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The first-arrival quasi-P wave travel-time field in an anisotropic elastic solid solves
a first-order nonlinear partial differential equation, the gP eikonal equation, which is
a stationary Hamilton—Jacobi equation. The solution ofitr@xial quasi-P eikonal
equation, an evolution Hamilton—Jacobi equation in depth, gives the first-arrival
travel time along downward propagating rays. We devise nonlinear numerical algo-
rithms to compute the paraxial Hamiltonian for quasi-P wave propagation in general
anisotropic media. A second-order essentially nonoscillatory (ENO) Runge—Kutta
scheme solves this paraxial eikonal equation with a point source as an initial condition
in O(N) floating point operations, whefg is the number of grid points. Numerical
experiments using 2-D transversely isotropic models with inclined symmetry axes
demonstrate the accuracy of the algorithms 2001 Academic Press

Key Words:Hamilton—Jacobi; viscosity solution; paraxial eikonal solvers; aniso-
tropic travel time; weighted essentially nonoscillatory scheme (WENO).

1. INTRODUCTION

Travel-time computation plays a central role in many seismic data processing me
ods, such as Kirchhoff depth migration and tomographic velocity analysis. Since seisi
wave propagation is anisotropic in many sedimentary rocks, maximal imaging resolut
requires that travel-time computation honor anisotropy whenever it seriously affects d
kinematics [6, 33, 48]. Among the travel times for various waves in anisotropic med
guasi-compressional (“quasi-P” or “gP”) wave travel times are considered most import
[47, 48].

Based on the asymptotic methods for wave equations and geometrical optics [4, 19],
travel times satisfy so-called eikonal equations, a class of Hamilton—Jacobi equations.
eikonal equation can be solved by the method of characteristics [13], which constrt
the characteristic curves called “rays.” The methods based on the characteristic equa
are called “ray-tracing methods” [5, 32, 44], and they work for limbitropicandanisotropic
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solids. But ray-tracing methods have some drawbacks. The nonuniform distribution
travel-time data from ray-tracing methods gives rise to cumbersome and expensive
terpolations for application in seismic imaging. Therefore, many researchers appee
finite-difference methods to solve the eikonal equation directly on regular Cartesian gri

Finite-difference eikonal solvers compute the approximate first-arrival times directly ol
prespecified grid, involve rather simple data structures, and are easy to code efficiently
38, 40-43, 49, 50]. However, the methods cited describe only finite-difference travel-ti
algorithms for isotropic solids. Extension of these methods to anisotropic wave propa
tion is not entirely straightforward. Qin and Schuster [39] and Eaton [11] extended t
expanding-wavefront scheme developed by &lial. [38] to the anisotropic medium, but
their extensions work only for 2-D cases and have first-order accuracy only.

The finite-difference eikonal solvers cited above depend on the fact that for isotro
media the ray velocity vector, i.e., tlggoup velocity has the same direction as the travel-
time gradient, i.e., thg@hase velocityso that we can use the travel-time gradient as
reliable indicator of energy flow in extrapolating the travel-time field. However, this is r
longer true for anisotropic media [10]. In [36], the authors established a reliable indica
of gP ray velocity direction by formulating a relation between the group velocity directic
and the phase velocity direction; furthermore, they introduced a paraxial eikonal equa
for quasi-P wave travel times, which is a Hamilton—Jacobi equation in evolution fori
The goal of the current paper is to sketch theoretical formulations and present compg
implementation details as well as illustrative applications of finite-difference methods
travel times of first-arriving gP waves in heterogeneous anisotropic solids.

The mathematical foundation of the finite-difference approach to travel-time computat
comes from Lions’ [27] results pertaining to isotropic media: The first-arrival travel time
a particular generalized solution of the eikonal equation—the so-called viscosity solutior
which is computable by finite-difference approximation [8].

The central hypothesis of this paper is that the first-arrival gP travel time is also a ste
generalized solution and therefore computable by suitable finite-difference schemes.
by analogy with the isotropic case, we expect so-called upwind schemes to be particul
successful in solving the paraxial eikonal equation with a point source as an initial c
dition [49]. Dellinger and Symes [9, 10] investigated this possibility but did not give fu
details of a workable algorithm. This paper applies a family of algorithms of the essentic
nonoscillatory (ENO) type [30, 31] and weighted ENO (WENO) schemes [17, 28] to
depth-evolution (“paraxial”) form of the eikonal equation. The computed solution gives
accurate approximate time at every point of a Cartesian grid, which is connected to
source by a first-arriving ray whose velocity vector makes less than a prescribed angle:
the vertical. A similar approach has proven quite successful for isotropic travel-time (e
amplitude) computation for use in prestack modeling, migration, and inversion [12, 34, 4
We expect similar applications for the algorithm presented here. There are other newly
veloped high-resolution schemes for Hamilton—Jacobi equations, such as central-differe
schemes [24, 26], discontinuous Galerkin schemes [1, 15], and finite-volume schemes |
we plan to test these schemes on the eikonal equations in the seismic exploration setti
the near future. For examples of capturing multivalued travel times and caustics by soly
Hamilton—-Jacobi equations, see [2, 3].

