

∂τ
= ∇ · (µ∇vs), (35)

leading to

w =

∫ τ

0

τ ′s∇ · (µ∇vs)|τ ′
4ρv0(τ ′)

dτ ′ + cs+1, (36)

and finally

vs+1(τ) = τ−(s+1)v0(τ)

[∫ τ

0

τ ′s∇ · (µ∇vs)|τ ′
4ρv0(τ ′)

dτ ′ + cs+1

]
, (37)

where cs+1 ≡ const. on each ray.
To determine the value of cs+1, we analyze the asymptotic behavior of vs+1 near

r0. As r → r0, or τ → 0, one can easily see that

vs+1(r) '

{
cs+1v0(r0)τ−(s+1) if cs+1 6= 0,
∇·(µ∇vs)
4(s+1)ρv0

∣∣∣
r=r0

if cs+1 = 0.
(38)

Clearly, to ensure the continuity of vs+1 at the source r0, we have to choose cs+1 = 0
so that we see from equation (37) that vs+1 is totally determined by vs and τ for
s ≥ 0. In other words, once v0 and τ are known, vs as well as its starting value vs(r0)
is uniquely determined. In the source neighborhood where τ2 is analytic, vs is also
analytic according to [3]. We point out that there appears to be an error in Babich’s
equation (8) in [3], to which equation (37) should reduce when µ = 1 and ρ = n2.
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In the rest of this paper, we will mainly use the Babich ansatz truncated after the
second term:

u(r;ω) ≈
√
πi

2

(
2τ

ω

)1−m/2(
v0(r)H

(1)
m/2−1(ωτ) + v1(r)

(
2τ

ω

)
H

(1)
m/2−2(ωτ)

)
. (39)

Consequently, one first needs to solve the point-source eikonal equation (3) for τ ,
then the homogeneous transport equation (25) for v0, and finally the inhomogeneous
transport equation (21) with s = 0, i.e.,

∇τ2 · ∇v1 + v1

[
(2−m)n2 +

∇ · (µ∇τ2)

2µ

]
=
∇ · (µ∇v0)

2µ
, (40)

for v1. Numerical methods for computing τ , v0 and v1 will be discussed later.

2.4 Local validity of the Babich ansatz

In an inhomogeneous medium with variable refractive index n, the solution τ to equa-
tion (3) is non-smooth in general, due to ray focusing away from the source r0. As a
result, caustics develop and τ becomes multi-valued. Caustics are lower dimensional
manifolds enveloped by the rays. When caustics form, we usually consider the viscosity
solution of equation (3) instead, which is singled out at each point as the minimum
among the multiple values of τ , if they exist. However, in the vicinity of caustics, the
viscosity solution is non-differentiable and the coefficients in equation (21) relating to
τ become discontinuous so that the ray ansatz of Babich does not give a good approx-
imation to the wavefield. The {vs}s≥0 lose analyticity at caustics. The Hankel-based
series (5) is then not smooth and hence fails to characterize the wavefield at caustics,
which is independently known to be smooth everywhere.

Fortunately, in isotropic media such as considered here there is a neighborhood
of the source in which no caustics occur except the source itself. There is therefore
a certain neighborhood of the source r0 within which the ansatz (5) yields a valid,
short-wave, solution to the point-source Helmholtz equation (1). A natural question
arises: can we extend the short-wave asymptotic solution beyond this region of local
validity? The Huygens principle states that the wavefield away from a domain enclosing
the source r0 is determined by wavefields on the boundary of the domain. Therefore,
the far-wave field can be generated by accumulating the short-wave field layer by
layer when we use Huygens-Kirchhoff integrals to integrate many locally valid Green’s
functions to construct the primary wavefield in each layer. In this way, we construct
a globally valid solution, uniformly accurate both near the source and remote from it,
even in the presence of caustics. Even though the primary wavefield we are constructing
may contain caustics, our layer-by-layer method is successful because the contributing
Green’s functions do not contain caustics.
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3 Huygens-principle based global solution

3.1 Huygens-Kirchhoff formula

Supposing that u is known on the boundary S of a bounded domain enclosing r0, as
shown in Figure 1(a), we develop the Huygens-Kirchhoff formula below to construct u
in the exterior domain Ωext of S.

(a)

r
0

S

V

S
r

(b)

r
0z=z

*

S
r

S

V

z

Figure 1: A 2-D view of the Huygens principle. (a) Bounded secondary source surface S;
(b) Unbounded secondary-source planar surface S.

Let r′ = [x′1, · · · , x′m]T and L be the differential operator

L = ∇′ · (µ(r′)∇′) + ω2µ(r′)n2(r′),

where ∇′ = [∂x′1 , · · · , ∂x′m ]T . Then the Green’s function excited by r, G(r′; r) satisfies

LG(r′; r) = −δ(r′ − r), (41)

and we have for sufficiently large R > 0,

−u(r; r0) =

∫
V
−δ(r′ − r)u(r′; r0)dr′

=

∫
V

[
∇′ · (µ(r′)∇′G(r′; r)) + ω2n2(r′)µ(r′)G(r′; r)

]
u(r′; r0)dr′

=

∫
V

[∇′ · (µ(r′)∇′G(r′; r))u(r′; r0)−∇′ · (µ(r′)∇u(r′))G(r′; r)]dr′

=

∫
S∪∂B(r0,R)

µ(r′)
[
G,ν′(r

′; r)u(r′)−G(r′; r)u,ν′(r
′)
]
dS(r′),

(42)

where V = Ωext ∩ B(r0, R) and ν ′ is the outer unit normal vector to the surface
S ∪ ∂B(r0, R). Here and in what follows we use the subscript ,ν′ for the directional
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derivative ν ′ · ∇′ evaluated at r′. We also define ν ′ = ν(r′). Letting R → ∞ and
remembering the Sommerfeld radiation condition, the integral on ∂B(r0, R) vanishes
so that we get the Huygens-Kirchhoff formula: for r ∈ Ω,

u(r; r0) =

∫
S
µ(r′)

[
G(r′; r)u,ν′(r

′)−G,ν′(r
′; r)u(r′)

]
dS(r′). (43)

Similarly, one can arrive at this formula when S is an unbounded surface, e.g., a plane
z = z∗ as shown in Figure 1(b), where we assume that u is already given in the upper
half plane.

Since the operator L is self-adjoint, the Green’s function satisfies the natural reci-
procity:

G(r′; r) = G(r′; r). (44)

This shows that the two arguments in G and G,ν in equation (43) can be exchanged
so that numerically computing the Green’s function becomes more efficient since, as a
manifold of source locations, the surface S has one dimension less than the volume Ω.
Consequently, we have for any r ∈ Ω,

u(r; r0) =

∫
S
µ(r′)

[
G(r; r′)u,ν′(r

′)−G,ν′(r; r′)u(r′)
]
dS(r′). (45)

3.2 Computing the normal derivative G,ν′

Using the two-term Babich approximation to approximate G(r; r′), we get the approx-
imation of its normal derivative as follows,

G,ν′(r; r′) ≈
√
πi

2
(2/ω)1−m/2

[(
τ1−m/2v0H

(1)
m/2−1(ωτ)

)
,ν′

−2i/ω
(
τ2−m/2v1H

(1)
m/2−2(ωτ)

)
,ν′

]
=

√
πi

2
(2/ω)1−m/2

{[
ωτ1−m/2v0

(
H

(1)
m/2 +H

(1)
m/2−2

)
/2

+(1−m/2)τ−m/2v0H
(1)
1−m/2 − iτ

2−m/2v1

(
H

(1)
m/2−1 +H

(1)
m/2−3

)]
τ,ν′

+ τ1−m/2H
(1)
m/2−1v0,ν′ +O(1/ω)

}
,

(46)

where the O(1/ω)-term can be discarded at high frequencies. Clearly, computing the
normal derivative requires two more derivative terms

τ,ν′(r; r′) :=∇′τ(r; r′) · ν(r′),

v0,ν′(r; r′) :=∇′v0(r; r′) · ν(r′).
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3.2.1 Computing τ,ν′

We start by computing τ,ν′ . It satisfies

∇τ(r; r′) · ∇τ,ν′(r; r′) =
1

2
∇′(∇τ(r; r′) · ∇τ(r; r′)) · ν(r′)

=
1

2
∇′(n2(r)) · ν(r′)

= 0,

(47)

with a point source condition

lim
r→r′

[
τ,ν′(r; r′)− n(r′)

|r′ − r|
(r′ − r) · ν(r′)

]
= 0,

obtained by taking into account that τ(r; r′) ' n(r′)|r− r′| as r → r′. Since equation
(47) shows that the derivative of τ,ν′ along a ray is zero, τ,ν′ remains constant along
the ray and is equal to its initial value

τ,ν′(r; r′) = −n(r′)t′ · ν ′ = −n(r′) cos θ′, (48)

where t′ is the takeoff direction of the ray from r′ to r, and θ′ is the angle between t′

and ν ′.
To resolve the singularity of τ,ν′ at r = r′, we compute Φ = ττ,ν′ instead, solving

∇τ2 · ∇Φ = 2(∇τ · ∇τ)ττ,ν′ + τ2∇τ · ∇τ,ν′ = 2n2Φ, where Φ = ττ,ν′ , (49)

with a point source condition

lim
r→r′

[
Φ(r; r′)− n2(r′)(r′ − r) · ν(r′)

]
= 0. (50)

3.2.2 Computing v0,ν′

Let us now turn to the consideration of v0,ν′ . By equation (25), we have

∇τ2 · ∇v0,ν′(r; r′) = ∇τ2(r; r′) · ∇(∇′v0(r; r′) · ν ′(r′))
= (τ2 · ∇v0),ν′ −∇

(
(τ2),ν′

)
· ∇v0

= −
(
v0

[
∇ · (µ∇τ2)

2µ
−mn2

])
,ν′
− 2∇Φ · ∇v0

= −
[
∇ · (µ∇τ2)

2µ
−mn2

]
v0,ν′ − v0

[
∇ · (µ∇τ2)

2µ

]
,ν′
− 2∇Φ · ∇v0

= −
[
∇ · (µ∇τ2)

2µ
−mn2

]
v0,ν′ − v0

[
∇ · (µ∇τ2

,ν′)

2µ

]
− 2∇Φ · ∇v0

= −
[
∇ · (µ∇τ2)

2µ
−mn2

]
v0,ν′ − v0

[
∇ · (µ∇Φ))

µ

]
− 2∇Φ · ∇v0,

(51)
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thereby leading to the governing equation for v0,ν′ :

∇τ2 · ∇v0,ν′ + v0,ν′

[
∇ · (µ∇τ2)

2µ
−mn2

]
= −v0

∇ · (µ∇Φ)

2µ
− 2∇Φ · ∇v0, (52)

with a point source condition

lim
r→r′

v0,ν′(r; r′) = v0,ν′(r; r′)|r=r′ , (53)

to be determined by v0.
To use the Huygens-Kirchhoff formula (45) for computing u in Ωext, we need to

construct G(r; r′) and G,ν′(r; r′) by computing the following five ingredients sequen-
tially: τ2(r; r′) (not τ as it is not smooth at the source), v0(r; r′), v1(r; r′), Φ(r; r′)
and v0,ν′(r; r′) at any r ∈ Ωext and r′ ∈ S, which will be referred in what follows as
the Babich ingredients.

