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We design a class of Weighted Power-ENO (Essentially Non-Oscillatory) schemes
to approximate the viscosity solutions of Hamilton-Jacobi (HJ) equations. The
essential idea of the Power-ENO scheme is to use a class of extended limiters
to replace the minmod type limiters in the classical third-order ENO schemes
so as to improve resolution near kinks where the solution has discontinuous
gradients. Then a weighting strategy based on appropriate smoothness indica-
tors lifts the scheme to be fifth-order accurate. In particular, numerical exam-
ples indicate that the Weighted Power3ENO5 works for general HJ equations
while the Weighted Power∞ENO5 works for non-linear convex HJ equations.
Numerical experiments also demonstrate the accuracy and the robustness of
the new schemes.

KEY WORDS: Hamilton-Jacobi; ENO; Weighted Power-ENO; level set; mono-
tone schemes.

1. INTRODUCTION

We consider the initial value problem for the Hamilton-Jacobi equation

φt +H(x,φ,∇φ)=0, φ(x,0)=φ0(x), x ∈Rd, t >0, (1.1)

where H is a non-decreasing function of φ.
Such Hamilton-Jacobi (HJ) equations appear in many applications,

for example, geometrical optics, optimal control, differential games, mate-
rial sciences and calculus of variations. Therefore, it is essential to develop
efficient, high-order accurate numerical methods to solve these equations.
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Theoretically, the generalized weak solution, the so-called viscosity
solution, exists, is unique and depends on the initial data continuously [8].
Computationally, such viscosity solutions can be approximated by mono-
tone schemes [5, 9, 24]. Since monotone schemes are at most first order
accurate, a lot of efforts are devoted to designing efficient, highly accurate
numerical schemes for such equations (see [1–4, 6, 10, 14, 17, 19–21, 26]
and references therein). In this paper, we design a class of new schemes for
HJ equations based on the Weighted Power-ENO (“Essentially Non-Oscil-
latory”) reconstruction, which is formally fifth-order accurate.

In general, the high-order schemes in the ENO family for HJ equa-
tions consist of three ingredients: a monotone numerical Hamiltonian, a
high-order ENO type reconstruction and a high-order strong stability pre-
serving Runge-Kutta (SSP-RK) time stepping procedure [14, 20]; these
are so-called ENO schemes. Because monotone numerical Hamiltonians
[20] and high-order SSP-RK time discretization methods [11, 25] are well
developed, the main issue is how to build high-order ENO type recon-
structions. The ENO schemes were originally designed for hyperbolic con-
servation laws by Harten et al. [13]. Later the schemes were adapted to
solve HJ equations by Osher and Sethian [19] and Osher and Shu [20].
Liu et al. [18] proposed the Weighted ENO schemes to overcome some
shortcomings of ENO schemes, such as poor parallelizability. Afterwards,
Jiang and Shu [15] realized that the weighting strategy may yield other
advantages besides parallelizability, such as higher order accuracy and sta-
bility. Moreover, Jiang and Peng [14] extended such strategy to design
WENO schemes for HJ equations. Since then, such a weighting strategy
has been used successfully in designing high-order schemes for HJ equa-
tions: Weighted central ENO schemes [3], Hermite WENO schemes [21],
high-order WENO schemes on unstructured meshes [26] which in turn
used the numerical Hamiltonian proposed in [1]. In this work we pro-
pose yet another class of weighted schemes for HJ equations, the so-called
Weighted Power-ENO schemes.

The Weighted Power-ENO schemes were originally developed by Ser-
na and Marquina [22] for hyperbolic conservation laws. The essential idea
of the Power-ENO reconstruction is to apply a class of extended limit-
ers to second-order differences in the classical third-order ENO recon-
struction, so that the reconstruction is able to retain more information of
the fine scales of the solution and improve resolution near discontinuities
of the solution. A weighting strategy based on appropriate smoothness
indicators [15] is then used to improve the reconstruction to be fifth-
order accurate; this is the so-called Weighted Power-ENO reconstruction.
Here we adapt such Weighted Power-ENO reconstruction to HJ equa-
tions; the resulting scheme is the so-called Weighted Power3ENO5 scheme
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(WPower3ENO5 in the sequel.) In addition, we are able to design a new
Weighted Power-ENO reconstruction specifically for HJ equations with
convex Hamiltonians, and it is based on the so-called arithmetic mean
type limiter; the resulting scheme is the so-called Weighted Power∞ENO5
scheme (WPower∞ENO5 in the sequel.) In comparison to the standard
fifth-order WENO scheme, the resulting schemes enjoy similar overhead
and have much better capability of resolving viscosity solutions near kinks
where the solution has discontinuous gradients as illustrated in the numer-
ical examples.