We first summarize the eikonal equation for the quasi-P wave, which is the fastest prc
gating body wave; see [34, 36] for details. For down-going qP waves, the eikonal equa
can be transformed to an evolution equation in depth, which we call the paraxial eiko
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equation. Definition of the paraxial eikonal depends on the relation of the aperture limi
tion, i.e., the indicator of the energy flow, defined in terms of the ray velocity vector and t
travel-time gradient. However, due to the complexity of wave propagation in anisotroj
solids, it is difficult to find an explicit form of the paraxial Hamiltonian. Therefore we
have devised some numerical algorithms for computing the paraxial Hamiltonian. Sir
the theoretical results proved in [34, 36] are constructive, the design of the algorithms
sically follows those constructions. A by-product of designing these algorithms is one tl
initializes the travel time in finite-difference schemes. Once the paraxial Hamiltonian is
place, we can use upwind finite-difference schemes to solve the paraxial eikonal equa
We use the ENO-Godunov family of finite-difference schemes [30, 31] to build gP eikor
solvers with arbitrary orders of accuracy, in two or three dimensions. Two-dimensior
transversely isotropic examples illustrate the accuracy of the ENO/WENO schemes as
as the effect of the paraxial (aperture-limiting) assumption. In the Appendix, we preser
new derivation of the first-order Godunov scheme which sheds light on how the upwi
scheme works on the paraxial eikonal equation with a point source.

2. THE PARAXIAL EIKONAL EQUATION FOR QP WAVES

In a seismic exploration setting where velocity structures have mild lateral heterogene
most reflected wave energy propagates down to the target, then up to the surface. Th
the energy in such a wave field propagates along down-going rays; (hg) component
of the ray velocity vector remains positive from source to target. The travel time along st
down-going rays increases with depth and should be the solution of an evolution sys
in depth. This evolution system is the so-called paraxial eikonal equation for anisotro
media, which has been introduced by Qian and Symes [36].

High-frequency approximation to the elastic wave equation leads to the Christoffel eq
tion [29, p. 84],

Z(Zaijkl pi p —31k>Uk=0, 1)

k il

in which &« are the components of the elastic tensor divided by densitys the dis-
placement vector for a particular asymptotic phase; Vrt is the slowness vectot; is
the travel time or phase of the mode, ahd is the Kronecker delta. Note that all these
guantities depend on the spatial coordinate vectox;, X», X3), though in this and some
of the following displays this dependence has been suppressed for the sake of clarity.
equation has nontrivial solutiotd only when

det(zaijkl pip— 5jk> =0. (2)

il

Equation (2) is a sextic polynomial equation and characterizes the slowness surface w
consists of three sheets corresponding to three wave modes. The three wave mode
quasi-P, quasi-SV, and quasi-SH, respectively [29]; see Fig. la.

The quasi-P slowness surface is strictly convex by the following argument [29, p. 9
The slowness surface defined by Eq. (2) is sextic and consists of three sheets correspol
to three different waves. If the inner detached slowness sheet related to quasi-P waves i
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FIG. 1. The slowness surface for typical anisotropic media. (a) A sextic surface of three slowness she
(b) A quartic surface of two slowness sheets.
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wholly strictly convex, a straight line could intersect the inner sheet at four or more poir
and yet make at least four further intersections with the remaining sheets; but any stra
line must intersect the slowness surface at only six points, real or imaginary, because
slowness surface is sextic. By using the convexity of a quasi-P slowness surface, Qian
Symes [36] first introduced a functid# to pick out the part of a quasi-P slowness surface
which corresponds to the down-going rays and then modified the funktitmobtain a
paraxial HamiltoniarH, which is defined in the whole horizontal slowness space.

For convenience, we summarize the main results of [36] in the notation used in this pa
see also [34]. Assuming that the gP slowness surface is

Sx,p) =1, €))

then

e For eachx and horizontal slowness vectapy(, p;), because of the convexity of the
slowness surface, there are at most two choicgs ébr whichp = (p1, p2, ps) solves the
slowness surface equation (3).

e When two distinct solutions exist, only one satisfies (see Fig. 2)

dxs _ 9S(x,p)

— = ——(X, 0,

T oDs x,p) >
which corresponds to the down-going rays.

e The above choice defings as a function ok, p;, p2,

ps = H(X, p1, p2), 4)

whereH is a concave Hamiltonian;

S®=1
2 \\x
TP3 \\\
(_\0 pf | Pmax P1
pl-\_— -
3
p3

FIG. 2. The p; components of outward normals at the two intersections on the convex slowness surface t
opposite signs.
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e Parametrize the horizontal variablep;(p,) by polar coordinates, g, p2) =
(p' cose, p’'sing), wherep’ = /p? + p3. For each planar angtg, the family of planes
with the outward normal (cap, sing, 0) is tangent to the quasi-P slowness surface ¢
exactly one point