3.3 Layer-by-layer sweeping: continuous case

As discussed before, the Babich ansatz (5) is valid locally so that computed G and
G,ν′ by equations (39) and (46), respectively, are only accurate in a short-wave distance
away from the source surface S so that we may only construct the wavefield in a layer
within the short-wave distance away from S by the Huygens-Kirchhoff formula (45).
Nevertheless, by repeating such process, one still can construct a globally valid solution
layer by layer. We now present the layer-by-layer sweeping algorithm.

Algorithm 1. Layer-by-layer Sweeping Algorithm.

1. For the primary source r0, identify the first layer Ω0 as a region enclosing r0,
where Babich approximation (39) is valid, and compute the wavefield u by equa-
tion (39) in Ω0.

2. In the exterior of Ω0, identify the second layer Ω1 as a common neighborhood
where the Babich approximation (39) remains valid for the Green’s function ex-
cited by any secondary source point on the boundary of Ω0, S0 = ∂Ω0, named
by the first secondary source surface. Consequently, the Green’s function as well
as its normal derivative become available by the Babich approximations (39) and
(46).

3. Compute u in Ω1 by the Huygens-Kirchhoff formula (45) with S = S0 and Ωext =
Ω1.

4. Repeating steps 2 and 3, we get a sequence of layers {Ωj}j≥1 so that the Green’s
function and its normal derivative at the secondary source surface Sj−1 = ∂Ωj−1

are available in Ωj. Repeatedly using the Huygens- Kirchhoff formula in all layers
{Ωj}, we sweep the wavefield u layer-by-layer so that a globally valid solution is
constructed.
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In the following, we will present details on implementing Algorithm 1 and will
only focus on the two- or three- dimensional space, i.e., m = 2 or 3. For the sake of
clarity, we will name the Cartesian axes in R2 by x and z, in R3 by x, y and z.

4 Lax-Fredrichs WENO schemes for the Babich

ingredients

4.1 Numerical schemes

To compute the wavefield u by the primary source r0 or the Green’s function G by
a secondary source, we have to solve the eikonal equation (3) first as τ appears as
coefficients in the governing equations (25) and (40). In general, if we desire a 1st-order

accurate v1, we need a 3rd-order accurate v0 due to the term ∇·(µ∇v0)
µ in equation (40).

This in turn indicates that we have to compute a 5th-order accurate τ .
Since τ itself is non-differentiable at r0, all high-order upwind numerical schemes on

discretizing the point-source eikonal equation (3) itself yields only 1st-order accuracy
near the source, which further propagates over the whole computational domain due
to the upwinding nature of the underlying schemes. To resolve this issue, we follow
the factorization approach in [38, 57, 17, 27, 31, 28, 30], rewriting τ as the product of
a known non-differentiable term (e.g. n0|r − r0|) and an unknown which is analytic
in a source neighborhood. Next, by employing the existing high-order Lax-Fredrichs
Weighted Essentially Non-Oscillatory (LxF-WENO) schemes [21, 58, 27, 30, 31, 45] to
compute the unknown, we obtain a solution converging to the viscosity solution of equa-
tion (3) with high accuracy in the smooth region of τ2. Such high-order LxF-WENO
schemes can be easily adapted to solve the other first-order hyperbolic equations, such
as equations (25), (40), (49) and (52).

In this paper, we use the 5th-, 3rd- and 1st-order LxF-WENO schemes developed in
[45] to solve equations (3), (25) and (40), respectively, yielding a 5th-order accurate τ , a
3rd-order accurate v0 and a 1st-order accurate v1. Consequently, the primary wavefield
or the Green’s function excited by a secondary source can be constructed. In addition,
we use the 3rd-order and 1st-order LxF-WENO schemes in [45] to compute a 3rd-order
accurate Φ and a 1st-order accurate v0,ν′ , respectively, so that the normal-derivative
term G,ν′ can be constructed.

In the implementation, to use a P -th order LxF-WENO scheme to solve any of the
five point-source equations (3), (25), (40), (49), and (52), one needs to initialize a P -th
order accurate solution in a neighborhood of size (P +1)h centered at the source where
h is the grid size used in LxF-WENO schemes. During each iteration, values of the
targeted variable in this neighborhood are fixed while those elsewhere are updated by
the related scheme until convergence is achieved. In the next section, following closely
[45], we present details on initializing the five Babich ingredients near the source.
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4.2 Initialization of the Babich ingredients

Without loss of generality, we consider initializing the five Babich ingredients near the
primary source r0 and taking r0 = 0. Define Ψ(r) = n2(r) and U(r) = log µ(r). As
they are analytic near the source, we can rewrite them by their Taylor series about the
origin as:

Ψ(r) =
∞∑
k=0

Ψk(r), (54)

U(r) =

∞∑
k=0

Uk(r), (55)

where and hereafter in this section the term with subscript k denotes a homogeneous
polynomial of degree k.

As τ2 is analytic in the source neighborhood, we denote its Taylor series by

τ2(r) =
∞∑
k=0

Tk(r). (56)

According to [30], by substituting equations (54) and (56) into the squared eikonal
equation, we obtain recursive formulas for {Tk} when k ≥ 3:

(P − 1)Ψ0TP =
P−2∑
k=1

ΨkTP−k −
1

4

P−2∑
k=2

∇Tk+1 · ∇TP−k+1, (57)

together with initial setups: T0 = T1 = 0 and T2 = Ψ0r
2. For example, by equa-

tion (57), one gets

T3(r) =
1

2
Ψ1(r)r2. (58)

Therefore, if we use the truncated series T̃P̃ (r) =
∑P̃

k=2(r) to approximate τ2 near the
source, we obtain

|τ(r)−
√
T̃P̃ (r)| = O(|r|P̃+1|), (59)

as |r| → 0+. In our implementation, we take P̃ = 6 to initialize τ .
Next, to initialize v0, we first rewrite it as a Taylor series at the origin:

v0(r) =

∞∑
k=0

Bk(r), (60)

with

B0 =
nm−2

0

2π(m−1)/2µ0
,
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according to the initial condition (32) for v0. Thus, equation (25) can be rewritten as

∞∑
k=2

∇Tk(r) ·
∞∑
k=1

∇Bk(r) +
∞∑
k=0

Bk(r)
[1

2

∞∑
k=2

∆Tk(r)

+
1

2

∞∑
k=1

∇Uk(r)
∞∑
k=2

∇Tk(r)−m
∞∑
k=0

Ψk(r)
]

= 0.

(61)

By comparing the linear terms of both sides, we obtain

2Ψ0B1 +B0

[
∆T3

2
+

1

2
∇U1∇T2 −mΨ1

]
= 0, (62)

solved by

B1 =− B0

2Ψ0

(
∆T3

2
+

1

2
∇U1 · ∇T2 −mΨ1

)
=− B0

2Ψ0

[
(1− m

2
)Ψ1 + Ψ0U1

]
.

(63)

By comparing the P -th degree terms of both sides of equation (25), we derive the
following recursive formulas for {Bk}k≥2:

2Ψ0PBP =−
P−1∑
k=1

∇Bk · ∇TP+2−k −
1

2

P−1∑
k=0

Bk∆TP+2−k

+m
P−1∑
k=0

BkΨP−k −
1

2

P−1∑
k=0

Bk

P−k∑
j=1

∇Uj · ∇TP+2−j−k

 .

(64)

Therefore, we may use the truncated series B̃P̃ (r) =
∑P̃

k=0Bk(r) to approximate v0

near the source, and we get

|v0(r)− B̃P̃ (r)| = O(|r|P̃+1), (65)

as |r| → 0+. Here, we take P̃ = 3 to initialize v0.
Similarly, to initialize v1, we first rewrite it as its Taylor series at r0:

v1(r) =
∞∑
k=0

Ck(r). (66)

Then, by comparing the P -th degree terms in equation (40), we obtain the recursive
formulas for {Ck}k≥0:

2Ψ0(P + 1)CP =
1

2

P+1∑
k=1

∇Bk · ∇UP+2−k +
1

2
∆BP+2 −

P−1∑
k=1

∇Ck · ∇TP+2−k

−
P−1∑
k=0

Ck

∆TP+2−k
2

+
1

2

P−k∑
j=1

∇Uj · ∇TP+2−k−j + (2−m)ΨP−k

 .

(67)
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Particularly, when P = 0, we have

2Ψ0C0 =
1

2
(∇U1 · ∇B1 + ∆B2) , (68)

which further confirms that the starting value of v1 is determined by v0.

Therefore, we may use the truncated series C̃P̃ (r) =
∑P̃

k=0Ck(r) to approximate
v1 near the source, and we get

|v1(r)− C̃P̃ (r)| = O(|r|P̃+1), (69)

as |r| → 0+. Here, we take P̃ = 2 to initialize v1.
Finally, we deal with initializing Φ(r; r′) and v0,ν′(r; r′) near the source r′ = 0.

Let the power series of Φ at the origin be:

Φ(r) =
∞∑
k=0

Φk(r). (70)

Then, by the point-source condition (50), we get the initial setup for Φ:

Φ0 = 0, Φ1(r) =
(
n2(r′)(r′ − r) · ν(r′)

)∣∣
r′=0

= −Ψ0r · ν0, (71)

where ν0 is the unit normal vector specified at the source. By comparing the P -th
degree terms at both sides of equation (49), we obtain the following recursive formulas
for {Φk}k≥2:

2Ψ0(P − 1)ΦP = 2
P−1∑
k=1

ΦkΨP−k −
P−1∑
k=1

∇TP−k+2 · ∇Φk.

Therefore, we use the truncated series Φ̃P̃ (r) =
∑P̃

k=0 Φk(r) to approximate Φ near
the source, and we get

|Φ(r)− Φ̃P̃ (r)| = O(|r|P̃+1) (72)

as |r| → 0+. Here, we take P̃ = 4 to initialize Φ.
On the other hand, assuming the power series of v0,ν′ at the origin to be

v0,ν′(r) =
∞∑
k=0

Wk(r), (73)

by the point-source conditions (53) and (63), we obtain the initial setup for the se-
quences {Wk}:

W0 =
(
∇′v0(r; r′) · ν(r′)

)
|r=r′=0

=
(
∇′B1(r; r′) · ν(r′)

)
|r=r′=0

=
(
−∇B1(r; r′) · ν(r′)

)
|r=r′=0

=
B0

2Ψ0
[(1−m/2)∇Ψ1 + Ψ0∇U1] · ν0.