The paper is organized as follows. In Sec. 2, we derive the Weighted
Power-ENO reconstructions and present some standard monotone numer-
ical Hamiltonians; together with a SSP-RK time stepping method [11, 23,
25], the above two ingredients complete the construction of new Weighted
Power-ENO type schemes. In Sec. 3, we give extensive numerical exam-
ples to demonstrate the accuracy and the resolution capability of the new
schemes. Concluding remarks are provided in Sec. 4.

2. NEW NUMERICAL SCHEMES

2.1. Weighted Power-ENO Reconstructions

The classical third-order ENO reconstruction on a uniform mesh uses
an adaptive procedure to choose one three-point stencil among three such
candidates. Since such a three-point stencil uniquely determines a parab-
ola, the ENO strategy boils down to using only one among three available
parabolas.

The Power-ENO is designed by incorporating a class of new limiters
into the classical third-order ENO reconstruction. Namely, the minmod-
type limiter in the classical ENO reconstruction is replaced by a class of
weaker limiters, the so-called powerp limiters; then the new limiters are
applied to neighboring second-order differences so that more information
of fine scales is retained.

As a consequence, a carefully designed convex combination of the
three candidate parabolas gives rise to the Weighted Power-ENO recon-
struction; the resulting Weighted Power-ENO scheme was applied to the
hyperbolic conservation laws [22] and demonstrated to have better capa-
bility to resolve discontinuities of solutions.

Encouraged by the success in hyperbolic conservation laws, we adapt
the Weighted Power-ENO reconstruction to tackle HJ equations so as to
improve the resolution near kinks where the gradient of the solution is
discontinuous. We start with the powerp limiters.
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Let x >0 and y >0 be positive numbers. For a natural number p, the
power-p mean, powerp(x, y), was defined in [22]:

powerp(x, y)= (x +y)

2

(
1−

∣∣∣∣x −y

x +y

∣∣∣∣
p)

. (2.1)

It is easy to verify that the following inequalities hold for any x > 0
and y >0:

min(x, y)�powerp(x, y)�powerq(x, y)� x +y

2

when 0<p <q. Moreover,

lim
p→∞ powerp(x, y)= x +y

2
:=power∞(x, y), (2.2)

which is an arithmetic mean.
Given point values φ(xj ), j = 0,1,2, . . . , of a (possibly piecewise

smooth) function at equally spaced nodes xj , where xj+1 = xj + ∆x, we
construct higher order approximations to first-order forward and back-
ward divided differences at a generic node xj by using the powerp limiters.
To do that, we first compute forward divided differences,

z
j+ 1

2
= ∆+φj

∆x
= φj+1 −φj

∆x
(2.3)

from discrete point values, φ=φ(xj ), located at nodes xj . Notice that first-
order approximations of the forward divided difference u+ and the back-
ward divided difference u− at node xj are u+

j = u+(xj ) = z
j+ 1

2
and u−

j =
u−(xj )= z

j− 1
2
, respectively.

Next we introduce the following notations for the differences:

dj = z
j+ 1

2
− z

j− 1
2
, (2.4)

d
j+ 1

2
= dj +dj+1

2
, (2.5)

D
j+ 1

2
=dj+1 −dj . (2.6)

The Weighted Power-ENO reconstruction is based on a convex com-
bination of the following three candidate parabolas associated with each
interval Ij = [xj , xj+1]:

pP
j (x) = z

j+ 1
2
− Pj

24
+

x −x
j+ 1

2

∆x

[
dj + Pj

2
+ Pj

2

(
x −x

j+ 1
2

∆x

)]
, (2.7)
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p
j+ 1

2
(x) = z

j+ 1
2
−

D
j+ 1

2

24
+

x −x
j+ 1

2

∆x

[
d
j+ 1

2
+

D
j+ 1

2

2

(
x −x

j+ 1
2

∆x

)]
,(2.8)

pP
j+1(x) = z

j+ 1
2
− Pj+1

24
+

x −x
j+ 1

2

∆x

[
dj+1 − Pj+1

2
+ Pj+1

2

(
x −x

j+ 1
2

∆x

)]
,

(2.9)

where

Pj :=powermodp(D
j− 1

2
,D

j+ 1
2
)

and

powermodp(x, y)= (sign(x)+ sign(y))

2
powerp(|x|, |y|).