(P1(@), P2(9), P3(h)) = (Prax(P) COSP, Proax(®) SiNG, P3(¢h)), (5)

wherep) ., = v/ Pi(®) + p3(¢) (see Fig. 2).
e Choosing the paraxial parametekOA < 1, define functiorH, as

Ha - H(p1, p2). if p' = (1= A)Pax(®): ©)
VPP = H((L = A) Prax(®) COSH, (1 — A) Proay(@) SiNg), else

hereH, remains a concave Hamiltonian.
e Theparaxial eikonal equatioiis

T HA(X ot 31’>. e

%3 Tox)” 9%

Because the largest eigenvalue of the Christoffel matrix ajw pi pi is simple [14,

p. 95], which corresponds to the quasi-P wave mode, it depends smoothly on the slow
vectorp and the elastic tensor. Therefore, the above paraxial Hamiltd#igs continuous.
The concavity of the Hamiltoniail follows from its definition because it is based on a
function defined by the graph corresponding to the down-going part of the slowness surf
see [34] for a rigorous proof.

The paraxial parametex is used to limit the slowness vector, which in turn impose:
an implicit restriction on the group velocity vector thanks to the strict convexity of th
guasi-P slowness surface [34]. Because the mapping from the slowness vector to the ¢
velocity vector is explicit, the above construction leads to an efficient algorithm and t
resultant Hamiltonian has a built-in reliable indicator of the group velocity direction. |
[20], the local convexity of wavefronts in transversely isotropic media is used to extrapol
the travel-time field. However, the framework presented here can be applied to arbitt
anisotropic media to obtain the quasi-P travel-time field.

In some special cases, we can find explicit formsHar, such as in isotropic media and
transversely isotropic media with vertical symmetry axes (VTI); for examples, see [36].
general, since the related eigenvalue problem has no closed-form solution, it is difficul
obtain an explicit form foH .

3. COMPUTING THE PARAXIAL HAMILTONIAN ~ Ha

The slowness surface equation (2) is a sextic polynomial equatign (in= 1, 2, 3),
which characterizes three wave modes; that is, the slowness surface is sextic and consi
three sheets (see Fig. 1). The inner sheetis convex and corresponds to the quasi-P wave
By introducing the planar polar coordinates, we have transformed this sextic polynon
equation into a sextic polynomial equation hand p; for each planar angle; hence,
we now have a two-dimensional problem. In the following development of algorithim
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we concentrate on the numerical construction of a paraxial quasi-P Hamiltonian for tv
dimensional general anisotropic media.
Suppose that the two-dimensional slowness surface is given by

F(p1, p3) =0, (8)

where F is a sextic or quartic polynomial ip; and ps, respectively. The sextic case
corresponds to three linked wave modes, namely, quasi-P and two other wave modes
Fig. 1la. The quartic case corresponds to two coupled wave modes, namely, quasi-P ant
transverse wave mode; see Fig. 1b. Specifically, in this section we assurkestasextic
polynomial inp; and ps; the quartic case can be treated similarly.

For arbitrary pj, there are four possibilities for the roops of the sextic polynomial
equationF (p3, p3) = 0: (1) no real roots at all; (2) two real roots; (3) four real roots; anc
(4) six real roots. We are especially interested in case (4) since this means that among th
real roots there are two rogisssiblycorresponding to the quasi-P wave. Because the quas
P slowness surface, denot8dis convex and separated from and nested inside two oth
ovoid surfaces, the straight lirg = p; has two intersection points withif (p; = pj, 0)
is inside the domain enclosed by the quasi-P slowness surfacef @tnslition is important
because itis possible that no roots among the six real roots correspond to the quasi-P v
see the dashed line in Fig. 1b, which corresponds to cusps. Since the origin is in the dor
enclosed bys, p;, can be taken small enough to guarantee that the straightlirep; has
six real intersection points with the slowness surface, among which two are on the qua
slowness surfac8. The six real roots can be sorted into ascending order; moreover, t
third and fourth roots correspond to the two intersection points with the quasi-P slown
surface, denoted gs;° and p3".

BecauseS is strictly convex and closed, there are two extreme points at whieh0
and% = 0; by the method of characteristics,

RN TSI T R T

dxs 5 ( oF 8F>18F
— = Vg = - + o PR
plapl p33p3 9ps

dxg ( 9F aF)‘laF
©)

dt 9

they correspond to the two horizontal rays (pointing to the positive and negative
directions). To locate such points, we need two sets of intersection pqn'ptaf) and
(p%, pd"), which can be computed with} chosen as positive and negative numbers nes
zero, respectively.