(74)
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By comparing the P -th degree terms at both sides of equation (52), we obtain the
following recursive formulas for {Wk}k≥1:

2Ψ0PWP =−
P−1∑
k=1

∇Wk · ∇TP+2−k −
1

2

P−1∑
k=0

Wk∆TP+2−k

+m
P−1∑
k=0

WkΨP−k −
1

2

P−1∑
k=0

Wk

P−k∑
j=1

∇Uj · ∇TP+2−j−k


−

P∑
k=0

Bk

∆ΦP+2−k +
P+1−k∑
j=1

∇Uj · ∇ΦP+2−k−j


− 2

P+1∑
k=1

∇Bk · ∇ΦP+2−k.

(75)

Therefore, we may use the truncated series W̃P̃ (r) =
∑P̃

k=0Wk(r) to approximate v0,ν′

near the source, and we get

|v0,ν′(r)− W̃P̃ (r)| = O
(
|r|P̃+1

)
, (76)

as |r| → 0+. Here, we take P̃ = 2 to initialize v0,ν′ .

5 Layer-by-layer sweeping: discretized case

We now develop the sweeping algorithm in the discretized case. In general, the sweeping
algorithm can be implemented in two stages: the offline stage and the online stage.
The offline stage mainly deals with decomposing the computational domain into layers
and computing the Babich ingredients at primary and secondary sources, while the
online stage focuses on updating the wavefield in each layer by the Huygens-Kirchhoff
formula.

Suppose now the wavefield propagates mainly along the positive z-direction so that
we can choose those layers to be m-dimensional boxes perpendicular to the z-axis and
extended to infinity along the other axes. The secondary-source surfaces in turn become
(m − 1)-dimensional planar surfaces separating those layers. If u is computed in a
bounded m-dimensional box Ω enclosing r0, those layers and secondary-source surfaces
are automatically truncated to bounded boxes and planar surfaces, respectively.

5.1 Offline stage: domain decomposition and computing
the Babich ingredients

To compute the wavefield in Ω enclosing the source r0, according to Algorithm 1,

we first need to decompose Ω into layers {Ωj}
Nlay

j=0 separated by the secondary-source

surfaces {Sj}
Nlay−1
j=0 , where Nlay is the number of layers in Ω.
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At first, we numerically compute the viscosity solution of τ at the primary source
r0 in Ω, and then identify a box neighborhood enclosing r0, where τ2 is smooth, as the
first layer Ω0. Next, rather than taking the boundary of Ω0 to be the first secondary-
source surface S0, we move this (m − 1)-dimensional planar surface slightly close to
r0 so that the new secondary source surface S0 is well separated from the next layer
Ω1 in the exterior of Ω0. This guarantees that the Green’s function in equation (45)
is never singular. Now, we sample secondary-source points on S0, and identify a box
neighborhood exterior of Ω0 as the next layer Ω1 so that τ2 at any sampling point of

S0 in Ω1 is smooth. Repeating such process, we obtain a sequence of layers {Ωj}
Nlay

j=0

and secondary-source surfaces {Sj}
Nlay−1
j=0 . Finally, we compute the Babich ingredients

at the primary source r0 in Ω0 (of course, only τ2, v0 and v1 are enough for r0)
and at all sampling secondary sources of each Sj−1 in Ωj for j = 1, · · · , Nlay by the
aforementioned high-order LxF-WENO schemes. Those tables of ingredients enable us
to construct the Green’s function G and its normal derivative G,ν′ in each layer, and
hence the wavefield u can be constructed by the Huygens-Kirchhoff formula (45), as
will be detailed at the online stage in section 5.2.

In practice, we let the distance between each pair of Ωj and Sj−1, denoted by df > 0,
be a constant and independent of ω. In addition, since all the Babich ingredients are
independent of the frequency ω, the computational domain Ω can be discretized by
a very coarse mesh, independent of ω. Correspondingly, the layer Ωj is discretized
by mesh points restricted in Ωj , and sampling secondary sources on Sj−1 are directly
chosen as mesh points restricted on Sj−1. Therefore, the Babich ingredients can be
computed on the restricted coarse mesh points in each Ωj at the restricted coarse source
points on Sj−1.

5.1.1 Data compression

At the offline stage, once tables of all Babich ingredients are obtained, we store them
on a local hard disk, which can be reloaded afterwards. However, directly storing them
requires a great deal of storage, which is more pronounced in the 3-D case. To reduce
data storage, utilizing the fact that all Babich ingredients in each layer are smooth, we
follow the approach in [29] to compress each data table into a linear combination of
tensor-product based multivariate Chebyshev polynomials so that the information in
each table can be encoded into a small number of coefficients. In our setting, there are
five scalar tables (except at the primary source r0) in total to be compressed, including
τ2, v0, v1, Φ and v0,ν′ .

To expedite reconstruction of information from those compressed tables, we will
follow the low-rank matrices based approach in [29] which is equivalent to the Orszag
partial summation method [9].
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5.2 Online stage: wavefields by Huygens-Kirchhoff sum-
mation

Computationally, to apply the Huygens-Kirchhoff formula (45) when S is an unbounded
plane, one needs to truncate the unbounded integration plane S into a bounded domain
S̃. Since Babich’s expansion (5) automatically exhibits outgoing wave behavior and
satisfies the Sommerfeld radiation condition at infinity, such a truncation only affects
the accuracy of the wavefield near the boundary of S̃. Therefore, the Huygens-Kirchhoff
formula (45) with S replaced by any bounded secondary planar surface Sj can be
directly applied to update the wavefield in the layer Ωj+1 for j = 0, · · · , Nlay − 1.
The integral over Sj is further discretized so that a quadrature rule can be applied to
approximate the integral.

In the high-frequency regime, to capture the highly oscillatory behavior of the
wavefield, one has to specify sufficient mesh points to sample the overall solution. In
principle, the optimal number of mesh points is arguably 4 to 6 points per wavelength in
all m dimensions. While in the popular finite difference time domain (FDTD) method
or the finite element method (FEM), it is hard to obtain accurate solutions by using
such a “small” number of mesh points due to the dispersion or pollution error [5, 4], our
method based on the Babich formula explicitly splits out the frequency independent
terms from the wavefield, i.e., the Babich ingredients, so that only 4 to 6 points per
wavelength can still yield accurate solutions, which has been verified numerically in
[29, 41, 40] and will later be shown in our examples.

For a given refractive index n(r), the minimum wavelength in the computational
domain Ω is λmin = 2π/(ωnmax), where nmax is the maximum refractive index in Ω, so
that Ω can be uniformly discretized by an optimal number of points with 4 to 6 points
per minimum wavelength. However, since all Babich ingredients are independent of the
frequency, one can compute them on much coarser meshes with the number of points
independent of frequency rather than on this very fine mesh. Only when we construct
the wavefield in Ω do we need to interpolate those ingredients onto the fine mesh.

With the above statements under consideration, we are ready to discretize the
Huygens-Kirchhoff formula (45) with S = Sj and Ωext = Ωj+1 for j = 0, · · · , Nlay − 1.
Without loss of generality, we only consider the case when j = 0. Suppose S0 is
uniformly discretized by M points {sj}Mj=1 with a grid size h in each dimension while Ω1

is uniformly discretized by {ri}Ni=1 with the same grid size h. Then, by the trapezoidal
rule, equation (45) at r = ri becomes

u(ri) ≈ hm−1
M∑
j=1

[
G(ri, sj)u,ν′(sj)µ(sj)−G,ν′(ri; sj)u(sj)µ(sj)

]
, (77)

for i = 1, · · · ,M . In matrix form, it becomes

u = U1f1 +U2f2, (78)

where the N × 1 vector u, the M × 1 vectors f1 and f2, and the N ×M matrices U1
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and U2 are defined in the following,

u = [u(r1), · · · , u(rN )]T , (79)

f1 = hm−1
[
u,ν′(s1)µ(s1), · · · , u,ν′(sM )µ(sM )

]T
, (80)

f2 = −hm−1 [u(s1)µ(s1), · · · , u(sM )µ(sM )]T , (81)

U1 = [(U1)ij ] = [G(ri, sj)]1≤i≤N,1≤j≤M , (82)

U2 = [(U2)ij ] =
[
G,ν′(ri; sj)

]
1≤i≤N,1≤j≤M . (83)

To ensure that equation (78) attains a specified accuracy and captures the highly
oscillatory behavior of the wavefield in Ω1, we directly take the mesh points in Ω
restricted to S0 as the source points {sj}Mj=1 and to Ω1 as the receiver points {ri}Ni=1.
As the Babich ingredients at r0 are obtained in Ω0, one first interpolates them onto the
restricted dense mesh points in Ω0 so that by equation (39), the wavefield u at mesh
points in Ω0, including {sj}Mj=1, can be constructed. In turn, its normal derivative

u,ν′ at {sj}Mj=1 can be obtained by numerical differentiation. On the other hand,
as the tables of the Babich ingredients at coarsely discretized mesh points in layer
Ω1 are only computed for coarsely sampled sources on S0, to construct U1 and U2,
we first interpolate each table onto the dense mesh points {ri}Ni=1 in Ω1, and then
interpolate those refined tables onto new refined tables at densely sampled sources
{sj}Mj=1 on S0 since Babich ingredients are also continuous functions of source locations.
Consequently, by equation (78), one obtains the wavefield u at the restricted mesh
points {ri}Ni=1 in Ω1 so that u and u,ν′ on the next secondary source surface S1 become
available. Repeating such process, one constructs u in the whole computational domain
Ω.

However, a significant barrier in such a formulation is that at high frequencies, if
the number of mesh points in each direction is J = O(ω), then M = O(Jm−1), N =
O(Jm), and both the complexity and storage requirements in obtaining u by direct
matrix-vector multiplications in equation (78) become O(MN) = O(J2m−1) which
is extremely expensive and impractical at high frequencies. To resolve this issue, we
adopt a multilevel matrix decomposition based butterfly algorithm [11, 14, 29, 41, 40]
to speed up the multiplications.