In particular, at x =xj we have

pP
j (xj ) = z

j+ 1
2
− 1

2
dj − 1

6
Pj , (2.10)

p
j+ 1

2
(xj ) = z

j+ 1
2
− 1

2
d
j+ 1

2
− 1

6
D

j+ 1
2
, (2.11)

pP
j+1(xj ) = z

j+ 1
2
− 1

2
dj+1 + 1

3
Pj+1. (2.12)

To obtain an optimal accuracy for u+(xj ) at the left interface of Ij

we use the convex combination,

u+(xj )=w0 · pP
j (xj )+w1 · p

j+ 1
2
(xj )+w2 · pP

j+1(xj ), (2.13)

where

wk = αk

α0 +α1 +α2
(2.14)

and

αk = Ck

(ε + ISk)2
(2.15)

for k = 0,1,2. Here C0 = 0.6, C1 = 0.2, and C2 = 0.2 are the optimal
weights, and the smoothness indicators are

IS0 = 13
12

(
Pj

)2 + 1
4

(
2z

j+ 1
2
−2z

j− 1
2
+Pj

)2
, (2.16)
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IS1 = 13
12

(
z
j− 1

2
−2z

j+ 1
2
+ z

j+ 3
2

)2 + 1
4

(
z
j− 1

2
− z

j+ 3
2

)2
, (2.17)

IS2 = 13
12

(
Pj+1

)2 + 1
4

(
2z

j+ 3
2
−2z

j+ 1
2
−Pj+1

)2
, (2.18)

where we have used the L2-norm of the derivatives of the corresponding
polynomials to describe the smoothness so that the optimal order of accu-
racy can be achieved [15].

A similar formula for u−(xj ) is obtained from the polynomials asso-
ciated with Ij−1,

u−(xj )=w0 · pP
j−1(xj )+w1 · p

j− 1
2
(xj )+w2 · pP

j (xj ) (2.19)

with C0 = 0.2, C1 = 0.2, and C2 = 0.6 taken as the optimal weights in the
formulas (2.14) and (2.15). Here the three parabolas evaluated at the right
interface of Ij−1 are,

pP
j−1(xj ) = z

j− 1
2
+ 1

2
dj−1 + 1

3
Pj−1, (2.20)

p
j− 1

2
(xj ) = z

j− 1
2
+ 1

2
d
j− 1

2
+ 1

12
D

j− 1
2
, (2.21)

pP
j (xj ) = z

j− 1
2
+ 1

2
dj − 1

6
Pj . (2.22)

The resulting reconstruction is a fifth-order accurate Weighted Power-
ENO reconstruction for p � 3 as shown in [22]. The optimal value of p

to get fifth-order accuracy for the approximation of hyperbolic conserva-
tion laws is p = 3 as shown in [22]. In the following by the Weighted
Power3ENO5 scheme we mean p =3.

In addition, we are able to design a new scheme specifically for HJ
equations with convex Hamiltonians. To this end we use the weakest pos-
sible limiter in the power limiter class, that is, the Power∞ mean, to
define the Weighted Power∞ ENO5 reconstruction. In this case, simplified
expressions for the three parabolas in terms of zj ’s are obtained at the
right interface of Ij−1:

pP
j−1(xj ) = 1

6
z
j− 5

2
− 2

3
z
j− 3

2
+ 4

3
z
j− 1

2
+ 1

6
z
j+ 1

2
,

p
j− 1

2
(xj ) = −1

6
z
j− 3

2
+ 5

6
z
j− 1

2
+ 1

3
z
j+ 1

2
,

pP
j (xj ) = − 1

12
z
j− 3

2
+ 7

12
z
j− 1

2
+ 7

12
z
j+ 1

2
− 1

12
z
j+ 3

2
.
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Therefore, the corresponding smoothness indicators are,

IS0 = 13
48

(
z
j−5

2
− z

j− 3
2
− z

j− 1
2
+ z

j+ 1
2

)2

+1
4

(
1
2
z
j− 5

2
− 5

2
z
j− 3

2
+ 3

2
z
j− 1

2
+ 1

2
z
j+ 1

2

)2

,

IS1 = 13
12

(
z
j− 1

2
−2z

j+ 1
2
+ z

j+ 3
2

)2 + 1
4

(
z
j− 1

2
− z

j+ 3
2

)2
,

IS2 = 13
48

(
z
j− 3

2
− z

j− 1
2
− z

j+ 1
2
+ z

j+ 3
2

)2

+1
4

(
1
2
z
j− 3

2
− 5

2
z
j− 1

2
+ 3

2
z
j+ 1

2
+ 1

2
z
j+ 3

2

)2

.