Assuming that p;, pgp) and (pi, pd" on the quasi-P slowness surfa@are known, we
canfind orSan extreme pointg}", pg") which corresponds to the stationary point of function
p1 = f(ps) defined by the grapf(ps, ps) : p1 > p; > 0, p§" < ps < p5°. F(P1. Ps) =
0}; see Fig. 2. Since the functidnis convex, its derivative is monotonic; therefore, a typical
nonlinear iterative solver can be used to compute the unique stationary point, such as
Newton method. The above stationary pointis also of critical importance in the adaptatiol
upwind finite-difference schemes from numerical methods for Hamilton—-Jacobi equatic
because in that setting it is called the sonic point and is needed to decide the upwinc
direction.
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Once the two extreme pointg{, p3) and (p; , p3) corresponding to the two horizontal
rays are located, it is easy to see thatale (1 — A)p;, (1 — A)p;) give rise to down-
going and up-going quasi-P rays by utilizing different rootspef where A is the user-
specified paraxial parameter for depth direction marchingprer (1 — A) p;, we simply
set the paraxial HamiltoniaH (p1) = H((1 — A) py); similar treatment is given tp; >
(1—A)pf.

Supposing that we have two extreme poingg (p3) and (o, p3), the ray tracing
equation says that the outward normals at these two extreme points correspond to the
which point to the horizontal directions. Knowing this, we can design a shooting methoc
compute the travel time from a source point to a specific point in homogeneous anisotre
media. Since the group angle is known, the goal is to find the corresponding slowness ve
to give the correct group angle. The following results.

ALGORITHM 1:
e Input: (x5, 23), (X9, 2), (7, P3), and(p;, p3)-
e Setpd < p; andp) < p;.
o Compute:p§ < 3(p3+ pb).
. X9 —x3
e Compute: gcos— \/Wm
e While pf < p§andp$ < p?, do
—root_pz < all roots of F(p§, ps) = 0.0.
—Sort the roots in ascending ordenpt_ps < sortfoot_ps).
—Pick out the one for down-going gP wave:
x if F is sextic: p§ < root_ps(4).
* if F is quartic:p§ < root_ps(3).
—Compute the group velocity vectové( US) at (p$, pS) by Egs. (9).
l}1
—Compute: gvek— \/W
—If gvel > gcos, thenp? < p§ and p§ < 0.5(p3 + pb); else p2 < p$ and p§ «
0.5(p2 + p).
e Compute travel timet = 04 X7+ 05 %"

VO + 3?2
Algorithm 1 is useful for initializing the travel time to start the finite-difference schemes

4. ENO AND WENO FOR PARAXIAL EIKONAL EQUATIONS

Equation (7) is a nonlinear first-order PDE for travel timéHowever, the travel time is
not unique: when the elastic parameters vary with position, in general many rays pass
at least some points in the subsurface so that the travel-time field is multivalued [2]. C
choice of unique travel time for each subsurface point iddhst time(“first-arrival time”).

It turns out that for isotropic media this first-arrival travel-time field isvfseosity solution

of the eikonal equation [27]; we surmise that this is also true for anisotropic problems w
a convex slowness surface. Qian and Symes [36] proved that the Hamiltonian of the que
paraxial eikonal equation is concave, so its (unbounded) viscosity solution exists an
unique [7, 16, 23, 26]; furthermore, upwind schemes can be used to compute this viscc
solution successfully [8].

To compute the first-arrival travel-time field with a grid-based finite-difference scherr
we derived a first-order upwind scheme from ray tracing rather than directly from t
eikonal equation; see the Appendix. We use this first-order scheme as a building block
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designing high-order schemes. To increase the order of convergence, we employ higher
essentially nonoscillatory and weighted ENO refinements. ENO schemes were introdu
by Osher and Sethian [30] and Osher and Shu [31] as a means for solving Hamilton-Ja
equations. WENO schemes were first proposed byétia). [28] as a means to overcome
the drawbacks of ENOs. Jiang and Peng [17] made further improvements and extens
for Hamilton—Jacobi equations. Because WENO schemes are extensions of ENO sche
we present second-order ENO schemes first.

Given mesh sizeAx;, Axz, andAxs, we denote by, , by the numerical approximation
of the viscosity solutiorr (x]", x&, x3) of Eq. (7) at the grid point", X%, x3). Define the
backward ¢) and forward ¢ ) first-order difference quotient approximations of the left anc
right derivatives oft (x1, X2, X3) at the locationXy", x‘g, x3) with respect tog; andx; as

+ Thetk — Tmk + Tkt — Tmk

n _ m=l, m, n _ m, m,

Dytmk=*t————, Detqy=t———""-. (10)
AXy AXo

The second-order ENO refinementso [30] are

1
Di%th = Dito F ZAxlm(Di Dy Tmi Dy Dyt ). (12)
with
m(x, ¥) = min(max(x, 0), max(y, 0)) + max(min(x, 0), min(y, 0)). (12)

ENO refinements f0|§7’2 are defined similarly.
So a second-order ENO Runge—Kutta scheme for Eq. (7) can be formulated as
n+% __n A CleA D+2 D> D+2 D—,2 n
‘Cm,k — "mk + X3 ( m k> x1 m k> m k> xo Tm,k)’