5.3 A butterfly algorithm

Equation (78) involves two matrix-vector multiplications that can be reformulated as
computing

u(r) =

2∑
k=1

∑
s∈Xs

Uk(r; s)fk(s), r ∈Xr ⊂ ΩR. (84)

Here, XS and XR are input source points in the source domain ΩS and output receiver
points in the receiver domain ΩR, respectively, where ΩR and ΩS are df apart from
each other, fk(s) is the representative function of fk in the sense that fk(sj) is the
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j-th element of fk for 1 ≤ j ≤M and Uk(r; s), the representative function of Uk, can
be decomposed as

Uk(r; s) = Ak(r; s)eiωτ(r;s), (85)

where according to equations (39) and (46),

A1 =

√
πi

2

(
2τ

ω

)1−m/2(
v0H

(1)
m/2−1(ωτ) + v1

(
2τ

ω

)
H

(1)
m/2−2(ωτ)

)
e−iωτ , (86)

A2 =

√
πi

2
(2/ω)1−m/2

{[
ωτ1−m/2v0

(
H

(1)
m/2(ωτ) +H

(1)
m/2−2(ωτ)

)
/2

+(1−m/2)τ−m/2v0H
(1)
m/2−1(ωτ)

−iτ2−m/2v1

(
H

(1)
m/2−1(ωτ) +H

(1)
m/2−3(ωτ)

)]
τ,ν′

+ τ1−m/2H
(1)
m/2−1(ωτ)v0,ν′

}
e−iωτ ,

(87)

and they together with the traveltime τ are available for r ∈ ΩR and s ∈ ΩS . For large
τ , due to the asymptotic form of the Hankel function

H
(1)
k (ωτ) '

√
2

πωτ
e−i(kπ/2−π/4)eiωτ , (88)

for k ∈ {m/2 − 3,m/2 − 2,m/2 − 1,m/2}, the two amplitudes A1 and A2, though
dependent upon ω, are not oscillatory at high frequencies. Based on such decomposition
(85), we can adopt the low-rank separation based butterfly algorithm [11, 14, 29, 40]
to speed up the matrix-vector products in equation (78). Some modifications can be
made so as to make it more adaptive to our applications.

To begin with, we first introduce the multi-dimensional Lagrange basis with respect
to Chebyshev nodes. For a given integer p > 0, the Chebyshev nodes of order p on the
standard one-dimensional box [−1, 1] are defined as

X =

{
xj = cos

(
(j − 1)π

p− 1

)}p
j=1

.

We denote the j-th Lagrange basis function with nodes X at x ∈ [−1, 1] by LX(x;xj),
taking 1 at xj and 0 elsewhere in X, for j = 1, · · · , p. On the standard m-dimensional
box [−1, 1]m, the Chebyshev nodes of order p are m tensor products of X as:

Xm = {xj1}
p
j1=1 × · · · × {xjm}

p
jm=1.

Thus, the j = (j1, · · · , jm)-th Lagrange basis function with nodes Xm at x satisfies:

LXm(x;xj) = LX(x1;xj1) · · ·LX(xm;xjm),

where x = (x1, · · · , xm)T ∈ [−1, 1]m and xj = (xj1 , · · · , xjm)T .
For a general one-dimensional interval [a, b], the Chebyshev nodes of order p satisfy

Y =

{
yj =

a+ b

2
+
b− a

2
xj

}p
j=1

,
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with the j-th Lagrange basis function at y ∈ [a, b] denoted by LY (y; yj). Meanwhile,
on a general m-dimensional box [a1, b1]× · · · × [am, bm], the Chebyshev nodes of order
p become the following tensor products:

Y = Y1 × · · · × Ym,

where

Yi = {yji =
ai + bi

2
+
bi − ai

2
xji}

p
ji=1.

Thus, the j-th Lagrange basis function at y = (y1, · · · , ym) is

LY (y;yj) = LY1(y1; yj1) · · ·LYm(ym; yjm).

In the following, we will denote by CB the set of pm m-dimensional Chebyshev nodes
in an m-dimensional box B. Following closely the butterfly algorithm in [29, 40], we
present the algorithm as follows.

Algorithm 2. The butterfly algorithm:

1. Construct the cluster trees for both receivers and sources. Assume that the
domain of receivers is ΩR = [Lrmin,Lrmax]m, and the domain of sources is ΩS =
[Lsmin,Lsmax]m−1. The domains are discretized such that the number of sampling
points per wavelength is fixed, such as 4 to 6 points per wavelength. When m =
3, the cluster trees for the receivers and sources are an octree and a quadtree,
respectively; when m = 2, the cluster trees for the receivers and sources are a
quadtree and a binary tree, respectively.

At the root level (denoted as level 0), the boxes for both the source and receiver
cluster trees are assigned to be the corresponding domain directly. Then the tree
construction goes by dyadically subdividing the boxes: for an octree (quadtree,
binary tree, respectively), each box is equally divided into 8 (4, 2, respectively)
boxes. The construction reaches and stops at the leaf level (denoted as level L)
where the size of each box is about 2 minimum wavelengths so that approximately
O(p) sampling points are used each dimension with p the order of the Chebyshev
nodes. Hence, except for the leaf level, each box B of an octree (quadtree) has 8
(4, 2, respectively) children boxes, denoted as Bc, and except for the root level,
each box B has a parent box, denoted as Bp. We denote the resulting two trees
as Ts (the source tree) and TR (the receiver tree), respectively. From now on, we
will use the superscript (·)B to denote the dependence on the box B.

The butterfly algorithm traverses through the two cluster trees in the following
way: for ` = L, · · · , 0, visit level ` in Ts and level L− ` in Tr by considering each
pair {Br, Bs} with Br ∈ Tr and Bs ∈ Ts, l(Bs) = ` and l(Br) = L − `, where
l(B) indicates the level of B in a tree.

Moreover, at the root level of the receiver tree and at the leaf level of the source
tree, each pair {Br, Bs} satisfies

w(Br)w(Bs) = (Lrmax − Lrmin)O(2λmin) = O
(

4π(Lrmax − Lrmin)

ωnmax

)
= O

(
1

ω

)
,
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where w(B) is the size of box B and nmax is the maximum value of the refractive
index. As moving downward the receiver tree Tr by one level and simultaneously
moving upward the source tree Ts by one level, w(Br) is divided by 2 while w(Bs)
is multiplied by 2, and so w(Br)w(Bs) = O(1/ω) is automatically satisfied. For
the motivation of such condition on all box pairs {Br, Bs}, please see [11, 29] for
details. In the following, we mean by the equivalent sources the Chebyshev nodes
on the source box Bs and by equivalent points the Chebyshev nodes on the receiver
box Br.

2. The Upward Pass starts at the leaf level (level L) of the source tree Ts and
ends at the level (denotes as Ls) where the size of the boxes w(Bs) ≥ O( 1√

ω
).

Correspondingly, the level of the receiver tree Tr varies from the root level (level
0) to the level Lr ≡ L− Ls.
(1) Initialization. For each pair {Br, Bs} with Br traversing all boxes at the

root level of the receiver tree and Bs traversing all boxes at the leaf level of
the source tree, interpolate two equivalent densities {f̄Br ,Bs

k } at the equivalent

sources CBs = {sBs
j }

pm−1

j=1 in Bs from the two given input densities {fk} at
all sources in XS ∩Bs:

f̄Br ,Bs

k (sBs
j ) =

∑
s∈Bs∩XS

e−iωτ(rBr
c ;sBs

j )Lm−1
CBs

(s; sBs
j )eiωτ(rBr

c ;s)fk(s), (89)

for k = 1, 2, where rBr
c is the center of the receiver box Br.

(2) Recursion. For ` from L−1 to Ls, for each pair {Br, Bs} with Br traversing
all boxes at level L− ` of the receiver tree and Bs traversing all boxes at level
` of the source tree, interpolate equivalent densities {f̄Br ,Bs

k } at equivalent

sources CBs = {sBs
j }

pm−1

j=1 from equivalent densities {f̄B
p
r ,B

c
s

k } at equivalent

sources CB
c
s = {sB

c
s

j }
pm−1

j=1 of all children clusters of Bs and the parent cluster
of Br:

f̄Br ,Bs

k (sBs
j ) =

∑
Bc

s

pm−1∑
q=1

e−iωτ(rBr
c ;sBs

j )Lm−1
CBs

(sB
c
s

q ; sBs
j )eiωτ(rBr

c ;s
Bc
s

q )f̄
Bp

r ,B
c
s

k (sB
c
s

q ),

(90)
for k = 1, 2.

3. Switching at the level where the Upward Pass has ended (level Ls of the
source tree and level Lr of the receiver tree), for each pair {Br, Bs} with Br
traversing all boxes at level Lr of the receiver tree and Bs traversing all boxes
at level Ls of the source tree, compute the equivalent field {ūBr ,Bs} at equivalent
points CBr = {rBr

j }
pm

j=1 from equivalent densities {f̄Br ,Bs

k } at equivalent sources

CBs = {sBs
q }

pm−1

q=1 :

ūBr ,Bs(rBr
j ) =

2∑
k=1

pm−1∑
q=1

Uk(r
Br
j , sBs

q )f̄Br ,Bs

k (sBs
q ). (91)

26



4. The Downward Pass starts at the level Lr of the receiver tree Tr where the
Upward Pass has ended and ends at level L of the receiver tree. Meanwhile, the
level of the source tree varies from level Ls to level 0.

(1). For ` from Lr to L− 2, for each pair {Br, Bs} with Br traversing all boxes
at level `+ 1 of the receiver tree and Bs traversing all boxes at level L− `−1
of the source tree, interpolate the equivalent fields {ūBr ,Bs} at equivalent
points {rBr

j }
pm

j=1 from equivalent fields {ūB
p
r ,B

c
s} at equivalent points CB

p
r =

{rB
p
r

q }
pm

q=1 of the parent level ` of the receiver tree and the children level L− l
of the source tree:

ūBr ,Bs(rBr
j ) =

∑
Bc

s

eiωτ(rBr
j ;s

Bc
s

c )
pm∑
q=1

Lm
CB

p
r
(rBr
j ; rB

p
r

q )e−iωτ(r
B
p
r

q ;s
Bc
s

c )ūB
p
r ,B

c
s(rB

p
r

q ),

(92)

where s
Bc

s
c is the center of the source box Bc

s.

(2). For each pair {Br, Bs} with Br traversing all boxes at the leaf level of the
receiver tree and Bs traversing all boxes at the root level of the source tree,
interpolate the equivalent fields {ūBr ,Bs} at r ∈ XR ∩ Br from equivalent

fields {ūB
p
r ,B

c
s} at equivalent points CB

p
r = {rB

p
r

j }
pm

j=1 of the parent level L−1
of the receiver tree and the children level 1 of the source tree:

ūBr ,Bs(r) =
∑
Bc

s

eiωτ(r;s
Bc
s

c )
pm∑
j=1

Lm
CB

p
r
(r; rB

p
r

n )e−iωτ(r;s
Bc
s

c )ūB
p
r ,B

c
s(rB

p
r

j ). (93)

5. Terminating at the leaf level of the receiver tree, for each box Br, sum up the
equivalent fields over all the boxes of the source tree at the root level, and then
according to equation (84) compute the representative function u at r ∈ XR∩Br:

u(r) =
∑
Bs

ūBr ,Bs(r).