Accordingly we can compute u−(xj ). Similarly we can derive the formula
for computing u+(xj ).

Remark 1. The Weighted Power3ENO5 reconstruction proposed in
[22] is fifth-order accurate and is suitable for the approximation of hyper-
bolic conservation laws, since it satisfies the “local total variation bounded
(LTVB)” property, as shown in [22]. This property is important for a
reconstruction procedure to approximate piecewise smooth functions with
jump discontinuities.

Remark 2. A limiter is designed to ignore the non-smooth infor-
mation of solutions so that the total variation at jump discontinuities is
diminished. However, when the solution is smooth in some region, the lim-
iter also ignores smooth information from neighboring cells such that the
loss of accuracy occurs in such smooth regions. Such a drawback is shared
by both the WENO5 reconstruction and the WPower3ENO5 reconstruc-
tion since the coefficients of the convex combination for the three different
parabolas may change abruptly, and the resulting reconstruction degener-
ates to third-order accuracy.

Remark 3. From the one dimensional HJ equation

φt +H(φx) = 0, (2.23)

φ(x,0) = φ0(x), (2.24)
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where H is convex, we can derive a corresponding hyperbolic conservation law
by differentiating the equation once with respect to the spatial variable x,

ut +Hx(u) = 0, (2.25)

u(x,0) = φ′
0(x), (2.26)

where u = ∂
∂x

φ. Then, by Corrias et al. [7] and Jin and Xin [16] φ is
the viscosity solution of the convex HJ equation (2.23), (2.24) if and
only if u = ∂

∂x
φ is the entropy solution of the convex hyperbolic con-

servation law (2.25), (2.26). According to our computational experience,
the Weighted Power∞ENO5 works for non-linear convex scalar hyper-
bolic conservation laws, but it has overshoots and undershoots around
shocks since it lacks the LTVB property [22] and is overcompressive. How-
ever, for non-linear convex HJ equations we have found that the Weighted
Power∞ENO5 reconstruction works very well in practice as shown in the
examples. Although a rigorous justification for this is still lacking, a possi-
ble explanation is that the overshoots and undershoots at shocks occurred
in the entropy solution for a convex hyperbolic conservation law will be
averaged once integrated, and such an integration step yields exactly the
viscosity solution for the corresponding convex HJ equation (see Exam-
ple 1 in Sec. 3). On the other hand, when the Hamiltonian is non-convex,
the over-compressive Weighted Power∞ENO5 reconstruction may give rise
to numerical approximations that converge to other generalized solutions
rather than the viscosity solution.

Remark 4. Because the reconstruction procedure for multi-dimensional
HJ equations is done dimension-by-dimension, we can apply the above
procedure in each direction to obtain high-order approximations to spatial
derivatives to be used in numerical Hamiltonians.

2.2. Monotone Numerical Hamiltonians

Since most of our numerical examples are two-dimensional, in this
section, we restrict our discussion to the two-dimensional case of Eq. (1.1):

φt +H(φx,φy)=0, φ(x, y,0)=φ0(x, y), t >0. (2.27)

The more general case can be treated similarly.
Let {(xj , yk, t

n)} be a uniform discretization of R2 × [0, T ] with mesh
sizes ∆x, ∆y and ∆t . φn

j,k denotes a numerical approximation to the vis-
cosity solution of Eq. (2.27) at a generic point (xj , yk, t

n),

φ(xj , yk, t
n)=φ(j∆x, k∆y,n∆t). (2.28)
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We consider a first-order forward Euler scheme,

φn+1
j,k =φn

j,k −∆t g
(∆x−φn

j,k

∆x
,
∆x+φn

j,k

∆x
,
∆

y
−φn

j,k

∆y
,
∆

y
+φn

j,k

∆y

)
, (2.29)

where g is a Lipschitz continuous, consistent and monotone numerical
Hamiltonian. Here consistency of g means that g(u,u, v, v)=H(u, v), and
monotonicity means that g is non-increasing in its second and fourth
arguments and non-decreasing in the other two. In addition, we used stan-
dard notations to denote forward and backward differences:

∆x
−φn

j,k =φn
j,k −φn

j−1,k, ∆x
+φn

j,k =φn
j+1,k −φn

j,k; (2.30)

∆
y
−φn

j,k =φn
j,k −φn

j,k−1, ∆
y
+φn

j,k =φn
j,k+1 −φn

j,k . (2.31)

We may choose different monotone numerical Hamiltonians as the
basis for first-order schemes [19, 20]. The following monotone numerical
Hamiltonians are used in the numerical examples shown below.