1
Trr:l?l = 2( mk+fmk + AxgﬂH (DZ’Z Tmk > D, 2 r?ﬁ(z Dxt’zfr;?a Dy, 2 n+2)>’
where the fluxH » is defined by [31]

Ha(ut,u™, vt v7) = extyel u-,uh)EXbyel - vy Ha (U, V). (13)

The function exic| @b = MaX <y<p if @ < b, eXlyei@p = MiNh<u<a else; 1 (a, b)=
[min(a, b), maxa, b)]; Axz°" is the Courant—Friedrichs—Lewy (“CFL”) step,

AHAN?  /aHA\? AX;AX
et ([ (Y] L _mae g
Ip1 op2 AX12 + AXp2

with the maximum taken over the relevant ranggppfand p,. SinceH, is concave [36],
Inequality (14) reduces to

max aHA\ 2 IHA\? AX1AX
ot [0 X ( A> N <A) o Aabde g
3 {(p1 Ps) } apy ap2 TV AX12 + AXo? (15)

where(ps, p$) = (1 — A) Pmax(¢) 0S¢, (1 — A) Pmax(¢) Sing).
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Using the concavity of the Hamiltonidd,, the above flux functiom A Is not difficult
to compute as long as the “sonic point” (at whi%f or %‘;i changes sign) is located. To
locate sonic points, we can use the algorithms for the extreme points explained abov
the sonic point is ap; = 0 or p, = 0, which is true for the isotropic eikonal equation and
the eikonal equation for the transversely isotropic medium with a vertical symmetry a
we can simplify the above scheme,

T 4 AXSTH CANNEIAY (16)
mk — "mk A 3X1 m,k’ 8X2 nk ’

— —

1 0T nt3 ot 3
A=y (el e otn((5) (), ) @
m,k m,k

where

a-\n
(8{) = maxmod max( Dy, ?zj, 0), min(Dy -z, 0)), (18)

PN
(m) = maxmod max( Dy, ?zj, 0), min(Dy 7, 0)), (19)
dX2 mk

with maxmod returning the larger value in modulus; see [21, 35, 36].

In the upwind framework, second-order ENO schemes diminish total variation, her
they have at least subsequences which converge to weak solutions [25, 45]. There i
known convergence result for ENO schemes of orders higher than 2, even for smc
solutions [45]. However, Jiang and Shu [18] proved that WENO schemes converge
smooth solutions. The main advantage of WENO schemes is that they provide smc
flux functions, so they are less sensitive to zeros of solutions and derivatives than E
schemes.

The WENO second-order schemes Bfflrm,k are [17]

1 w_
D;lw,zfm,k = é (D;(Fll'm—l,k + D;(Llfm,k) - 7 (Dxtl'm_z,k — ZDZTm—Lk + D)J(rlfm’k), (20)
1 w
D+W’27myk = E (szm_l_k + szmyk) - 7+ (D;(‘rlfm.i,_l,k - ZDZTm,k + D)Ztm—l,k) ) (21)
where
1 + (Dy D5 tmi)
W= ——, = CH 5 (22)
1+2r= ( Dxlfm k)
1 Dy, Dy, tmk)”
w4 = P I’+ = ( )2. (23)
1+2r% ( Dxlfm k)

In the denominators of Egs. (22) and (23), the small positive nudlerndded to avoid
dividing by zero. The WENO second-order schemesljézrrm_;< are defined similarly.
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5. APPLICATION: INCLINED TI MEDIA

Although a general anisotropic solid has 21 independent elastic parameters, the tr
versely isotropic (TI) solid has only five independent elastic parameters. But it has, n
ertheless, the essential anisotropic features we want to capture; therefore it is convel
to use Tl solids as models to illustrate how the approaches work. First we consider
simplest case for Tl solids, i.e., Tl solids with vertical symmetry axes. Then we constrt
inclined TI models by rotating VTI models [20]. Because the slowness surface equation
the inclined TI model is a sextic polynomial equation which has the essential features
a general sextic slowness surface and admits no explicit solutions, it is suitable to use
model to test the proposed algorithms.

The elastic modulus matrix for transversely isotropic media with vertical symmetry ax
(VTI) has 5 independent components among 12 nonzero components [29, 47]. A clos
form solution exists in this case for the eigenvalue problem (2). The quasi-P and quasi-
slowness surface for VTI can be represented as a quartic polynomial equation (where
guasi-SH slowness surface is decoupled from the whole slowness surface),

G(0u. gs) = aq; + bafa + caf + dof + e + 1 =0, (24)
where

a = ap1a4s,

b= anaz+ 324 — (a3 + aug)?

C = agzays,
d = —(ai1 + asa),
= —(az3 + ).