Assume that the tree level L is even and that there are O(J) = O(2L) points in
each direction. According to the complexity analysis in [29], we can obtain that the
total complexity of Algorithm 2 is

O
(
p4J5/2 + p5J5/2 + p4J3 + J3 log J

)
. (94)

5.3.1 MATLAB-based parallelized butterfly algorithm

In Algorithm 2, ΩR and ΩS are assumed to be cubed and squared, respectively when
m = 3, while ΩR is assumed to be a square when m = 2. Nevertheless, even if this
assumption is not satisfied, following [40] we can artificially construct a required output
receiver-point set XR and a required input source-point set XS so that Algorithm 2
can be parallelized. Take the case m = 3 as an example. At first, in the construction of
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the two cluster trees, if the domain ΩR (ΩS) is not a cube (square), we will divide it into
cuboids (rectangles) of the same dimensions that are approximately cubic (squared)
and then subdivide them until the leaf level is reached; second, the output receiver-
points XR (the input source-points XS) should contain all vertices of boxes at the
leaf level of the receiver (source) tree and are evenly spaced in the receiver (source)
domain so that at the leaf level of the receiver (source) tree, the receiver (source)
points in each box Br (Bs) have the same layout and amount to the same number of
points. Therefore, as ` varies from L to 0, at the level ` of the source tree and at the
level L − ` of the receiver tree, matrices and vectors encountered in each of the five
summations (89)-(93) have dimensions that do not depend on the box pair {Br, Bs},
indicating that we can execute the summation for all box pairs {Br, Bs} in parallel; in
our MATLAB implementation, we use the “built-in” parfor (parallelized for) loop in
the level of iterations through box pairs {Br, Bs}; if the number of specified MATLAB
workers is Nw, then the involved summations (89)-(93) for every Nw box pairs are
executed simultaneously. Consequently, in comparison with the sequential butterfly
algorithm, the parallelized butterfly algorithm reduces the total complexity from (94)
to

O

(
p4J5/2 + p5J5/2 + p4J3 + J3 log J

Nw

)
= O

(
J3 log J

Nw

)
.

However, the input source-point set {si}MS
i=1 (the output receiver-point set {ri}NR

i=1)
may not meet the above requirements, and thus differs from the required input source-
point set XS (the required output receiver-point set XR) under construction. To resolve
such inconsistency, for k = 1, 2, each prepared input data fk defined on the input
source-point set {si}MS

i=1 can be used to interpolate for the required input data, namely,
two groups of values of representative functions fk on the required input source-point
set XS ; next, by inputting the required data to the parallelized butterfly algorithm, we
obtain the required output data, namely, the group of values of the wavefield u on the
required output receiver-point set XR; finally, by interpolating onto the required output
receiver-points, we obtain the wavefield on the targeted receiver-point set {ri}NR

i=1,
namely, the vector u in equation (78).

5.4 Planar layer sweeping algorithm

Considering that the wavefield under construction directs along the z direction so that
layers and secondary-source surfaces become boxes and planar surfaces, respectively, we
have developed the planar-layer based sweeping algorithm, which can be summarized
as the following.

Algorithm 3. Planar layer sweeping algorithm—discretized case.

• Offline stage. Partitioning the computational domain and computing the Babich
ingredients.

– Partition the computational domain into layers {Ωj}
Nlay

j=0 and secondary-

source planes {Sj}
Nlay−1
j=0 . The number of layers is one more than the number
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of secondary source planes since we need not set up a secondary-source plane
in the last layer.

– At the primary source r0, and at each secondary source sampled on Sj, com-
pute the tables of the five Babich ingredients: τ2, v0, v1, Φ and v0,ν′ on a
coarse mesh in the layer Ωj+1 for j = 0, · · · , Nlay − 1. In practice, we only
compute those tables for a coarse set of secondary sources since we can gen-
erate tables for a dense set of secondary sources from the coarse tables by
interpolation.

– The tables for the coarse set of secondary sources are compressed, then stored
(on a hard drive), and can be used to construct the wavefield at all high
frequencies and at many different primary sources.

• Online stage. Given a frequency parameter ω, construct the primary Green’s
function layer by layer.

– At all secondary sources on Sj, the tables of the five Babich ingredients are
reconstructed from the compressed tables to construct the Green’s function G
and its normal derivative G,ν′ in layer Ωj+1.

– For each table, first interpolate the data onto a finer mesh to resolve the
highly oscillatory behavior of G and then compute the wavefield u in Ωj+1

by the Huygens-Kirchhoff summation (78) with a quadrature rule, which is
accelerated by the MATLAB-based parallelized butterfly algorithm.

– If the sampling of secondary sources on the source plane Sj is not dense
enough, then we can interpolate the tables from given source locations onto
the region or segment bounded by these source locations. This is feasible be-
cause asymptotic ingredients are continuous functions of the source location.
For instance, when m = 3, if the four source points sA, sB, sC and sD are
vertices of a rectangular segment ABCD of the mesh on Sj, and if tables at
these four source points are computed and are already interpolated onto the
finer mesh in the corresponding layer, we can interpolate the four tables to
find the table onto the same finer mesh at any source point in the rectangular
region ABCD.

We can use Figure 2 to give a brief illustration of the sweeping process, where the
whole computational domain, i.e., the dashed rectangle, is partitioned into three lay-
ers, the large star is the primary source, smaller stars at the same row are secondary
sources selected as mesh points on the same secondary source plane, and each of the
two secondary source planes is within one layer and is df > 0 wide away from the next
layer. In layer 1, we directly use the two-term Babich approximation (39) to compute
the wavefield excited by the large star (the primary source r0) at those circle points
(including the smaller stars) so that the wavefield at those smaller stars (secondary
sources) is available. Next, in layer 2, we compute Green’s functions excited by those
smaller stars in layer 1 at the squared points so that the Huygens-Kirchhoff summation
(78) can be applied to compute the wavefield at those squared points. Once the wave-
field at those smaller stars (secondary sources) in layer 2 is available, a similar process
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Figure 2: A 2-D sketch of the Huygens sweeping method. “large star”: a primary source;
“small star”: secondary sources; df : the distance from a secondary source plane in one layer
to the next layer; Green’s functions excited by the large star at “circle”, “squared”, and
“diamond” points are computed by different approaches.

can be used to compute the wavefield at those diamond points in layer 3. Consequently,
the wavefield in the entire computational domain becomes available.

5.5 Complexity analysis

Since the offline and online stages are independent of each other and they can be done
on different meshes, we will analyze the two stages separately.

In the following analysis, suppose the computational domain is partitioned into
Nlay+1 planar layers and we set up Nlay secondary source planes. Among the Nlay+1
layers, we only need to use the Huygens-Kirchhoff summation (78) to construct the
wavefield in the Nlay layers away from the primary source r0.

5.5.1 Offline stage: computing the Babich ingredients

At first, since the asymptotic ingredients are independent of frequency ω, they can be
computed on a very coarse mesh. Second, these ingredients are not only continuous
functions of observation points away from the source but also continuous functions of
the source itself. Therefore, on each secondary source plane, the asymptotic ingredients
can be computed at coarsely sampled secondary sources as well. Interpolation can be
used later to generate the Babich ingredients for densely sampled sources if necessary.

Suppose the computational domain is uniformly and coarsely discretized by nm0
grid points, amounting to n0 points in each direction. Since the domain is divided
into Nlay + 1 planar layers, each layer has roughly O(

nm
0

Nlay+1) points. On each of the

Nlay secondary source planes, we set up nm−1
0 secondary sources, and we compute
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for each secondary source the Babich ingredients in a layer so that the computational
domain is restricted to that layer. According to [29], by using the high-order LxF-
WENO schemes to compute the Babich ingredients, the computational complexity is
O(

nm
0

Nlay+1 log n0); next, those asymptotic ingredients are compressed into data tables of

Chebyshev coefficients, and the complexity is O(
nm
0

Nlay+1 log n0) as well. Consequently,

the overall complexity for generating data tables at all nm−1
0 Nlay secondary sources is

O
(

2nm0
Nlay + 1

log n0 ·Nlayn
m−1
0

)
= O(n2m−1

0 log n0).

Although the complexity seems to be high, we can store those compressed data tables
on a hard drive and can repeatedly use them for different frequencies and for different
primary sources. This feature makes our method appeal to many applications.

On the other hand, to construct the wavefield, the whole computational domain is
uniformly re-discretized by n1 point in each direction. Thus, in each layer, we need
to reconstruct, from the compressed tables of coefficients, five Babich ingredients for
those specified secondary sources on roughly O(

nm
1

Nlay+1) points, requiring complexity of

O(
nm
1

Nlay+1) for each ingredient and for each secondary source; see [29] for details.

5.5.2 Online stage: constructing global wavefield

Given a source point r0 and a frequency parameter ω, a fine mesh is required to capture
the highly oscillatory wavefield in the computational domain. From the given refrac-
tive index n(r) and ω, we can estimate the smallest wavelength in the computational
domain so that the total number of waves along each direction can be estimated. In
principle, along each direction, taking roughly 4 to 6 grid points in each wave is consid-
ered to be enough to capture the oscillations; certainly, it does not hurt if more points
are taken. Therefore, the number of discretization points in the computational domain
can be chosen to satisfy the above consideration, and is assumed to be N = nm2 where
n2 is the number of points in each direction.

Once the five Babich ingredients are available on the specified mesh inside each
layer, we can construct the Green’s function by the butterfly-algorithm based Huygens-
Kirchhoff summation (78). Given accuracy ε > 0, according to [11], we may choose
p = pε ≤ O(log2(1

ε )) for the order of Chebyshev nodes in each direction in the butterfly
algorithm so that the algorithm for computing the summation achieves the accuracy
ε in O( N

Nlay+1 logN), where the prefactor depends only on ε and does not depend

on ω. Therefore, the overall complexity for constructing the Green’s function by the
butterfly algorithm in the Nlay layers is O(

Nlay

Nlay+1N logN) = O(N logN) for a given

primary source point r0 and a given frequency. If computed in parallel, the complexity
is further reduced to O(N/Nw logN), where Nw denotes the number of workers in the
parallelization.
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6 Numerical examples

Unless otherwise stated, all computations were executed in a 16-core 2.0GHz Intel E5-
2620 processor with 64 GBytes of RAM at the High Performance Computing Center
(HPCC) of MSU. The offline stage was implemented in C codes and executed by using
a single core while the online stage was constructed in MATLAB codes, where the
butterfly algorithm was carried out in parallel in 10 cores via the parallel computing
toolbox of MATLAB.