The Lax-Friedrichs numerical Hamiltonian is [20]:

gLF (u−, u+, v−, v+)=H
(u− +u+

2
,
v− +v+

2

)
−1

2
α1(u

+ −u−)−1
2
α2(v

+−v−),

where, for a � u � b and c � v � d, α1 = max |H1(u, v)| and α2 =
max|H2(u, v)|, Hj(u, v) being the partial derivative of H with respect to its
j th argument, u± and v± being first-order forward and backward divided
differences of φ in x and y directions, respectively.

The Godunov numerical Hamiltonian is [20]:

gG1(u−, u+, v−, v+)= extv∈I (v−,v+) extv∈I (u−,u+) H(u, v),

where I (a, b)= [min(a, b),max(a, b)], and

extu∈I (a,b) =
⎧⎨
⎩

mina�u�b a �b,

minb�u�a a >b.

When H(u, v)=h(u2, v2), such that h1 ·h2 >0, where hj is the partial
derivative of h with respect to its j th argument, we use the Osher–Sethian
numerical Hamiltonian [19]:

gG2(u−, u+, v−, v+)=
⎧⎨
⎩

h([max((u−)+, (u+)−)]2, [max((v−)+, (v+)−)]2) h1 �0,

h([max((u−)−, (u+)+)]2, [max((v−)−, (v+)+)]2) otherwise,

where (a)+ =max(a,0) and (a)− =−min(a,0).
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In summary, to obtain higher order finite difference schemes for
HJ equations, the strategy is to first approximate spatial derivatives u±
and v± with higher order finite differences, such as WENO5, Weighted
Power3ENO5 or Weighted Power∞ENO5 reconstructions, then insert them
into monotone Hamiltonians, and finally use higher order SSP-RK time
stepping to march in time [23, 25]. This completes our construction for
Weighted Power-ENO schemes.

3. NUMERICAL EXPERIMENTS

3.1. Example 1

Given the hyperbolic conservation law (CL),

ut +
(

u2

2

)
x

=0 (3.1)

with the initial data,

u(x,0)=
⎧⎨
⎩

−1, x <0;
1, 0�x �4;

−1, x >4,

we can obtain a HJ equation

φt + φ2
x

2
=0 (3.2)

with the initial data

φ(x,0)=
⎧⎨
⎩

−x −5, x <0;
x −5, 0�x �4;
−x +3, x >4

by introducing φ(x, t)= ∫ x

−5 u(s, t)ds.
We compute the approximate solutions at t = 4 for the HJ equation

using two procedures:

(1) integrating the HJ equation directly by the Weighted Power∞
ENO5 scheme;

(2) computing the primitive of the numerical solution of the CL
with the constant of integration φ(−5,4)=−2, where the numer-
ical solution is computed by the Weighted Power∞ENO5: if un

j is
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Fig. 1. Left: numerical solution by the WPower∞ENO5 for the conservation law. Right:
numerical solution by the WPower∞ENO5 for the HJ equation (‘+’) versus integration of
numerical solution by the WPower∞ENO5 for the CL equation (‘o’).

the solution to the CL, then

φn
j =−2+ h

2
u1 +

j−1∑
i=2

∆x ·ui + h

2
uj . (3.3)

Figure 1 illustrates the results. The left sub-figure shows the approxi-
mation to the CL by the WPower∞ENO5, in which we observe the over-
shoot and the undershoot due to the over-compressive property of the
Weighted Power∞ENO5 reconstruction around discontinuities. The right
sub-figure displays the solutions obtained by the above two procedures,
and they match with each other very nicely. In particular, we note that the
numerical integration procedures cancel out the over-compressive effect on
discontinuities.

Next, we apply the Weighted Power3ENO5 scheme and the Weighted
Power∞ENO5 scheme to a set of model problems. Along the way we com-
pare our schemes with the standard WENO5 scheme to justify our numer-
ical results.

3.2. Example 2

(One dimension). We consider

φt +H(φx) = 0, −1�x �1, t >0, (3.4)

φ(x,0) = − cos(πx), −1�x �1 (3.5)

with a convex Hamiltonian, H(u) = (u+1)2

2 , and a non-convex Hamilto-
nian, H(u)=− cos(u+1).
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We solve both initial value problems up to two different times t = t1 =
0.05 and t = t2 = 0.16. The solution is smooth up to t = t1, and its deriv-
ative is discontinuous at t = t2 in both cases. For the convex case, we use
WENO5, Weighted Power3ENO5, and Weighted Power∞ENO5 schemes;
for the non-convex case, we use WENO5 and Weighted Power3ENO5
schemes only. The numerical Hamiltonian is chosen to be gG1 .