In the above formulae, the Voigt recipe is assumed to simplify the elasticity tejgaio
obtaina;; [47].
Rotateoq; g, axes by angle/,

Oy = t11p1 + ti3Ps, O3 = t31P1 + t33Ps3,

wheret;; = t33 = cosyr, t13 = —t3; = sin. Substituting the above relationinto Eq. (24),
we have a quartic polynomial equation in variabigs ps,

F(P1, P3) = w1p] + w2p3ps + wapi ps + wap1p3 + wsps
+ wep? + w7 P1Ps + wgP3 + wg = 0, (25)

where

wy = aty; + btfitd, + ctg,
wy = 4at131t13 +2b (tfltgltgg + t11t13t§1) + 4Ct§lt33,

w3 = 6attZ + b(t4t3 + Mustistartss + tts;) + 6ct3td,
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0.3

0.2

0.1

FIG. 3. The quasi-P slowness surface: unrotated (solid line) and after a rotation @athed line).

wg = 4atyt]; + 2b(tiatists; + titartss) + 4Ctatds,
ws = atjy + btist; + ctyy,

we = dtf; + ety,

w7 = 2dtyqtiz + 2etytss,

wg = dtf; + et

lL)gEl.

The two partial derivatives are given by

oF
P 4w 3 + w2 P3Pl + 2(wspi + we) pr+ (wapf + w7) Ps.
oF
e = 4wsp3 + Swapyps + 2(ws p? + ws) Ps + (w2 p? 4 w7) Pr.

Figure 3 shows an original Tl quasi-P slowness surface with a vertical symmetry axis
its rotated version.

6. NUMERICAL EXAMPLES

We have designed algorithms to be used for general anisotropic solids. In this sectior
test these algorithms on the inclined Tl solids. We compute the paraxial Hamiltonian
using the idea explained above and solve the paraxial eikonal equation (7) by second-c
ENO and WENO schemes. All examples are assumed to be of constant density.
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In typical seismic exploration applications, the initial condition of the eikonal equation
given as a point source; thus the solution of the corresponding eikonal equation is callec
fundamental solution with one-point singularity at the source [23]. Due to this singulari
of the travel-time field which leads to the contamination of global numerical accuracy;, \
must use special techniques, such as the adaptive grid method [34, 35] or local unif
mesh refinement[21], to initialize the travel time. However, here we assume a homogene
layer near the source (for which it is supposed to be easy to assign an accurate travel t
and start the finite-difference scheme some distance away from the source; namely, we
Algorithm 1 to compute the group velocity and directly initialize the travel time at ever
grid point on a surface away from the source. To solve the polynomial equation, we
MATLAB toolboxes; to locate the extreme points, we use Newton methods.

The example occupies the rectangl®.5 km< x; < 0.5 km, 0 < x3 < 1 km}; the source
is located ak; = 0.0 km,x3 = 0.0 km. The four elastic parameters of Zinc [29, p. 280] are
11 = 15.90,a33 = 6.21,a;3 = 4.82, anday4 = 4.00; they can be transformed into Thom-
sen’s parameters [47do = 2.492 km/s,Bo = 2.00 km/s,e = 0.7802, and = 2.6562

According to the notion of Thomsen'’s weak anisotropy, these parameters show that
anisotropy is strong rather than weak. Therefore, this model will serve as an assay for
algorithms developed here and will be examined systematically. To do this, we will apj
both ENO and WENO second-order schemes to both unrotated and rotated models.

To obtain an ITI model from the VTI model, the rotation angles 36 degrees. The
initial data depth is ats = 0.04 km; that is, the initial data for the finite-difference scheme
are given at this depth by Algorithm 1. The paraxial parametds taken as 0.01. In
Tables |-V Abs.Err is the maximum absolute error and Rel.Err is the maximum relati
error, both measured at bottom = 1 km.« is the estimated convergence order, where we
use the travel time from Algorithm 1 as the exact solution to calibrate the travel time frc
the finite-difference scheme. The mathematical definitions of these three quantities are

Abs.Err(t, AXy) = maX|Tana_ TfAdX1 J
AXy
MmaX|Tana — T¢
RelErr(t, AXq) = ’ d
max|tanal

and

o

1 RelErr(t, 2AX1)
"~ log2 Rel.Err(z, Axy) }°

wheret,n, denotes the travel time by Algorithm 1 amg the travel time from the finite-
difference scheme.

The results for VTI models are shownin Tables | and II. Table | shows that the convergel
ordera of the ENO scheme is going to 2 as¢; goes to zero, while Table Il shows that on
average the second-order WENO scheme has a convergence order greater than 2.

Tables Il and IV show the results for ITI models. The second-order ENO scheme dc
converge as a second-order scheme and it has stable error behaviors. The WENO se
order scheme seems to converge to a third-order scheme, which is consistent with
original construction of the WENO schemes [17].