To validate the accuracy of our sweeping method, we obtain reference solutions
by applying the FDTD method [51] directly on the associated time-domain equa-
tion. However, due to limited computing resources, we are only able to compute the
FDTD-based solution at low frequencies, so that all comparisons will be carried out
at low frequencies only. Unless otherwise stated, the grid size in the FDTD method is
hFDTD=0.002 in all 2-D examples, and hFDTD=0.01 in all 3-D examples.

6.1 Two-dimensional examples

Example 1. A medium with constant refractive index is set up as the following:

• µ = (1 + 0.2 sin(3π(x+ 0.05)) sin(0.5πz))2 and ρ = 4µ so that n =
√
ρ/µ = 2.

• The computational domain is Ω = [0, 1]× [0, 1].

• The distance between a layer and a secondary source line is df = 0.1.

• The mesh at the offline stage is 101× 101.

In this example, since n is constant, there is no caustic in the wavefield so that we
expect that Babich’s ansatz (5) is valid in the whole computational domain Ω.

At first, we check the accuracy of the Babich-ansatz based methods by testing
both one-term and two-term truncations of the series (5). Since µ is not constant,
we use the FDTD method to compute a reference solution for comparison. To re-
duce dispersion error in the FDTD method, we compute the FDTD-based solution in
a small squared neighborhood of the primary source r0 = [0.5, 0.2]T of size 0.1, i.e.,
[0.45, 0.55] × [0.15, 0.25], which is uniformly discretized by 1001 × 1001 points with
grid size 0.0001. Values of the wavefield at the set of points {[0.45 + 0.01m1, 0.15 +
0.01m2]T |0 ≤ m1,m2 ≤ 10} except at the source r0 are computed at different fre-
quencies, by using the FDTD method, and the one-term and two-term Babich approx-
imations. Then, we measure the L∞ error or the maximum absolute error between
the FDTD solution and the two solutions with one-term and two-term truncations,
respectively, as recorded in Table 1. Clearly, both the one-term and two-term Babich
approximations yield accurate solutions uniformly at all frequencies, while the two-term
approximation is more accurate at high frequencies.

Next, we compute the wavefield excited by the same source r0 in the whole domain Ω
at different frequencies by Algorithm 3. To do so, we artificially set up one secondary-
source line at S0 := {z = 0.6}, and we update the wavefield in the layer Ω1 := [0, 1]×
[0.7, 1] by using the Huygens-Kirchhoff summation (78) accelerated by Algorithm 2.
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ω/(2π) 1 2 4 8 16
One-term L∞ error 8.9E-3 4.5E-3 1.3E-3 5.0E-4 1.4E-4
Two-term L∞ error 1.0E-2 3.5E-3 1.1E-3 4.1E-4 9.3E-5

Table 1: Example 1. Comparison of FDTD solution and Babich-formula based solution in
the small domain: [0.45, 0.55]× [0.15, 0.25].

The total running times of constructing the wavefield in Ω at different frequencies are
recorded in Table 2. Assume that at mesh points in Ω1 Algorithm 2 produces the
wavefield vector uB while straightforward matrix-vector multiplications give rise to the
wavefield vector uD. To justify validity and efficiency of the butterfly algorithm, we
compute the L∞ errors between uD and uB, i.e. ||uB − uD|| at different values of p
and at different frequencies. These errors along with the running times of computing
uD and uB are listed in Table 3. Evidently, the acceleration is dramatic, especially at
high frequencies.

Mesh in Ω 161× 161 321× 321 641× 641 1281× 1281 2561× 2561
ω/(2π) 16 32 64 128 256
NPW 5 5 5 5 5

Tall(p = 9) 1.8 3.8 9.4 20.0 55.8
Tall(p = 11) 1.9 4.2 11.1 23.5 69.1
Tall(p = 13) 2.4 5.1 14.0 28.4 88.3

Table 2: Example 1. r0 = [0.5, 0.2]T . Tall (unit: s): total CPU time for computing u in
Ω; NPW: the number of points per wavelength; p = 9, 11, 13 Chebyshev nodes are used in
Algorithm 2.
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Figure 3: Example 1. r0 = [0.5, 0.2]T , ω = 2π: (a) Huygens principle based solution:
p = 11 and NPW = 5; (b) FDTD solution. Real part of wavefields at (c): x = 0 and
(d): z = 0.8. Circle: Huygens principle based solution; dashed line: two-term Babich
approximation solution; solid line: FDTD solution.

Moreover, Figures 3, 4, and 5 show the numerical solutions at a low frequency
ω = 2π, an intermediate frequency ω = 8π, and a high frequency ω = 32π, respectively,
by our approach and by the FDTD method, where a straight line at z = 0.6 shows
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Mesh in Ω1 169× 53 337× 105 673× 209 1345× 417 2689× 833
ω/(2π) 16 32 64 128 256
TD 2.3 13.3 84.5 634.0 5062

NPW 5 5 5 5 5
TB(p = 9) 1.7 3.7 9.2 19.4 53.7
TD/TB 1.4 3.6 9.2 32.7 94.3
L∞-error 1.9E-2 2.5E-2 2.2E-2 1.9E-2 1.9E-2
TB(p = 11) 1.9 4.2 10.9 23.0 67.2
TD/TB 1.2 3.2 7.8 27.6 75.3
L∞-error 8E-3 1.2E-2 1.2E-2 9.1E-3 1.1E-2
TB(p = 13) 2.3 4.9 13.9 28.0 86.5
TD/TB 1.0 2.7 6.1 22.6 58.5
L∞-error 3E-3 6.9E-3 5.5E-3 4.7E-3 6.6E-3

Table 3: Example 1. r0 = [0.5, 0.2]T . TB (unit: s): running time for computing u in Ω1 by
Algorithm 2; TD (unit: s): running time for computing u in Ω1 by straightforward matrix-
vector multiplication. NPW: the number of points per wavelength; p = 9, 11, 13 Chebyshev
nodes are used in Algorithm 2.

the location of the secondary source line S0. We can see that the three solutions are
consistent with each other, and the asymptotic solutions approach the FDTD solution
reasonably well as the frequency becomes higher.
Example 2. Two-dimensional sinusoidal medium model:

• µ = (1 + 0.2 sin(3π(x+ 0.05)) sin(0.5πz))2 and ρ = 1.

• The computational domain is [0, 1]× [0, 2].

• The distance between a layer and a secondary source line is df = 0.1.

• The mesh at the offline stage is 101× 201.

In this example, even though ρ is constant, the refractive index n = 1√
µ is not a

constant so that caustics may develop.
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Figure 4: Example 1. r0 = (0.5, 0.2), ω = 8π: (a) Huygens principle-based solution: p = 11
and NPW = 5; (b) FDTD solution. Real part of wavefields at (c): x = 0.50; (d): z =
0.8. Circle: Huygens principle-based solution; dashed line: two-term Babich approximation
solution; solid line: FDTD solution.
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Figure 5: Example 1: r0 = (0.5, 0.2), ω = 32π: (a) Huygens principle-based solution:
p = 13 and NPW = 5; (b) FDTD solution. Real part of wavefields at (c): x = 0.50;
(d): z = 0.8. Circle: Huygens principle based solution; dashed line: two-term Babich
approximation solution; solid line: FDTD solution.

We compute the wavefield excited by the source r0 = [0.5, 0.2]T in the whole domain
Ω at different frequencies. According to Algorithm 3, we decompose Ω into six
layers {Ωj}5j=0 distinguished by five secondary-source lines {Sj}4j=0 at the offline stage.

During the online stage, we update the wavefield u in {Ωj}5j=1 by Algorithm 2.
The total running times of constructing the wavefield in Ω at different frequencies are
recorded in Table 4. Assume that at mesh points in Ω1 Algorithm 2 produces the
wavefield vector uB while straightforward matrix-vector multiplications give rise to the
wavefield vector uD. To justify validity and efficiency of the butterfly algorithm, we
compute the L∞ errors between uD and uB, i.e. ||uB − uD|| at different values of p
and at different frequencies. These errors along with the running times of computing
uD and uB are listed in Table 5.

Mesh in Ω 241× 481 481× 961 961× 1921 1921× 3841 3841× 7681
ω/(2π) 32 64 128 256 512
NPW 6 6 6 6 6

Tall(p = 9) 18.9 48.7 104.3 289.7 691.0
Tall(p = 11) 21.8 58.8 122.8 364.0 838.3
Tall(p = 13) 25.8 73.8 149.1 466.4 1034.4

Table 4: Example 2: r0 = [0.5, 0.2]T . Tall (unit: s): total CPU time for computing u in Ω;
p = 9, 11, 13 Chebyshev nodes are used in Algorithm 2.

In addition, we compare our numerical solution with the FDTD solution at ω = 32π,
as shown in Figure 6, where the five straight lines in Figure 6(a) show locations of
secondary source lines {Sj}4j=0. One can observe that the two different solutions match
each other very well in general. It seems that their differences are more pronounced
in the vicinity of caustics. We believe that there are at least two reasons causing
such phenomena: one is that there are an infinite number of rays propagating through
caustics while our method truncates the secondary source lines so that we capture a
finite number of rays only, and the other is that the FDTD solution loses accuracy due
to the dispersion error at high frequencies.
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Mesh in ΩR 241× 73 481× 145 961× 289 1921× 577 3841× 1153
ω/(2π) 32 64 128 256 512
TD 3.3 22.6 159.6 1195.8 12518

NPW 6 6 6 6 6
TB(p = 9) 3.7 9.5 20.4 54.7 126.4
TD/TB 0.9 2.4 7.8 21.9 99.0
L∞-error 6.1E-3 4.5E-3 4.1E-3 4.5E-3 4.2E-3
TB(p = 11) 4.4 11.4 24.2 69.0 153.5
TD/TB 0.8 2.0 6.6 17.3 81.6
L∞-error 1.1E-3 8.3E-4 7.0E-4 7.9E-4 8.1E-4
TB(p = 13) 5.1 14.4 28.7 89.3 194.2
TD/TB 0.6 1.6 5.6 13.4 64.5
L∞-error 3.5E-4 8.3E-5 1.0E-4 1.1E-4 6.5E-5

Table 5: Example 2: r0 = [0.5, 0.2]T . TB (unit: s): running time for computing u in Ω1 by
Algorithm 2; TD (unit: s): running time for computing u in Ω1 by straightforward matrix-
vector multiplication. NPW: the number of points per wavelength; p = 9, 11, 13 Chebyshev
nodes are used in Algorithm 2.
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Figure 6: Example 2. r0 = [0.5, 0.2]T , ω = 32π: (a) Huygens principle based solution:
p = 13 and NPW= 6; (b) FDTD solution. Real part of wavefields at (c): z = 1; (d):
z = 1.8. Circle: Huygens principle based solution; solid line: FDTD solution.