In Tables I–IV, we display the L∞ and L1 errors in different cases. At
t = t2 the errors are computed at a distance 0.1 away from discontinuities
in the derivative of the solution. For time stepping in the three schemes,
we have used the third-order SSP-RK scheme [20] by taking ∆t ≈∆x5/3 to
realize fifth-order in time.

For the convex case, at t1 the smallest L∞-error is reached by the
Weighted Power∞ENO5 scheme since the local truncation error in its
reconstruction is the smallest among all Weighted Power-ENO reconstruc-
tions [22]; at t2 this scheme has the largest L∞-errors (due to the presence
of discontinuities) among the three schemes. We notice that the fifth-order
accuracy in smooth regions is achieved in all the cases.

3.3. Example 3

(Two dimensions). We solve

φt +H(φx,φy)=0, −2�x, y �2, t >0, (3.6)

φ(x,0)=− cos π
(x +y

2

)
, −2�x, y �2 (3.7)

with a convex Hamiltonian, H(u)= (u+v+1)2

2 . We compute the solution up
to t =0.05 by the three schemes with the numerical Hamiltonian being gG1 .

Table I. H(u)= (u+1)2

2 at t =0.05

Scheme N L∞ error L∞ order L1 error L1 order

40 0.16E−04 – 0.50E−04 –
WENO5-GODUNOV 80 0.76E−06 4.45 0.21E−05 4.59

160 0.30E−07 4.66 0.88E−07 4.55
40 0.56E−04 – 0.76E−04 –

WPower3ENO5-GODUNOV 80 0.20E−05 4.81 0.29E−05 4.70
160 0.73E−07 4.77 0.11E−06 4.75
40 0.53E−05 – 0.15E−04 –

WPower∞ ENO5-GODUNOV 80 0.20E−06 4.71 0.60E−06 4.61
160 0.96E−08 4.39 0.25E−07 4.63
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Table II. H(u)= (u+1)2

2 at t =0.16

Scheme N L∞ error L∞ order L1 error L1 order

40 0.31E−03 – 0.38E−03 –
WENO5-GODUNOV 80 0.86E−05 5.17 0.13E−04 4.87

160 0.14E−06 5.87 0.26E−06 5.60
320 0.47E−08 4.96 0.69E−08 5.28
40 0.17E−03 – 0.37E−03 –

WPower3ENO5-GODUNOV 80 0.13E−04 3.68 0.25E−04 3.88
160 0.21E−06 6.04 0.46E−06 5.76
320 0.22E−08 6.55 0.61E−08 6.24
40 0.25E−02 – 0.50E−02 –

WPower∞ENO5-GODUNOV 80 0.44E−03 2.52 0.52E−03 3.26
160 0.24E−04 4.20 0.24E−04 4.41
320 0.42E−06 5.86 0.43E−06 5.84

Table III. H(u)=− cos(u+1) at t =0.05

Scheme N L∞ error L∞ order L1 error L1 order

40 0.47E−04 – 0.13E−03 –
WENO5-GODUNOV 80 0.31E−05 3.89 0.65E−05 4.28

160 0.14E−06 4.52 0.27E−06 4.60
40 0.67E−04 – 0.15E−03 –

WPower3ENO5-GODUNOV 80 0.84E−05 3.05 0.13E−04 3.48
160 0.73E−06 3.53 0.10E−05 3.73

Table IV. H(u)=− cos(u+1) at t =0.16

Scheme N L∞ error L∞ order L1 error L1 order

40 0.16E−03 – 0.31E−03 –
WENO5-GODUNOV 80 0.15E−04 3.41 0.31E−04 3.29

160 0.71E−06 4.43 0.12E−05 4.76
320 0.21E−07 5.07 0.35E−07 5.04
40 0.12E−03 – 0.28E−03 –

WPower3ENO5-GODUNOV 80 0.11E−04 3.43 0.19E−04 3.88
160 0.12E−05 3.13 0.13E−05 3.89
320 0.22E−07 5.78 0.32E−07 5.33
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Fig. 2. Top left, WENO5. Top right, WPower3ENO5. Bottom, WPower∞ENO5. Mesh:
80×80.

Figure 2 shows that the computed solutions by the three schemes on
80×80 meshes converge to the viscosity solution.

Figure 3 presents the calibration results for some chosen slices of
the two-dimensional solutions on different meshes; in particular, we notice
that the Weighted Power3ENO5 scheme has sharper resolution near kinks
than the classical WENO5 scheme does; in turn, the WPower∞ENO5
scheme has sharper resolution near kinks than the Weighted Power3ENO5
scheme does.