Figure 4a shows the slowness surface for Zinc with a vertical symmetry axis, a
Fig. 4b shows the slowness surface after it has been rotated 30 degrees. To gen
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TABLE |
Convergence Order of ENO: VTI Model

AXy Abs.Err(t, AX))(s) Rel.Errg, AX;) o

0.04 2.3589e-04 5.7583e-04

0.02 1.0056e-04 2.4548e-04 1.2301

0.01 3.1957e-05 7.8011e-05 1.6539

0.005 9.1562e-06 2.2351e-05 1.8033

0.0025 2.4494e-06 5.9793e-06 1.9023
TABLE Il

Convergence Order of WENO: VTI Model

AXy Abs.Err(t, AX))(s) Rel.Errg, Axy) o

0.04 1.9809e-04 4.8553e-04

0.02 7.0328e-06 1.7168e-05 4.8159

0.01 2.7634e-06 6.7457e-06 1.3477

0.005 5.1313e-07 1.2526e-06 2.4290

0.0025 8.2154e-08 2.0055e-07 2.6429
TABLE Il

Convergence Order of ENO: ITI Model

AXy Abs.Err(t, AX))(s) Rel.Errg, Axg) o

0.04 0.0022 0.0049

0.02 6.8005e-04 0.0015 1.6938

0.01 1.8129e-04 4.0871e-04 1.9073

0.005 4.5921e-05 1.0353e-04 1.9811

0.0025 1.1749e-05 2.6489e-05 1.9666
TABLE IV

Convergence Order of WENO: ITI Model

AXy Abs.Err(t, AX))(s) Rel.Errg, Axg) o

0.04 0.0017 0.0039

0.02 4.4201e-04 9.9652e-04 1.9434
0.01 8.1029e-05 1.8268e-04 2.4476
0.005 1.0109e-05 2.2792e-05 3.0028

0.0025 1.2716e-06 2.8669e-06 2.9909
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FIG.5. The 2-D homogeneous inclined (3671 Zinc model with a second-order ENO scheme. The source
is located ak; = X3 = 0.0; the initial depth is 0.02 km andx; = AX; = 0.02 km. (a) Travel-time contours by
the paraxial eikonal solver with the ENO scheme. (b) The travel-time calibratin=atl km.
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FIG.6. The 2-D homogeneous inclined (361 Zinc model with a second-order WENO scheme. The source
is located ak; = X3 = 0.0; the initial depth is 0.02 km andx; = Axs = 0.02 km. (a) Travel-time contours by
the paraxial eikonal solver with the WENO scheme. (b) The travel-time calibration=atl km.
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these figures, the extreme points are located by the Newton method, and then a numb
samplings are taken fq in the interval @1, p;).

Figures 5 and 6 show the travel-time contours and calibrations for the two schemes.
calibrations show that the schemes work very well.

7. CONCLUSIONS

We have formulated for the heterogeneous anisotropic solids the paraxial eikonal eque
satisfied by the first-arrival travel time associated with gP wave propagation. We h:i
presented complete implementation details for computing the paraxial Hamiltonian ¢
illustrated its application to the transversely isotropic solid. We have introduced seco
order ENO/WENO schemes by using a first-order scheme presented in the Appendix
building block. Higher order schemes may be constructed by further use of this method
These schemes solve the gP paraxial eikonal equati@n ) floating point operations
(where N is the number of grid points). Numerical results have shown that our schet
is accurate and efficient; for numerical results on complex models and models with b
lateral and vertical variations, see [36]. The chief shortcoming is that the paraxial assump
permits us to compute travel times along down-going rays only; for example, we do |
compute the overturning wavefronts. However, the paraxial formulation does provid
natural framework for performing down-and-out and postsweeping iterations [10, 20]
obtain the full aperture anisotropic travel-time field [37]. Further improvements can be m:
by implementing a fully adaptive eikonal solver based on a posteriori error estimates
general numerical methods for Hamilton—Jacobi equations [1].

The scheme can be used in many geoscience applications requiring modeling of ar
tropic wave propagation, such as 3-D Kirchhoff migration and modeling, tomography, &
3-D controlled illumination modeling.

APPENDIX: A NEW DERIVATION OF A FIRST-ORDER GODUNQOV SCHEME

In this appendix, we derive a first-order scheme from ray tracing rather than direc
from the eikonal equation. Nonetheless, the end result will be recognizable as a differe
approximation to the eikonal equation. We consider the two-dimensional case to illusti
the idea, which means all out-of-plane components vanish in the equations formulatec
3-D media and all rays stay in thgxs plane.

The first-order finite-difference approximation to the P eikonal equation rests on sev
approximations; that is, we may approximate locally near a grid point:

1. the group velocityy by a constant;
2. the rays by straight line segments;
3. the travel time by piecewise linear functionsxefwith nodes at the grid point.

Given a Cartesian gridhfAx;, NAX3) in two-dimensional space, let
T A T(MAXy, NAX3) (A1)

be the grid function approximating the travel time. Ne@arA(X;, nAXg), we define the
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approximation of derivativey, at (X1, NAX3) by

n_.n
D=t for (M— 1)AXg < Xg < MAXy,
"~ ! (A.2)

X1 n zn )

o
Dyt = e for mAX; < X; < (M+ 1)AXq.