The wavefield u excited by a different primary source r0 = [0.6, 0.35]T at ω = 32π
is computed and compared with the FDTD solution, as shown in Figure 7. Since the
two-term Babich approximation (39) is accurate close to the source r0, we see that
even though the first secondary source line is close to r0, the numerical solution is still
consistent with the FDTD solution quite well.
Example 3. Two-dimensional waveguide model:

• µ = (1− 0.5e−8(x−1)2)2 and ρ = 1.

• The computational domain is Ω = [0, 2]× [0, 2].

• The distance between a layer and a secondary source line is df = 0.1.

• The mesh at the offline stage is 201× 201.

We compute the wavefield excited by the source r0 = [1.0, 0.2]T in the whole domain
Ω at different frequencies. According to Algorithm 3, we decompose Ω into six
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Figure 7: Example 2. r0 = [0.5, 0.2]T and ω = 32π. (a) Huygens principle based solution:
p = 13 and NPW= 6; (b) FDTD solution. Real part of wavefields at (c): z = 1 and (d):
z = 1.8. Circle: Huygens principle-based solution; solid line: FDTD solution.

layers {Ωj}5j=0 distinguished by five secondary source lines {Sj}4j=0 at the offline stage.

During the online stage, we update the wavefield u in {Ωj}5j=1 by Algorithm 2. The
total running times for constructing the wavefield u in Ω are recorded in Table 6.
Assume that at mesh points in Ω1 Algorithm 2 produces the wavefield vector uB
while straightforward matrix-vector multiplications give rise to the wavefield vector
uD. To justify validity and efficiency of the butterfly algorithm, we compute the L∞

errors between uD and uB, i.e. ||uB − uD|| at different values of p and at different
frequencies. These errors along with the running times of computing uD and uB are
listed in Table 7.

Mesh in Ω 511× 511 1021× 1021 2051× 2051 4101× 4101
ω/(2π) 32 64 128 256
NPW 4 4 4 4

Tall(p = 9) 63.1 178.2 386.0 1194.6
Tall(p = 11) 77.8 231.2 490.0 1588.1
Tall(p = 13) 97.5 305.8 630.2 2092.8

Table 6: Example 3: r0 = [1.0, 0.2]T . Tall (unit: s): total CPU time for computing u in
Ω; NPW: the number of points per wavelength; p = 9, 11, 13 Chebyshev nodes are used in
Algorithm 2.

In addition, we compare our numerical solution with the FDTD solution at ω = 32π,
as shown in Figure 8, where the five straight lines in Figure 8(a) show locations of
secondary-source lines {Sj}4j=0.

The wavefield u excited by a different primary source r0 = [1.0, 0.35]T at ω = 32π
is computed and compared with the FDTD solution, as shown in Figure 9, where the
first secondary-source line S0 is located close to r0.
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Mesh in ΩR 561× 81 1121× 161 2241× 321 4481× 641
ω/(2π) 32 64 128 256
TD 17.6 119.7 892.1 10220

NPW 4 4 4 4
TB(p = 9) 12.6 35.4 75.0 229.8
TD/TB 1.4 3.4 11.9 44.5
L∞-error 1.7E-2 1.9E-2 1.8E-2 1.4E-2
TB(p = 11) 15.1 45.8 96.3 309.9
TD/TB 1.2 2.6 9.3 33.0
L∞-error 3.8E-3 4.9E-3 5.1E-3 5.2E-3
TB(p = 13) 19.2 60.2 123.8 412.4
TD/TB 0.92 2.0 7.2 24.8
L∞-error 1.1E-3 1.5E-3 8.8E-4 9.7E-4

Table 7: Example 3: r0 = [1.0, 0.2]T . TB (unit: s): running time for computing u in Ω1 by
Algorithm 2; TD (unit: s): running time for computing u in Ω1 by straightforward matrix-
vector multiplication. NPW: the number of points per wavelength; p = 9, 11, 13 Chebyshev
nodes are used in Algorithm 2.

(a) x

z

 

 

0 0.5 1 1.5 2

0

0.5

1

1.5

2 −0.2

−0.1

0

0.1

0.2

(b) x

z

 

 

0 0.5 1 1.5 2

0

0.5

1

1.5

2 −0.2

−0.1

0

0.1

0.2

(c)
0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

z

W
av

ef
ie

ld

(d)
0 0.5 1 1.5 2

−0.3

−0.2

−0.1

0

x
W

av
ef

ie
ld

Figure 8: Example 3. r0 = [1.0, 0.2]T and ω = 32π. (a) Huygens principle based solution:
p = 11 and NPW= 4; (b) FDTD solution. Real part of wavefields at (c): x = 0.8; (d):
z = 1.8. Circle: Huygens principle based solution; solid line: FDTD solution.
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Figure 9: Example 3. r0 = [1.0, 0.35]T and ω = 32π. (a) Huygens principle based solution:
p = 11 and NPW= 4; (b) FDTD solution. Real part of wavefields at (c): x = 0.8; (d):
z = 1.8. Circle: Huygens principle based solution; solid line: FDTD solution.
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6.2 Three-dimensional examples

Example 4. A constant refractive index model is set up as follows:

• µ = (3 − 1.75exp(−((x − 1)2 + (y − 1)2 + (z − 1)2)/0.64))2 and ρ = 4µ so that
n = 2.

• The computational domain is Ω = [0, 2]× [0, 2]× [0, 2].

• The mesh at the offline stage is 51× 51× 51.

We compute the wavefield excited by the source r0 = [1.0, 1.0, 0.2]T in the whole
domain Ω at different frequencies. As n = 2 is constant, no caustics develop in
this example. To check the performance of Algorithm 3, we artificially set up
one secondary-source plane at z = 1.2, and compute the wavefield u in the layer
Ω1 = [0, 2]× [0, 2]× [1.3, 2]. The total running time of constructing the wavefield in Ω1

are recorded in Table 8.

Mesh in Ω 41× 41× 41 81× 81× 81 161× 161× 161 261× 261× 261
ω/(2π) 2 4 8 16
NPW 5 5 5 5

Tall(p = 9) 83.0 290.4 1085.9 2888.4
Tall(p = 11) 99.2 357.2 1175.0 3733.9
Tall(p = 13) 137.1 429.2 1532.5 5241.1

Table 8: Example 4: r0 = [1.0, 1.0, 0.2]T . Tall (unit: s): total CPU time for computing u in
Ω; NPW: the number of points per wavelength; p = 9, 11, 13 Chebyshev nodes are used in
Algorithm 2.

In addition, we compare our numerical solution with the FDTD solution at three
frequencies: ω = 2π, 4π and 8π. Corresponding results at y = 1 are shown in Fig-
ures 10, 11, and 12, respectively.
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Figure 10: Example 4. Source point [1.0, 1.0, 0.2]T and ω = 2π. (a) Huygens principle based
solution at y = 1: p = 11 and NPW= 5; (b) FDTD solution at y = 1. Real part of wavefields
at (c): x = 0.9 and y = 1 and at (d): y = 1 and z = 1.4. Circle: Huygens principle-based
solution; dashed line: two-term Babich approximation solution; solid line: FDTD solution.

Example 5. Three-dimensional Gaussian model:

• µ = (3− 1.75exp(−((x− 1)2 + (y − 1)2 + (z − 1)2)/0.64))2 and ρ = 1.
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Figure 11: Example 4. Source point [1.0, 1.0, 0.2]T and ω = 4π. (a) Huygens principle based
solution at y = 1: p = 11 and NPW= 5; (b) FDTD solution at y = 1. Real part of wavefields
at (c): x = 0.9 and y = 1 and at (d): y = 1 and z = 1.4. Circle: Huygens principle-based
solution; dashed line: two-term Babich approximation solution; solid line: FDTD solution.
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Figure 12: Example 4. Source point (1.0, 1.0, 0.2) and ω = 8π. (a) Huygens principle based
solution at y = 1: p = 13 and NPW= 5; (b) FDTD solution at y = 1. Real part of wavefields
at (c): x = 0.9 and y = 1 and at (d): y = 1 and z = 1.4.

• The computational domain is Ω = [0, 2]× [0, 2]× [0, 2].

• The mesh at the offline stage is 51× 51× 51.

We compute the wavefield excited by the source r0 = [1.0, 1.0, 0.2]T in the whole do-
main Ω at different frequencies. According to Algorithm 3, we set up one secondary-
source plane at z = 1.2, and compute the wavefield u in the layer Ω1 = [0, 2]× [0, 2]×
[1.3, 2]. The total running times of constructing the wavefield in Ω are recorded in
Table 9.

Mesh in Ω 31× 31× 31 61× 61× 61 131× 131× 131 261× 261× 261
ω/(2π) 4 8 16 32
NPW 5 5 5 5

Tall(p = 9) 83.0 204.9 701.7 2888.4
Tall(p = 11) 92.6 251.9 915.2 3733.9
Tall(p = 13) 109.7 303.4 1299.7 5241.1

Table 9: Example 5: r0 = [1.0, 1.0, 0.2]T . Tall (unit: s): Total CPU time for computing u
in Ω; NPW: number of points per wavelength; p = 9, 11, 13 Chebyshev nodes are used in
Algorithm 2.

Next, we compare our numerical solution with the FDTD solution at frequency
ω = 16π. Numerical results at y = 1 are shown in Figure 13.
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Figure 13: Example 5. Source point (1.0, 1.0, 0.2) and ω = 16π. (a) Huygens principle based
solution at y = 1: p = 13 and NPW= 5; (b) FDTD solution at y = 1. Real part of wavefields
at (c): x = 0.9 and y = 1; and at (d): y = 1 and z = 1.8. Circle: Huygens principle-based
solution; solid line: FDTD solution.

In addition, we compute the wave field u at high frequency ω = 64π. Numerical
results at x = 1, y = 1 and z = 1.8 are shown in Figure 14(a), (b) and (c), respectively.
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Figure 14: Example 5. Source point (1.0, 1.0, 0.2) and ω = 64π. Huygens principle based
solution with p = 13 and NPW= 5 at (a) x = 1, (b) y = 1, and (c) z = 1.8.

Finally, we compute the wavefield u at frequency ω = 64π at the source r0 =
[0.6, 0.6, 0.24]T . Numerical results at x = 1.4, y = 1.4 and z = 1.8 are shown in
Figure 15(a), (b) and (c), respectively.
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Figure 15: Example 5. Source point (0.6, 0.6, 0.24) and ω = 64π. Huygens principle-based
solution with p = 13 and NPW= 5 at (a) x = 1.4, (b) y = 1.4, and (c) z = 1.8.
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7 Conclusion

Starting from Babich’s expansion, we have developed a new fast Huygens sweeping
method for solving the Helmholtz equation in inhomogeneous media in the high fre-
quency regime and in the presence of caustics. The new method utilized the Huygens-
Kirchhoff integral to integrate locally valid wavefields to construct globally valid wave-
fields, which are uniformly accurate near the source and remote from it. The Huygens-
Kirchhoff summation was further accelerated by the butterfly algorithm, achieving
nearly optimal complexity. Numerical experiments have illustrated the efficiency and
accuracy of the method.