3.4. Example 4

We solve the linear equation

φt +φx = 0, (3.8)

φ(x,0) = f (x −0.5), −1�x �1 (3.9)

with periodic boundary conditions.
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Fig. 3. Comparisons. Left column: WENO5 (‘∗’) and WPower3ENO5 (‘+’). Central col-
umn: WENO5 (‘∗’) and WPower∞ENO5 (‘o’). Right column: Weighted Power3ENO5 (‘+’)
and WPower∞ENO5 (‘o’) with 20, 40, and 80 points.

We choose f (x) to be a primitive of the Harten function which is dis-
continuous [12]:

f (x)=−
(√

3
2

+9
2
+2π

3

)
(x+1)+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 cos
(

3πx2

2

)
−√

3, −1�x�−1
3 ;

3/2+3 cos(2πx), − 1
3 �x �0;

15/2−3 cos(2πx), 0�x � 1
3 ;

(28+4π + cos(3πx))/3+6π(x2 −x), 1
3 �x �1.

The results computed with 100 grid points and CFL=0.6 at times t =
2, 8, 16 and 32 are shown in Fig. 4. We observe that as time increases all
schemes smooth out the corners. However, both Weighted Power3ENO5
and Weighted Power∞ENO5 schemes perform better than the classical
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WENO5 scheme at the kinks in terms of capturing sharp transitions.
Moreover, the plots also indicate that the Weighted Power∞ENO5 scheme
outperforms the other two at those kinks.

3.5. Example 5

We solve a two-dimensional non-convex Riemann problem,

φt + sin(φx +φy)=0, φ(x, y,0)=π(|y|− |x|). (3.10)

We evolve up to time t =1 with a grid of 40×40 points using the WENO
and Weighted Power3ENO5 schemes based on the numerical Hamiltonian
gG1 .

The solutions by the two schemes converge to the viscosity solution
as shown in Fig. 5.

3.6. Example 6

We consider a problem related to optimal control [20]:

φt − (sin y)φx + (sin x + sign(φy))φy − 1
2

sin2y − (1− cosx)=0 (3.11)

with the initial data φ(x, y,0)=0 in the interval [−π,π ]× [−π,π ]. We use
a grid of 40× 40 with periodic boundary conditions.

We compute the solution up to t = 1 by using WENO5, WPower3
ENO5, and WPower∞ENO5 schemes based on the Lax-Friedrichs numer-
ical Hamiltonian and the third-order SSP-RK scheme. We display the
results at t =1 in Fig. 6.

3.7. Example 7

Consider the “level set reinitialization” equation

φt + sign(φ0)
[√

φ2
x +φ2

y −1
]
=0, φ(x, y,0)=φ0(x, y). (3.12)

We solve this equation using WENO5, WPower3ENO5, and WPower∞ENO
5 schemes. We choose φ0 to be the signed distance function to the circle
centered at the origin with radius 1/2; in addition, some perturbation
is added to the signed distance function in radial and angular direc-
tions near the circle. In particular, we use two different initial conditions
with different amounts of perturbation to illustrate the robustness of the
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Fig. 4. Comparisons. Left column: WENO5 (‘∗’) and WPower3ENO5 (‘+’). Central col-
umn: WENO5 (‘∗’) and WPower∞ENO5 (‘o’). Right column: WPower3ENO5 (‘+’) and
WPower∞ENO5 (‘o’) at time 2, 8, 16, and 32 from top to bottom.
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Fig. 5. Left: WENO5. Right: WPower3ENO5.

Fig. 6. Top left, WENO5. Top right, WPower3ENO5. Bottom, WPower∞ENO5.

WPower∞ENO5 scheme. Here,

φ1
0(x, y)=

{
d + δ, |d|� ε,

d, otherwise, (3.13)
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φ2
0(x, y)=

{
d +2δ, |d|� ε,

d, otherwise, (3.14)

where d=
√

x2 +y2 −0.5, θ = tan−1(
y
|x| ), ε =0.2, and δ= ε

16π
sin
(

4πd sin 5θ
ε

)
.

We use φ0√
φ0+(∆x)2

to approximate sign(φ0).

We perform the computation using the Osher–Sethian flux gG2 , which
is simpler than the general one, gG1 , together with the third-order SSP-
RK time stepping for the three schemes. We evolve in time using a grid
of 100×100 points and a CFL number of 0.6.