The characteristics (rays) of eikonal equation (4) are down-going, so they can be par
eterized byxs = z and satisfy (in the two-dimensional case)

dX1 oH

= , A.3
dxs P (A.3)
dr oH
— =H-p—. A4
dx plapl (A.4)

The ray group velocity is

2
dH

) (a—pl) +1
Vg = = (A.5)

H(p1) — aps PL

After discretization, the group velocity is given by
oH + 2
+ (a_m(Dxlfr%)) +1

= (A.6)

vV, = - .
9 H(Dgrh) —g—;'l(D;tlr,g)D;grg]

Aray segment passing throughf xs, (n + 1) Axz) and meeting the ling; = nAxz at x;

has length
X1 — MAXq 2
L =Axz4/1 _, A.7
o1 () a7

so that the time predicted ahAxy, (n + 1) Ax3) under the foregoing assumption is

T+ (X2 — MAX) D b + v% for mAX, < X1 < (M+ DAXg,
ALY ’ (A.8)
Th + (X1 — MAX) Dy 7h + % for (m— 1)AXy < X1 < MAX;.

Finally, the ray velocity vector should obey the ray equation (A.3),

aH
Xp—MAX;  dxg — 5 (Dfhgn)  for mAxy < x1 < (M+ 1)Ax,

_— — R

= A.9
AX3 dxs (A-9)

Py
—g—,:(Difﬁ) for (m—1)AX; < X3 < MAXg,

AxsB(DJzh)  for mAX < xi < (M+1Ax,
Xl—mAXJ_% (A10)

Am%(Dx—lrg) for (M —1)AX; < X3 < MAXq,
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Substituting expression (A.10) into (A.8) and carrying out the algebra, we arrive at

th+ AxgH (D zh)  for mAX; < xq < (M+ 1)Ax,
Ml = (A.11)
th+ AxgH (Dyzh)  for (m— DAXp < X1 < MAX,

wherex; is chosen to satisfy (A.9) if possible.

Next we have to examine the significance of the condition switching the branches
(A.11). If mAX; < X3 < (Mm+ 1)AXy, i.e., the ray slope is nonpositive, it follows from
(A.9) that

oH

op; (D) = 0 (A.12)

X1 °m

Similarly, the second branch occurs when

oH

When neither of these occurs, i.e.,
oH oH ,

rays fan away frommhAxy, NAXz); thatis, this pointis a center of rarefaction. Then to gooc
approximation, the ray enteringyaxs, (n + 1) AXs) is vertical; i.e., along it

oH

A o, A.15
ns (A.15)

which corresponds to a sonic point. Finally, if both conditions are satisfied, i.e.,

oH a H
+ —
then two rays converge omAxy, (n + 1) Axz), and we should select the lesser of the twa
times provided by (A.11).
Because the Hamiltonian H is concave, all four of these options can be combined in
simple formula

ot = 10 + AxgH®(Dy 7, D 7). (A.17)
where the fluxH ¢ is defined by
max H(u), if u” <u+;

u-<u<ut

min H(u), else

ut<u<u-

HOu™,u") = (A.18)

The scheme just proposed is identical to the so-called Godunov first-order scheme,
therefore it is a monotone scheme; see Osher and Sethian [30] and Osher and Shu [3:

There remains one further detail to take care of: The approximate ray might m
X3 = NAXz outsidethe interval(m — 1) Ax; < X; < (m+ 1)AX;. The difference scheme
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(A.17) would necessarily become unstable, as the numerical domain of dependenc
(mAXxy, (n 4+ 1) Axs) (namely, the three points o@ = nAxz in the scheme (A.17)) would
no longer contain in its convex hull the continuum domain of dependgticén order to

be certain this Courant-Friedrichs—Lewy (“CFL”) criterion is satisfied, we limit the slop
of the ray:

oH

oH _
max{‘a_m(DZT’?‘) , '8_|01(DX1T’?‘>

} < &% (A.19)
AX3

By the definition ofH,, for givenA > 0, there existgy,,, such that [34]

H(pw), if pr < (1—2)Phae
Ha(py) = ' , ' max (A.20)
H ((1 - A) pmax)a e|Se
and
OHA 1
<0 = ). A.21
RIS (21)
Therefore, we need to choose just> 0 such that
A 1
2% o(—). (A.22)
AX3 A
Finally, the resulting difference scheme is
ot = i + AxgHZ (Dy 7. Dy 7). (A.23)

which is consistent with thparaxial eikonal equation

Pz = Ha(po). (A.24)

Solutions of (A.24) are identical to solutions of the eikonal equation at points who

associated rays make an angle/ " = arctan(ﬁ—i;) with the vertical &; = constanf

throughout their length. (For the point source problem, the associated ray is the first-arri\
ray connecting the subsurface point with the source point.) Thus with this paraxial limitatic
the scheme is suitable for computing the travel timd@f/n-going ray fans
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