Acknowledgment

Qian is supported by NSF grants 1222368 and 1439979.

References

[1] T. Alkhalifah. Efficient traveltime compression for 3d prestack Kirchhoff migra-
tion. Geophys. Prospect., 69(1):1–9, 2011.

[2] G. S. Avila and J. B. Keller. The high-frequency asymptotic field of a point-source
in an inhomogeneous medium. Comm. Pure Appl. Math., 16:363–381, 1963.

[3] V. M. Babich. The short wave asymptotic form of the solution for the problem of
a point source in an inhomogeneous medium. USSR Computational Mathematics
and Mathematical Physics, 5(5):247–251, 1965.

[4] I. M. Babus̆ka and S. A. Sauter. Is the pollution effect of the FEM avoidable for the
Helmholtz equation considering high wave numbers? SIAM Review, 42:451–484,
2000.

[5] A. Bayliss, C. I. Goldstein, and E. Turkel. On accuracy conditions for the numer-
ical computation of waves. J. Comput. Phys., 59:396–404, 1985.

[6] J. D. Benamou. An introduction to Eulerian geometrical optics (1992 - 2002). J.
Sci. Comp., 19:63–93, 2003.

[7] J.-D. Benamou, O. Lafitte, R. Sentis, and I. Solliec. A geometrical optics-based
numerical method for high frequency electromagnetic fields computations near fold
caustics. Part I. Journal of Computational and Applied Mathematics, 156(1):93 –
125, 2003.

[8] J.-D. Benamou, O. Lafitte, R. Sentis, and I. Solliec. A geometrical optics-based
numerical method for high frequency electromagnetic fields computations near fold
caustics. Part II. Journal of Computational and Applied Mathematics, 167(1):91–
134, 2004.

42



[9] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Second edition, Dover, New
York, 2001.

[10] R. Burridge. Asymptotic evaluation of integrals related to time-dependent fields
near caustics. SIAM J. Appl. Math., 55:390–409, 1995.

[11] E. Candes, L. Demanet, and L. Ying. A fast butterfly algorithm for the computa-
tion of Fourier integral operators. SIAM Multiscale Model. Simul., 7:1727–1750,
2009.

[12] V. Cerveny, M. Popov, and I. Psencik. Computation of wave fields in inhomo-
geneous media-Gaussian beam approach. Geophys. J. R. Astr. Soc., 70:109–128,
1982.

[13] R. Courant and D. Hilbert. Methods of Mathematical Physics, Volume II. Inter-
science Publishers, New York, 1964.

[14] L. Demanet, M. Ferrara, N. Maxwell, J. Poulson, and L. Ying. A butterfly al-
gorithm for synthetic aperture radar imaging. SIAM J. Imaging Sci., 5:203–243,
2012.

[15] B. Engquist and O. Runborg. Computational high frequency wave propagation.
Acta Numerica, 12:181–266, 2003.

[16] B. Engquist and H.-K. Zhao. An approximate separability of Green’s functions
for high frequency Helmholtz equations. submitted, xx:xxx–xxx, 2014.

[17] S. Fomel, S. Luo, and H. K. Zhao. Fast sweeping method for the factored eikonal
equation. J. Comput. Phys., 228:6440–6455, 2009.

[18] J. Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential Equa-
tions. Yale University Press; (reprinted Dover Publications, New York 1952),
1923.

[19] G. S. Jiang and D. Peng. Weighted ENO schemes for Hamilton-Jacobi equations.
SIAM J. Sci. Comput., 21:2126–2143, 2000.

[20] G. S. Jiang and C. W. Shu. Efficient implementation of weighted ENO schemes.
J. Comput. Phys., 126:202–228, 1996.

[21] C. Y. Kao, S. J. Osher, and J. Qian. Lax-Friedrichs sweeping schemes for static
Hamilton-Jacobi equations. J. Comput. Phys., 196:367–391, 2004.

[22] S. Leung and J. Qian. Eulerian Gaussian beam methods for Schrödinger equations
in the semi-classical regime. J. Comput. Phys., 228:2951–2977, 2009.

[23] S. Leung and J. Qian. The backward phase flow and FBI-transform-based Eulerian
Gaussian beams for the Schrödinger equation. J. Comput. Phys., 229:8888–8917,
2010.

[24] S. Leung, J. Qian, and R. Burridge. Eulerian Gaussian beams for high frequency
wave propagation. Geophysics, 72:SM61–SM76, 2007.

[25] X. D. Liu, S. J. Osher, and T. Chan. Weighted Essentially NonOscillatory schemes.
J. Comput. Phys., 115:200–212, 1994.

43



[26] D. Ludwig. Uniform asymptotic expansions at a caustic. Comm. Pure Appl.
Math., 19:215–250, 1966.

[27] S. Luo and J. Qian. Factored singularities and high-order Lax-Friedrichs sweeping
schemes for point-source traveltimes and amplitudes. J. Comput. Phys., 230:4742–
4755, 2011.

[28] S. Luo and J. Qian. Fast sweeping methods for factored anisotropic eikonal equa-
tions: multiplicative and additive factors. J. Sci. Comput., 52:360–382, 2012.

[29] S. Luo, J. Qian, and R. Burridge. Fast Huygens Sweeping methods for Helmholtz
equations in inhomogeneous media in the high frequency regime. J. Comput.
Phys., 270:378–401, 2014.

[30] S. Luo, J. Qian, and R. Burridge. High-order factorization based high-order hybrid
fast sweeping methods for point-source eikonal equations. SIAM J. Numer. Analy.,
52:23–44, 2014.

[31] S. Luo, J. Qian, and H.-K. Zhao. Higher-order schemes for 3-D traveltimes and
amplitudes. Geophysics, 77:T47–T56, 2012.

[32] V. P. Maslov and M. V. Fedoriuk. Semi-classical approximation in quantum me-
chanics. D. Reidel Publishing Company, 1981.

[33] E. Michielssen and A. Boag. A multilevel matrix decomposition algorithm for
analysing scattering from large structures. IEEE Trans. Antennas Propagat.,
44:1086–1093, 1996.

[34] J. Milnor. Morse Theory, Annals of Math., No. 51. Princeton University Press,
1973.

[35] M. Motamed and O. Runborg. Taylor expansion and discretization errors in
Gaussian beam superposition. Wave Motion, 47:421–439, 2010.

[36] M. O’Neil and V. Rokhlin. A new class of analysis-based fast transforms. 2007.

[37] S. J. Osher and C. W. Shu. High-order Essentially NonOscillatory schemes for
Hamilton-Jacobi equations. SIAM J. Numer. Analy., 28:907–922, 1991.

[38] A. Pica. Fast and accurate finite-difference solutions of the 3D eikonal equation
parametrized in celerity, in ann. internat. mtg. Soc. of Expl. Geophysc., pages
1774–1777, 1997.

[39] M. M. Popov. A new method of computation of wave fields using Gaussian beams.
Wave Motion, 4:85–97, 1982.

[40] J. Qian, W. Lu, L. Yuan, S. Luo, and R. Burridge. Eulerian geometrical optics
and fast Huygens sweeping methods for three-dimensional time-harmonic high-
frequency Maxwell’s equations in inhomogeneous meida. xxx, submitted:xxx–xxx,
2015.

[41] J. Qian, S. Luo, and R. Burridge. Fast Huygens sweeping methods for multi-
arrival Green’s functions of Helmholtz equations in the high frequency regime.
Geophysics, 80:T91–T90, 2015.

44



[42] J. Qian and W. W. Symes. An adaptive finite difference method for traveltime
and amplitude. Geophysics, 67:167–176, 2002.

[43] J. Qian and L. Ying. Fast Gaussian wavepacket transforms and Gaussian beams
for the Schrödinger equation. J. Comput. Phys., 229:7848–7873, 2010.

[44] J. Qian and L. Ying. Fast multiscale Gaussian wavepacket transforms and mul-
tiscale Gaussian beams for the wave equation. SIAM J. Multiscale Modeling and
Simulation, 8:1803–1837, 2010.

[45] J. Qian, L. Yuan, Y. Liu, S. Luo, and R. Burridge. Babich’s expansion and
high-order Eulerian asymptotics for point-source Helmholtz equations. xxx,
submitted:xxx–xxx, 2014.

[46] J. Ralston. Gaussian beams and the propagation of singularities. Studies in partial
differential equations. MAA Studies in Mathematics, 23. Edited by W. Littman.
pp.206-248., 1983.

[47] S. Serna and J. Qian. A stopping criterion for higher-order sweeping schemes for
static Hamilton-Jacobi equations. J. Comput. Math., 28:552–568, 2010.

[48] W. W. Symes and J. Qian. A slowness matching Eulerian method for multivalued
solutions of eikonal equations. J. Sci. Comp., 19:501–526, 2003.

[49] N. Tanushev, B. Engquist, and R. Tsai. Gaussian beam decomposition of high
frequency wave fields. J. Comput. Phys., 228:8856–8871, 2009.

[50] N. Tanushev, J. Qian, and J. Ralston. Mountain waves and Gaussian beams.
SIAM J. Multiscale Modeling and Simulation, 6:688–709, 2007.

[51] A. Toflove and S. C. Huganess. Computational Electrodynamics: The Finite Dif-
ference Time Domain Method, Second Editions. Artech House, Norwood, MA,
2000.

[52] R. Tsai, L.-T. Cheng, S. J. Osher, and H. K. Zhao. Fast sweeping method for a
class of Hamilton-Jacobi equations. SIAM J. Numer. Analy., 41:673–694, 2003.

[53] J. E. Vidale and H. Houston. Rapid calculation of seismic amplitudes. Geophysics,
55:1504–1507, 1990.

[54] B. S. White. The stochastic caustic. SIAM J. Appl. Math., 44:127–149, 1984.

[55] B. S. White, A. Norris, A. Bayliss, and R. Burridge. Some remarks on the Gaussian
beam summation method. Geophys. J. R. Astr. Soc., 89:579–636, 1987.

[56] L. Ying. Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput.,
31:1678–1694, 2009.

[57] L. Zhang, J. W. Rector, and G. M. Hoversten. Eikonal solver in the celerity
domain. Geophysical Journal International, 162:1–8, 2005.

[58] Y. T. Zhang, H. K. Zhao, and J. Qian. High order fast sweeping methods for
static Hamilton-Jacobi equations. J. Sci. Comp., 29:25–56, 2006.

[59] H. K. Zhao. Fast sweeping method for eikonal equations. Math. Comp., 74:603–
627, 2005.

45