At different times we compute the mean curvature, K ≡∇ · ∇φ
|∇φ| , of the

level set contours, by using central differences. As a regularization for the
possible zero denominator, we replace ∇φ

|∇φ| with ∇φ√
|∇φ|2+∆x2

.

For the first case corresponding to φ1
0 , the maximum of the mean cur-

vature of the initial data is 43.545925 and the minimum is −33.465937;
for the second case corresponding to φ2

0 , the maximum is 88.5558 and the
minimum −66.4770.

Figure 7 shows the results for the first case. From top to bottom we
display the initial data and the results for steps 16, 64, and 256.

Figure 8 shows the results for the second case. From top to bottom
we display the initial data and the results for steps 128, 512, and 1024.

In both cases there are significant differences in the curvature before
and after the reinitialization. The curvature computed from the solu-
tion by the Weighted Power∞ENO5 scheme is less noisy in both cases
than both WENO5 and Weighted Power3ENO5 schemes; the noise per-
sists in some regions for the latter two schemes. Although the behav-
ior of WENO5 and Weighted Power3ENO5 schemes is similar, the noise
dissipates for the Weighted Power∞ENO5 scheme; we believe that the
non-smooth limiters in the WENO5 and Weighted Power3ENO5 schemes
might cause the persistence of some degree of noise in the curvature, and
the arithmetic mean type limiter in the Weighted Power∞ENO5 scheme
might be responsible for the better behavior of the scheme.

Next, we consider the recovery of a non-smooth distance function.
For this purpose, we choose φ0 to be the signed distance function, dl(x, y),
to the lemniscate,

a4 = [(x −a)2 +y2][(x +a)2 +y2] (3.15)

with a =0.5, plus some perturbation in radial and angular directions near
the curve:

φ3
0(x, y)=

{
dl +3δ, |dl |� ε,

dl, otherwise, (3.16)
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Fig. 7. φ1
0 as the initial condition. Curvatures at steps 0, 16, 64, and 256. Left column:

WENO5. Central column: WPower3ENO5. Right column: Weighted Power∞ENO5.
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Fig. 8. φ2
0 as the initial condition. Curvatures at steps 0, 128, 512 and 1024. Left column:

WENO5. Central column: WPower3ENO5. Right column: Weighted Power∞ENO5.
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Fig. 9. Left: perturbed initial data. Right: converged solution by Weighted Power∞ENO5.

which is defined in [−1,1]× [−1,1] with δ= ε
16π

sin
(

2π d sin 5θ
ε

)
, ε =0.2 and

θ = tan−1
(

y
|x|
)

. Here we compute the signed distance function to the lem-
niscate by evolving through (3.12) to the steady state the following initial
data:

D(x, y)=
√

[(x −a)2 +y2][(x +a)2 +y2]−a2. (3.17)

Let us remark that dl(x, y) has a jump discontinuity in first-order par-
tial derivatives along the y-axis.

We evolve in time using a grid of 200 × 200 and a CFL number of
0.6 for the three schemes. At different times we compute the correspond-
ing mean curvature of φ in the domain excluding small neighborhoods of
the x- and y-axis so as to improve visualization of the noise in contour
lines.

In Fig. 9, we display the initial perturbed data φ3
0 and only the con-

verged solution (to the steady state) by the Weighted Power∞ENO scheme
since there is no distinguishable difference in the steady state solutions by
the three schemes.

Figure 10 shows the contour plots of the curvature. From top to bot-
tom we display the initial data and the results for steps 16, 64, and 256.

We remark that the solutions by the three schemes converge to steady
states very fast and a significant reduction of the noise in the computed
curvatures is achieved in all cases.

Finally, we also remark that we have used the fourth-order SSP-RK
time stepping procedure designed by Spiteri and Ruuth [25] in the compu-
tation; the main advantage of fourth-order SSP-RK is that we can speed
up the computation 50% by doubling the CFL number to achieve the
same accuracy.
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Fig. 10. Curvatures at steps 0, 16, 64, and 256. Left column: WENO5. Central column:
WPower3ENO5. Right column: Weighted Power∞ENO5.
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4. CONCLUSIONS

We have designed a class of Weighted Power-ENO schemes to approx-
imate the viscosity solution of the HJ equations. The essential idea of the
Power-ENO reconstruction is to apply a class of extended limiters to sec-
ond-order differences in the classical third-order ENO reconstruction so
as to improve resolution near discontinuities. Then a weighting strategy
based on appropriate smoothness indicators lifts schemes to be fifth-order
accurate. Numerical experiments have demonstrated the accuracy and the
robustness of the new schemes.
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